函数信号发生器课程设计

合集下载

信号发生器课程设计报告完整版

信号发生器课程设计报告完整版

信号发生器课程设计报告HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】目录一、课题名称 (2)二、内容摘要 (2)三、设计目的 (2)四、设计内容及要求 (2)五、系统方案设计 (3)六、电路设计及原理分析 (4)七、电路仿真结果 (7)八、硬件设计及焊接测试 (8)九、故障的原因分析及解决方案 (11)十、课程设计总结及心得体会 (12)一、课题名称:函数信号发生器的设计二、内容摘要:函数信号发生器作为一种常用的信号源,是现代测试领域内应用最为广泛的通用仪器之一。

在研制、生产、测试和维修各种电子元件、部件以及整机设备时,都要有信号源,由它产生不同频率不同波形的电压、电流信号并加到被测器件或设备上,用其他仪器观察、测量被测仪器的输出响应,以分析确定它们的性能参数。

信号发生器是电子测量领域中最基本、应用最广泛的一类电子仪器。

它可以产生多种波形信号,如正弦波,三角波,方波等,因而此次课程设计旨在运用模拟电子技术知识来制作一个能同时输出正弦波、方波、三角波的信号发生器。

三、设计目的:1、进一步掌握模拟电子技术知识的理论知识,培养工程设计能力和综合分析能力、解决问题的能力。

2、基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3、学会运用Multisim仿真软件对所做出来的理论设计进行仿真测试,并能进一步解决出现的基本问题,不断完善设计。

4、掌握常用元器件的识别和测试,熟悉万用表等常用仪表,了解电路调试的基本方法,提高实际电路的分析操作能力。

5、在仿真结果的基础上,实现实际电路。

四、设计内容及要求:1、要求完成原理设计并通过Multisim软件仿真部分(1)RC桥式正弦波产生电路,频率分别为300Hz、1KHz、10KHz、500KHz,输出幅值300mV~5V可调、负载1KΩ。

(2)占空比可调的矩形波电路,频率3KHz,占空比可调范围10%~90%,输出幅值3V、负载1KΩ。

函数信号发生器课程设计

函数信号发生器课程设计

信号发生器一、设计目的1.进一步掌握模拟电子技术的理论知识,培养工程设计能力和综合分析问题、解决问题的能力。

2.基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力。

3.学会运用Multisim10仿真软件对所作出的理论设计进行仿真测试,并能进一步完善设计。

4.掌握常用元器件的识别和测试,熟悉常用仪表,了解电路调试的基本方法。

二、设计内容与要求1.设计、组装、调试函数信号发生器2.输出波形:正弦波、三角波、方波3.频率范围:10Hz-10KHz范围内可调4.输出电压:方波V PP<20V, 三角波V PP=6V, 正弦波V PP>1V三、设计方案仿真结果1.正弦波—矩形波—三角波电路原理图:首先产生正弦波,再由过零比较器产生方波,最后由积分电路产生三角波。

正弦波通过RC串并联振荡电路(文氏桥振荡电路)产生,利用集成运放工作在非线性区的特点,由最简单的过零比较器将正弦波转换为方波,然后将方波经过积分运算变换成三角波。

正弦—矩形波—三角波产生电路:总电路中,R5用来使电路起振;R1和R7用来调节振荡的频率,R6、R9、R8分别用来调节正弦波、方波、三角波的幅值。

左边第一个运放与RC 串并联电路产生正弦波,中间部分为过零比较器,用来输出方波,最好一个运放与电容组成积分电路,用来输出三角波。

仿真波形:调频和调幅原理调频原理:根据RC 振荡电路的频率计算公式RCfoπ21=可知,只需改变R 或C 的值即可,本方案中采用两个可变电阻R1和R7同时调节来改变频率。

调幅原理:本方案选用了最简单有效的电阻分压的方式调幅,在输出端通过电阻接地,输出信号的幅值取决于电阻分得的电压多少。

其最大幅值为电路的输出电压峰值,最小值为0。

RC 串并联网络的频率特性可以表示为)1(31111212RCRC j RC j R C j R RCj Rf Z Z ZUU F ωωωωω-+=++++=+==∙∙∙令,1RCo =ω则上式可简化为)(31ωωωωOOjF -+=∙,以上频率特性可分别用幅频特性和相频特性的表达式表示如下:|F∙|)(3122ωωωωo o -+=)(3arctanωωωωϕooF--=,根据上式可以分别画出RC 串并联网络的幅频特性和相频特性:1.正弦波振荡电路的原理如下图a 、b 所示:由上图得出正弦波振荡的条件为:根据RC 串并联网络的选频特性及上述平衡条件容易得到RC 正弦波振荡电路的振荡频率为:RCfoπ21=; 振荡的幅度平衡条件|F A ∙∙|1=是表示振荡电路已达到稳幅振荡时的情况。

模电课程设计:函数信号发生器的设计

模电课程设计:函数信号发生器的设计

《电路与模拟电子技术》课程设计任务书低频函数信号发生器的设计任务和要求:1 设计并制作能产生正弦波、矩形波(占空比可调)和锯齿波等多种信号的函数信号发生器。

2 主要技术指标和要求(1)输出的各种信号波形工作频率范围10Hz~10kHz,连续可调;(2)输出的各种信号波形幅值0~10V,连续可调。

高精度60Hz信号频率,经电容C3耦合到运放器741的②脚进行信号放大,然后从741的⑥脚输出。

调节电位器RP时,XS1插口输出0~1V,XS2插口输出0~0.1V的低频信号。

其实,C2、C5为电源滤波电容。

c3、C6为741的输入、输出耦合电容。

R5、R4为高频补偿电路。

R2、R4构成分压衰减电路。

R6为反馈电阻用以提高电路的稳定度。

CD4060各脚的输出频率:③脚为2Hz,②脚为4Hz,⑥脚为240Hz,④脚为480Hz,⑤脚为960Hz,⑦脚为1920Hz。

1 画原理图本设计中要求用Protel软件完成原理图以及PCB板。

我用的是Protel2004版本。

电路原理图的设计是印制电路板设计中的第一步,也是非常重要的一步。

电路原理图设计得好坏将直接影响到后面的工作。

首先,原理图的正确性是最基本的要求,因为在一个错误的基础上所进行的工作是没有意义的;其次,原理图应该布局合理,这样不仅可以尽量避免出错,也便于读图、便于查找和纠正错误;最后,在满足正确性和布局合理的前提下应力求原理图的美观。

电路原理图的设计过程可分为以下几个步骤:1、设置电路图纸参数及相关信息根据电路图的复杂程度设置图纸的格式、尺寸、方向等参数以及与设计有关的信息,为以后的设计工作建立一个合适的工作平面。

2、装入所需要的元件库将所需的元件库装入设计系统中,以便从中查找和选定所需的元器件。

3、设置元件将选定的元件放置到已建立好的工作平面上,并对元件在工作平面上的位置进行调整,对元件的序号、封装形式、显示状态等进行定义和设置,以便为下一步的布线工作打好基础。

函数信号发生器实验教学设计与实践

函数信号发生器实验教学设计与实践

函数信号发生器实验教学设计与实践一、实验目的:1.了解函数信号发生器的基本原理和工作过程;2.掌握函数信号发生器的使用方法;3.熟练掌握函数信号发生器的参数设置及调节技巧;4.学会利用函数信号发生器产生不同类型的信号,如正弦波、方波、三角波等;5.了解函数信号的性质及其在电路实验中的应用。

二、实验原理:函数信号发生器是一种能够产生各种不同波形的信号源设备,常用于电子实验中的信号源和频率标准。

它可以产生正弦波、方波、三角波等不同类型的波形,并且可以通过调节幅度、频率、相位等参数来得到需要的信号输出。

函数信号发生器一般由振荡器、波形调制电路、幅度调节电路和频率调节电路等部分组成。

三、实验内容及步骤:1.实验仪器与材料:函数信号发生器、示波器、万用表、串联电阻、电容等元器件。

2.实验步骤:(1)连接实验电路:将函数信号发生器的输出端与示波器的输入端相连,然后通过示波器显示出信号波形。

(2)调节幅度参数:设置函数信号发生器的幅度参数,观察示波器上波形的变化。

(3)调节频率参数:设置函数信号发生器的频率参数,观察波形在示波器上的变化。

(4)产生不同波形:尝试产生不同类型的波形,如正弦波、方波、三角波等,并观察其在示波器上的输出情况。

(5)测量输出信号的频率、幅度等参数,掌握功能信号发生器的参数调节技巧。

四、实验结果与分析:1.实验通过连线和参数设置,成功连接函数信号发生器和示波器,并在示波器上显示出所需的信号波形。

2.通过调节幅度和频率参数,能够观察到输出信号的变化,并且通过示波器可以准确测量信号的频率、幅度等参数。

3.产生正弦波、方波、三角波等不同类型的波形,并观察其在示波器上的输出情况,验证函数信号发生器的功能。

五、实验总结:通过本次实验,我们深入了解了函数信号发生器的原理和工作过程,掌握了函数信号发生器的使用方法及参数调节技巧。

实验中,我们通过实际操作产生了不同类型的信号波形,并成功利用示波器观察和测量了输出信号的频率、幅度等参数。

函数信号发生器课程设计

函数信号发生器课程设计

一绪论1.1函数信号发生器的应用意义函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件也可以是集成电路。

为进一步掌握电路的基本理论及实验调试技术,本课题采用有集成运算放大器与晶体差分放大器共同组成的方波—三角波—正弦波函数发生器的设计方法。

具体方法是由比较器和积分器组成方波—三角波产生电路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。

差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。

特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。

波形变换的原理是利用差分放大器传输特性曲线的非线性。

通过此次设计,我们能将理论知识很好的应用于实践,不仅巩固了书本上的理论知识,而且锻炼了我们独立查阅资料、设计电路、独立思考的能力1.2设计任务设计能产生方波、三角波、正弦波的函数信号发生器电路1.3设计要求1)输出各种波形工作频率范围:10—100Hz,100—1KHz,1K—10KHz。

2) 输出电压:正弦波U=3V , 三角波U=5V , 方波U=14V。

3) 波形特征:幅度连续可调,线性失真小。

4)选择电路方案,完成对确定方案电路的设计;计算电路元件参数与元件选择、并画出各部分原理图,阐述基本原理。

1.4设计方案函数信号发生器是是由基础的非正弦信号发生电路和正弦波形发生电路组合而成。

由运算放大器单路及分立元件构成,方波——三角波——正弦波函数信号发生器一般基本组成框图如图1所示。

图1 函数信号发生器框图1、方波—三角波—正弦波信号发生器电路有运算放大器及分立元件构成,其结构如图1所示。

他利用比较器产生方波输出,方波通过积分产生三角波输出,三角波通过差分放大电路产生正弦波输出。

2、利用差分放大电路实现三角波—正弦波的变换波形变换原理是利用差分放大器传输特性曲线的非线性,波形变换过程如图2所示图 2 三角波和正弦波得转换示意图由图2可以看出,传输特性曲线越对称,线性区域越窄越好;三角波的幅度Uim应正好使晶体接近饱和区域或者截至区域。

函数信号发生器课程设计

函数信号发生器课程设计

函数信号发生器课程设计一、课程目标知识目标:1. 学生能理解函数信号发生器的基本原理,掌握其工作流程及各部分功能。

2. 学生能描述函数信号发生器产生的常见信号类型,如正弦波、方波、三角波等。

3. 学生能运用数学知识分析函数信号发生器产生的信号特点及其应用场景。

技能目标:1. 学生能正确操作函数信号发生器,进行信号生成、频率调节、幅度调节等基本操作。

2. 学生能运用函数信号发生器进行简单的信号实验,如叠加、调制等。

3. 学生能通过实验观察和分析信号波形,提高实验操作能力和问题解决能力。

情感态度价值观目标:1. 学生培养对电子技术及信号处理领域的兴趣,激发学习热情。

2. 学生通过合作实验,培养团队协作能力和沟通能力。

3. 学生在学习过程中,树立正确的科学态度,认识到科学技术对社会发展的作用。

课程性质:本课程为电子技术实践课程,注重理论与实践相结合,提高学生的实际操作能力。

学生特点:高二年级学生,已具备一定的电子技术基础知识和实验操作技能。

教学要求:结合学生特点,采用启发式教学,引导学生主动探究,提高学生的实践能力和创新能力。

在教学过程中,注重培养学生的安全意识和实验素养。

通过课程学习,使学生能够将所学知识应用于实际电子电路设计和实验中。

二、教学内容1. 函数信号发生器原理介绍:包括振荡器、放大器、波形发生器等组成部分及其工作原理。

- 教材章节:第二章第三节“函数信号发生器的组成与原理”2. 常见信号类型及其特点:正弦波、方波、三角波、脉冲波等信号的数学描述和实际应用。

- 教材章节:第二章第四节“函数信号发生器的波形及其应用”3. 函数信号发生器操作与使用:基本操作方法、功能键的使用、频率和幅度的调节。

- 教材章节:第三章第一节“函数信号发生器的操作与使用”4. 实验教学:利用函数信号发生器进行信号叠加、调制等实验操作。

- 教材章节:第三章第二节“函数信号发生器实验”5. 信号分析与应用:分析实验中产生的信号波形,探讨其在电子技术领域的应用。

微机原理课程设计-函数信号发生器

课程设计报告课程微机原理课程设计题目函数信号发生器系别物理与电子工程学院年级08级专业电子信息工程班级 3 学号学生姓名Q指导教师职称讲师设计时间2011.5.30~2011.6.3目录绪论 (2)第一章题目要求 (3)1.1 设计要求 (3)1.2 设计目的 (3)1.3设计环境 (3)第二章方案设计与论证 (4)2.1主要芯片介绍 (4)2.1.1 DAC0832芯片介绍 (4)2.1.2 8255A芯片介绍 (7)2.2 主要设计思想 (8)第三章结构框图等设计步骤 (9)3.1总体设计流程图 (9)3.2 锯齿波实现过程 (9)3.3三角波实现过程 (10)3.4 正弦波实现过程 (11)3.5 方波实现过程 (12)第四章测试结果及相关分析 (13)4.1 调试步骤 (13)4.2 硬件实物连线图 (13)4.3运行结果 (14)第五章总结与体会 (19)参考文献 (20)绪论函数信号发生器是指产生所需参数的电测试信号的仪器。

按信号波形可分为正弦信号、函(波形)信号、脉冲信号和随机信号发生器等四大类。

信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

信号发生器作为一种常见的应用电子仪器设备,传统的可以完全由硬件电路搭接而成,如采用555振荡电路发生正弦波、三角波和方波的电路便是可取的路径之一,不用依靠单片机。

但是这种电路存在波形质量差,控制难,可调范围小,电路复杂和体积大等缺点。

在科学研究和生产实践中,如工业过程控制,生物医学,地震模拟机械振动等领域常常要用到低频信号源。

而由硬件电路构成的低频信号其性能难以令人满意,而且由于低频信号源所需的RC很大;大电阻,大电容在制作上有困难,参数的精度亦难以保证;体积大,漏电,损耗显著更是其致命的弱点。

函数信号发生器_模拟电路课程设计

模拟电路课程设计报告目录一、课程设计的任务、要求及步骤二、设计方案的选择三、电路设计主要的技术指标四、函数信号发生器电路原理分析五、函数信号发生器元件参数的选择六、函数信号发生器的安装和调试七、课程设计的过程中遇到的问题及解决方法八、课程设计的仿真九、试验评价与问题分析十、课程设计的心得和体会十一、附录姓名学号班级学院电子信息学院题目函数信号发生器设计任务设计一函数信号发生器,能输出方波和三角波两种波形1.输出为方波和三角波两种波形,用开关切换输出;2.输出电压均为双极性;3.输出阻抗均为50Ω;4.输出为方波时输出电压峰值为0~5V可调,输出信号频率为200Hz ~ 2KHz可调。

5.输出为三角波时输出电压峰值为0~5V可调,输出信号频率为200Hz ~ 2KHz可调。

时间进度18周星期一布置设计方案,预设计。

18周星期二领设备、安装18周星期三至周四安装、调试教师检查18周星期五、六、日写设计报告原始参资考料文和献主要电子技术基础(模拟部分)模拟电子技术课程设计指导书电子技术基础实验指导书一、课程设计的任务、要求及步骤1.设计任务a.输出为方波和三角波两种波形,用开关切换输出;b.输出电压均为双极性;c.输出阻抗均为50Ω;d.输出为方波时输出电压峰值为0~5V可调,输出信号频率为200Hz ~ 2KHz可调。

e.输出为三角波时输出电压峰值为0~5V可调,输出信号频率为200Hz ~ 2KHz可调。

2.设计要求a.电路原理图绘制正确(或仿真电路图);b.掌握EWB仿真软件的使用和电路测试方法;c.电路仿真达到技术指标。

d.完成实际电路,掌握电路的指标测试方法;e.实际电路达到技术指标。

f.原理图(草图)要清楚,标注元件参数g.正式原理图、接线图: A4打印EWB画图。

h.要求用统一格式封面;i.使用中原工学院课程设计报告专用纸。

j.图要顶天立地,均匀分布,合理布局3、设计步骤a.原理了解,清楚设计内容。

函数信号发生器模拟电路课程设计3

《模拟电子技术基础》课程设计任务书设计题目方波-三角波-正弦波函数发生器设计要求设计制作一个方波-三角波-正弦波频率范围100Z H ~1K Z H ,频率可调。

实验仪器设备:示波器,万用表,直流稳压源,毫伏表设计步骤与要求:(1) 根据设计要求,查阅相关资料,提出理论设计方案,画出电路原理图;(2) 根据已知条件及性能指标要求,选择元器件的型号及参数,并列出材料清单,画出电路连线图;(3) 将元器件安装在通用电路板,确认布线合理后再进行元器件的焊接。

(4) 测试性能指标,调整与修改元件参数值,使其满足电路设计要求,将修改后的元件参数值标在设计的电路图上。

(5) 上述各项完成后,再进行一些实验研究和讨论。

(6) 所有实验完成后,写出规范的设计报告。

目 录1 函数发生器的总方案及原理框图 (4)1.1函数发生器的总方案论证 (4)1.2原理框图 (4)2设计的目的及任务 (5)2.1 课程设计的目的 (5)2.2 课程设计的任务与要求 (5)2.3 课程设计的技术指标 (5)3元器件选择 (6)4 各组成部分的工作原理及实现功能4.1 方波发生电路的工作原理 (6)4.2 方波---三角波转换电路的工作原理 (7)4.3 三角波---正弦波转换电路的工作原理 (10)4.4电路的参数选择及计算 (12)4.5 总电路图 (13)5电路的安装与调试 (14)5.1 方波---三角波发生电路的安装与调试 (14)5.2 三角波---正弦波转换电路的安装与调试 (14)5.3 总电路的安装与调试 (14)5.4 电路安装与调试中遇到的问题及分析解决方法 (14)6 实验总结 (15)7参考文献 (16)1.函数发生器总方案及原理框图1.1函数发生器的总方案论证函数发生器一般是指能自动产生正弦波、三角波、方波及锯齿波、阶梯波等电压波形的电路或仪器。

根据用途不同,有产生三种或多种波形的函数发生器,使用的器件可以是分立器件(如低频信号函数发生器S101全部采用晶体管),也可以采用集成电路(如单片函数发生器模块)。

DSP课程设计(函数信号发生器)

DSP课程设计(函数信号发生器)DSP技术与应用实例设计题目:基于TMS320C54x DSP的函数发生器的设计指导老师:刘晋胜班级:电信09-x姓名:xxxxx学号:09034030xxx时间: 2012年6月11日~6月15日2011 ~2012 学年度第二学期广东石油化工学院计算机与电子信息学院基于TMS320C54x DSP 的函数发生器的设计一、 设计目的:1、 了解数字波形产生的原理;2、 学习用DSP 产生各种波形的基本方法和步骤;3、 掌握DSP 与D/A 转换器接口的使用。

二、 设计设备计算机、DSP 仿真器、ZYE1801B 实验箱、20M 示波器三、 设计原理波形产生是DSP 的重要应用之一。

而正弦信号发生器的设计则是波形产生应用的一个重要方面,它在通信领域有着广泛的应用。

利用DSP 产生正弦信号有三种方法:查表法(lookup table approach )、多项式逼近法(polynomial approximation )和迭代法(recursive algorithm )。

这三种方式各有其应用范围。

本设计题目以TMS320C54x DSP 为目标器件,设计并实现基于迭代法的“正弦序列生成”算法及其DSP 程序。

为了减少使用的存储器,可以采用正弦信号的对称性,复制90~180度的正弦值和180~360度的正弦值。

余弦信号的产生同样可以采用多种方法产生。

一是采用公式计算得到,二是采用正弦信号变换得到。

方波信号产生可以通过轮流输出两个不同大小的数值通过A/D 转换得到。

由于实验设备的DA 转换不正常工作,故全部采用查表的方法来仿真。

每个波形先计算出360个数,然后将内存中的值在坐标上显示出来。

四、 设计内容本设计题目以TMS320C54x DSP 为目标器件,设计并实现基于迭代法的“正弦序列生成”算法及其DSP 程序。

设计步骤:1、 熟悉正弦信号发生器的算法以及在DSP 系统的实现2、 熟悉A/D 转换的原理及实验箱的链接!9!7!5!3)sin(9753x x x x x x +-+-=))))9*81(7*61(5*41(3*21(2222x x x x x ----=3、掌握A/D转换的程序的编写4、编写DSP的正弦信号发生器的程序5、编写定时程序产生100HZ、1KHZ、10KHZ的正弦、余弦以及100K、1M的方波信号,每种类型的波形单周期360个点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一、概述 (2)二、技术性能指标 (2)2.1设计内容及技术要求 (2)2.2设计目的 (3)2.3设计要求 (3)三、方案的选择 (3)3.1方案一 (4)3.2方案二 (5)3.3最终方案 (6)四、单元电路设计 (6)4.1矩形波产生电路 (6)4.2三角波产生电路 (9)4.3正弦波产生电路 (11)五、总电路图 (15)六、波形仿真结果 (16)6.1矩形波仿真结果 (16)6.2三角波仿真结果 (17)6.3正弦波仿真结果 (18)6.4三种波形同时仿真结果 (19)七、PCB版制作与调试 (19)结论 (21)总结与体会 (22)致谢 (22)附录1 元件清单 (23)附录2 参考文献 (24)函数信号发生器设计报告一、概述信号发生器又称信号源或振荡器,在生产实践和科技领域中有着广泛的应用。

各种波形曲线均可以用三角函数方程式来表示。

能够产生多种波形,如三角波、锯齿波、矩形波(含方波)、正弦波的电路被称为函数信号发生器。

函数信号发生器在电路实验和设备检测中具有十分广泛的用途。

例如在通信、广播、电视系统中,都需要射频(高频)发射,这里的射频波就是载波,把音频(低频)、视频信号或脉冲信号运载出去,就需要能够产生高频的振荡器。

在工业、农业、生物医学等领域内,如高频感应加热、熔炼、淬火、超声诊断、核磁共振成像等,都需要功率或大或小、频率或高或低的振荡器。

二、技术性能指标2.1设计内容及技术要求设计并制作一个信号发生器,具体要求如下:1、能够输出正弦波、方波、三角波;2、输出信号频率范围为1——10Hz,10——100Hz;3、输出信号幅值:方波Up-p=24V,三角波Up-p=0——20V,正弦波U>1V;4、波形特征:方波Tr<10s(100Hz,最大输出时),三角波失真系数THD<2%,正弦波失真系数THD<5%;5、电源:±13V直流电源供电;按照以上技术完成要求设计出电路,绘制电路图,对设计的电路用Multisim进行必要的仿真,用PROTEL软件进行制板、焊接,然后对制作的电路完成调试,撰写设计报告测,通过答辩。

2.2设计目的电子电路设计及制作课程是电子技术基础课程的实践性教学环节,通过该教学环节,要求达到以下目的:1、使学生进一步掌握模拟电子技术的理论知识,培养学生工程设计能力和综合分析问题、解决问题的能力;2、使学生基本掌握常用电子电路的一般设计方法,提高电子电路的设计和实验能力;3、熟悉并学会选用电子元器件,为以后从事生产和科研工作打下一定的基础。

2.3设计要求1、设计时要综合考虑实用、经济并满足性能指标要求;2、必须独立完成设计课题;3、合理选用元器件;4、按时完成设计任务并提交设计报告。

三、方案的选择根据实验任务的要求,对信号产生部分可采用多种方案:如模拟电路实现方案,数字电路实现方案,模数结合实现方案等。

鉴于波形信号的产生和模拟联系紧密,我们用模拟电路实现方案。

模拟电路的实现方案就是指全部采用模拟电路的方式,以实现信号产生电路的所有功能。

就此方案,也有几种电路方式。

3.1 方案一R 1R 2R 3W R 10K Ω20K Ω1K Ω0.022F μC PV 01V 02V Z D ZV ±50K ΩA 1A 2NV 图1 方波和正弦波产生电路 用方波和三角波产生电路输出方波和三角波,再通过三角波—正弦波转换器产生正弦波。

方波和三角波发生器的工作原理:A1构成迟滞比较器同相端电位Vp 由V01和VO2决定。

利用叠加定理可得:当 Vp >0时,A1输出为正,即Vo1 = +Vz ;当 Vp <0时,A1输出为负即Vo1 =-Vz 。

A2构成反相积分器Vo1为负时,Vo2向正向变化,Vo1为正时,Vo2向负向变化。

假设电源接通时Vo1=-Vz ,线性增加。

当: 时,可得:当Vo2上升到使Vp 略高于0V 时,A1的输出翻转到Vo1=+Vz 。

021*******V R R R V R R R V P +++=Z V R RV 2102=0)()(21122121=++-+=Z Z P V R R R R R V R R R V同样: 时当Vo2下降到使Vp 略低于0时,Vo1 =-Vz 。

这样不断的重复,就可以得到方波Vo1和三角波Vo2。

其输出波形如图2-6所示。

输出方波的幅值由稳压管DZ 决定,被限制在稳压值±Vz 之间。

电路的振荡频率:C R R R f W o ∙∙=42 方波幅值:Z O V V ±=1三角波幅值:CC O V R R V 212= 调节W R 可改变振荡频率,但三角波的幅值也随之而变化。

Z V +ZV -12Z R V R +12Z R V R -t0V图2 方波和正弦波波形图 3.2 方案二Z V R R V 2102-=ZV图3 信号发生器方框图用正弦波发生器产生正弦波信号,然后用电压比较器产生方波,再经积分电路产生三角波,电路框图如图二。

此电路结构简单,且有良好的正弦波和方波信号。

但经过积分器电路产生同步的三角波信号,存在难度。

原因是积分器电路的积分时间常数不变的,而随着方波信号频率的改变,积分电路输出的三角波幅度同时改变。

若要保持三角波的输出幅度不变,需同时改变积分时间常数的大小。

而且方波占空比[2]和锯齿波幅度改变会同时引起其它波形的变化。

3.3最终方案在方案一、方案二的基础上,我们改进了方波、三角波自激振荡电路,并以RC桥式振荡电路产生并输出正弦波,解决了课程设计中提出的对方波、三角波和正弦波调节而互不影响的要求。

四、单元电路设计4.1矩形波产生电路此电路由反相输入的滞回比较器和RC电路组成。

RC回路既作为延迟环节,又作为反馈网络,通过RC充、放电实现输出状态的自动转换。

设某一时刻输出电压Uo=+Uz,则同相输入端电位Up=+UT。

Uo通过R3对电容C正向充电,如图中实线箭头所示。

反相输入端电位n随时间t的增长而逐渐增高,当t趋于无穷时,Un趋于+Uz;但是,一旦Un=+Ut,再稍增大,Uo从+Uz跃变为-Uz,与此同时Up从+Ut跃变为-Ut。

随后,Uo又通过R3对电容C反向充电,如图中虚线箭头所示。

Un随时间逐渐增长而减低,当t趋于无穷大时,Un趋于-Uz;但是,一旦Un=-Ut,再减小,Uo就从-Uz跃变为+Uz,Up从-Ut跃变为+Ut,电容又开始正相充电。

上述过程周而复始,电路产生了自激振荡。

矩形波产生电路如图4所示:图4 矩形波产生电路方波-三角波转换工作原理分析图如图5、图6所示:图5 方波-三角波转换工作原理分析图图6 方波-三角波转换工作原理分析图此电路的工作原理:若a 点断开,运算发大器Uo1与R1、R2及R3、R4组成电压比较器,C4为加速电容,可加速比较器的翻转。

运放的反相端接基准电压,即U-=0,同相输入端接输入电压Uia ,R1称为平衡电阻。

比较器的输出Uo1的高电平等于正电源电压+Vcc ,低电平等于负电源电压-Vee (|+Vcc|=|-Vee|), 当比较器的U+=U-=0时,比较器翻转,输出Uo1从高电平跳到低电平-Vee,或者从低电平Vee 跳到高电平Vcc 。

设Uo1=+Vcc,则 ()0()432434322=++++++++=+ia CC U R R R R R V R R R R U将上式整理,得比较器翻转的下门限单位Uia-为: ()CC CC ia V R R R V R R R U 432432+-=++-=-若Uo1=-Vee,则比较器翻转的上门限电位Uia+为:()CC EE ia V R R R V R R R U 432432+=-+-=+比较器的门限宽度:CC ia ia H V R R R U U U 4322+=-=--由以上公式可得比较器的电压传输特性。

4.2 三角波产生电路三角波产生电路如下图:图7 三角波产生电路a 点断开后,集成运算放大器U2与R5、R6、C1、C2、C7及R7组成反相积分器,其输入信号为方波Uo1,则积分器的输出Uo2为:⎰+-=dt u CR R u o o 1652)(1 CC o V u +=1时,t C R R V t C R R V u CC CC o )()()(65652+-=++-=EE o V u -=1时,t CR R V t C R R V u EE EE o )()()(65652+=+--= 可见积分器的输入为方波时,输出是一个上升速度与下降速度相等的三角波。

a 点闭合,既比较器与积分器首尾相连,形成闭环电路,则自动产生方波-三角波幅值为: CC O V R R R U 4322+=方波-三角波的频率f 为:C R R R R R f )(465243++=电路中稳压管D1、D4的作用是防止由于电路故障导致输出电压过大从而击穿电容造成电容不可逆转的损坏,稳压管的稳定电压应该大于三角波输出的最大幅值,此处选用型号为1N4740A 的稳压二极管,击穿电压为10V ;电路中R5是为了保证三角波的输出频率最大为100Hz ,滑动变阻器R6的作用是使输出频率在1——100Hz 之间可调,经计算取R5=10k Ω,R6=100k Ω;集成运放的同相输入端所接电阻R7为平衡电阻,经计算R7≈10k Ω;输出端串联一个470uF 的电解电容和一个100k Ω的滑动变阻器,电解电容用来滤除杂波,只输出交流的三角波,滑动变阻器用来调节输出三角波的幅值。

结论:1 电位器R6在调整方波-三角波的输出频率时,不会影响输出波形的幅度。

若要求通频率的范围较宽,可用C改变频率的范围,R6实现频率微调。

2 方波的输出幅度应等于电源电压+Vcc。

三角波的输出幅度应不超过电源电压+Vcc。

3 电位器R4可实现幅度微调,但会影响方波-三角波的频率。

4 电位器R21可实现输出信号幅度的调节,且对电路的频率和前部电路中的所有新号均无影响,只调节输出幅度。

4.3正弦波产生电路采用RC串并联选频网络构成的振荡电路称为RC桥式振荡电路,它适用于低频振荡,一般用于产生1Hz——1MHz的低频信号。

因为对于RC振荡电路来说,增大电阻R、电容C即可降低振荡频率,而增大电阻是无需增加成本的。

常用LC振荡电路产生的正弦波频率较高,若要产生频率较低的正弦振荡,势必要求振荡回路要有较大的电感和电容,这样不但元件体积大、笨重、安装不便,而且制造困难、成本高。

因此,200kHz以下的正弦振荡电路,一般采用振荡频率较低的RC振荡电路。

常用的RC振荡电路有相移式和桥式两种。

(1) RC移相式振荡器,具有电路简单,经济方便等优点,但选频作用较差,振幅不够稳定,频率调节不便,因此一般用于频率固定、稳定性要求不高的场合。

相关文档
最新文档