(上):1特殊平行四边形复习
北师大版九年级数学上册《1特殊平行四边形复习课》教学课件

互相垂直平分,且每一条 中心对称图形 对角线平分每一组对角 轴对称图形
互相垂直平分且相等,每 中心对称图形
一条对角线平分每一组对 角
轴对称图形
三、四边形的转化及判定
矩形
任意四 边形
两组对边平行
两组对边相等
平行四边形
一组对边平行且相等
对角线互相平分
菱 形
正方形
四、典例精析1、
如图,平行四边形ABCD的对角线AC与
有一组邻边相等,并且有一个角是直角的 平行四边形叫做正方形
二、几种特殊四边形的性质:
项目 四边形
边
角
对角线
对称性
平行且相等
平行四边形
矩形 菱形 正方形
平行且相等
平行 且四边相等
平行 且四边相等
对角相等 邻角互补
四个角 都是直角 对角相等 邻角互补
四个角 都是直角
互相平分
中心对称图形
互相平分且相等
中心对称图形 轴对称图形
北师大版九年级数学上册
北师大版九年级数学上册
特殊四边形总复习
作品欣赏 四边形的知识总结
特殊四边形总复习
一、定义
1、平行四边形的定义
两组对边分别平行的四边形,叫做平行四边形
2、菱形的定义
有一组邻边相等的平行四边形,叫做菱形
3、矩形的定义
有一个角是直角的平行四边形,叫做矩形
4、正方形的定义
八、作业布置:
1、完善作品
2、如图,已知正方形ABCD的边长为5,点E、
F分别在AD、DC上,AE=DF=2,BE与AF
相交于点G,点H为BF的中点,连接GH,
则GH的长为
.
3、已知:如图,在菱形ABCD 中,点E,O,F 分别 是边AB,AC,AD的中点,
北师大版 九年级上册 特殊的平行四边形复习课优质课件

二、填空:
你准行
1、菱形的对角线长为6和8,则菱形的边
长_5__,面积是_2_4_.
2、矩形的对角线长为8,两对线的夹角
为60º,则矩形的两邻边分别长__4_和
_4__3 .
A
O
D
A
D
O
B
C
1题
B
C
2题
我说我所想
3、已知: ABCD,添加适当的条件
(1)使它成为菱形.条件:______.
(2)使它成为矩形.条件:______.
试一试
一、选择:
1、正方形具有而菱形不一定具有的性质( C)
A、四边都相等
B、对角线互相垂直且平分
C、对角线相等
D、对角线平分一组对角
2、下列命题中( B )是假命题.
A、对角线互相平分的四边形是平行四边形
B、两条对角线相等的四边形是矩形 C、两条对角线互相垂直的矩形是正方形 D、两条对角线相等的菱形是正方形
(3)使它成为正方形.条件:_____.
A
D
O
B C
A P
Q
已知:△ABC中 AB=AC=a,M为底边BC 上任意一点,过点M分别 作AB、AC的平行线交AC 于P,交AB于Q.
(1)线段QM、PM、AB 之间有什么关系?
(2)图中的三角形之间有 什么关系?
B
M
C
A Q
B
M
已知:△ABC中AB=AC=a, M为底边BC上任意一点,过点 M分别作AB、AC的平行线交 AC于P,交AB于Q. 探究:当M位于BC的什么位置 时, 四边形AQMP是菱形?并 说明你的理由.
第一章 特殊平行四边 形(复习课)
一、四边形的分类及转化
《第1章特殊平行四边形》期中复习解答题专题训练 北师大版九年级数学上册

2021-2022学年北师大版九年级数学上册《第1章特殊平行四边形》期中复习解答题专题训练(附答案)1.如图,在正方形ABCD中,AB=,E为正方形ABCD内一点,DE=AB,∠EDC=α(0°<α<90°),连结CE,AE,过点D作DF⊥AE,垂足为点F,交CE的延长线于点G,连结AG.(1)当α=20°时,则∠AEC=;(2)判断△AEG的形状,并说明理由;(3)当GF=1时,求CE的长.2.如图,AD是▱ABDE的对角线,∠ADE=90°,延长ED至点C,使DC=ED,连接AC 交BD于点O,连接BC.(1)求证:四边形ABCD是矩形;(2)连接OE,若AD=4,AB=2,求OE的长.3.已知,如图,在平行四边形ABCD中,BF平分∠ABC交AD于点F,AE⊥BF于点O,交BC于点E,连接EF.(1)求证:四边形ABEF是菱形;(2)若AE=6,BF=8,CE=5,求四边形ABCD的面积.4.如图,AE∥BF,AC平分∠BAD,且交BF于点C,BD平分∠ABC,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)过点A作AG⊥BC,垂足为点G,若AC=6,BD=8,请直接写出AG的长.5.四边形ABCD为矩形,E是AB延长线上的一点.(1)若AC=EC,如图1,求证:四边形BECD为平行四边形;(2)若AB=AD,点F是AB上的点,AF=BE,EG⊥AC于点G,如图2,求证:△EGF ≌△AGD.6.如图,▱ABCD的对角线AC,BD交于点O,AE∥BD,BE∥AC,OE⊥CD.(1)求证:四边形ABCD是矩形;(2)连接DE,若AE=,BC=2,求DE的长.7.如图,在▱ABCD中,对角线AC、BD交于点O,E是AD上一点,连接EO并延长交BC 于点F,连接AF、CE,EF平分∠AEC.(1)求证:四边形AFCE是菱形.(2)若∠DAC=60°,EF=4,求四边形AFCE的面积.8.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ =DP,连接AP,BQ,PQ.(1)求证:AP=BQ;(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.9.已知:如图.矩形ABCD中,O是AC与BD的交点,过O点的直线EF与AB、CD的延长线分别相交于点E、F.(1)求证:△BOE≌DOF;(2)当EF与AC满足什么关系时,以A、E、C、F为顶点的四边形是菱形?并给出证明.10.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,AD是BC边上的中线,过A点作AE∥BC,过点D作DE∥AB与AC、AE交于点O、E,连结EC.(1)求证:四边形ADCE为菱形;(2)设OD=a,求菱形ADCE的周长.11.如图,△ABC中,AB=AC,D、F分别为BC、AC的中点,连接DF并延长到点E,使DF=FE,连接AE、AD、CE.(1)求证:四边形AECD是矩形.(2)当△ABC满足什么条件时,四边形AECD是正方形,并说明理由.12.如图,点A,F,C,D在同一条直线上,点B,E分别在直线AD两侧,且AB=DE,∠A=∠D,AC=DF.(1)求证:四边形BCEF是平行四边形,(2)若∠ABC=90°,EF=3,AB=4,当CD为何值时,四边形BCEF是菱形.13.如图,四边形ABCD是平行四边形,且对角线AC,BD交于点O,BD=2AB,AE∥BD,OE∥AB.求证:四边形ABOE是菱形.14.如图,已知四边形ABCD为正方形,AB=,点E为对角线AC上一动点,连接DE,过点E作EF⊥DE,交BC于点F,以DE、EF为邻边作矩形DEFG,连接CG.(1)求证:矩形DEFG是正方形;(2)探究:①CE与CG有怎样的位置关系?请说明理由.②CE+CG的值为.15.如图,在△ABC中,AB=AC,D为边BC上一点,以AB、BD为邻边作▱ABDE,连接AD、EC,AC和DE相交于点O.(1)求证:OD=OC;(2)若BD=CD,求证:四边形ADCE是矩形.16.如图,在平行四边形ABCD中,两条对角线相交于O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=,且∠D=45°,求菱形AECF的周长.17.如图,在△ABC中,点D是BC边的中点,点F,E分别是AD及其延长线上的点,CF ∥BE,连接BF,CE.(1)求证:四边形BECF是平行四边形.(2)若△ABC满足什么条件时,四边形BECF为菱形,并说明理由.18.如图,Rt△CEF中,∠C=90°,∠CEF,∠CFE外角平分线交于点A,过点A分别作直线CE,CF的垂线,B,D为垂足.(1)求证:四边形ABCD是正方形.(2)已知AB的长为6,求(BE+6)(DF+6)的值.(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,求HR长度.19.(1)如图1,正方形ABCD中,E、F分别是BC、CD边上的点,且满足BE=CF,连接AE、BF交于点H.请直接写出线段AE与BF的数量关系和位置关系.(2)如图2,在正方形ABCD中,E、F分别是BC、CD边上的点,连接BF,过点E作EG⊥BF于点H,交AD于点G,试判断线段BF与GE的数量关系,并证明你的结论.20.如图,M为正方形ABCD的对角线BD上一点,过M作BD的垂线交AD于E,连接BE,取BE中点O.(1)如图①,连接AO,MO,试证明∠AOM=90°;(2)如图②,连接AM,AO,并延长AO交对角线BD于点N,∠MAN=45°,试探究线段DM,MN,NB之间的数量关系并证明.参考答案1.解:(1)∵四边形ABCD是正方形,∴∠ADC=90°,AB=AD,∵∠CDE=20°,∴∠ADE=70°,∵DE=AB,∴DA=DE,∴∠DAE=∠DEA=×(180°﹣70°)=55°,故答案为:55°;(2)结论:△AEG是等腰直角三角形.理由:∵AD=DE,DF⊥AE,∴DG是AE的垂直平分线,∴AG=GE,∴∠GAE=∠GEA,∵DE=DC=AD,∴∠DAE=∠DEA,∠DEC=∠DCE,∵∠DAE+∠DEA+∠DEC+∠DCE+∠ADC=360°,∴∠DEA+∠DEC=135°,∴∠GEA=45°,∴∠GAE=∠GEA=45°,∴∠AGE=90°,∴△AEG为等腰直角三角形.(3)如图,连接AC,∵四边形ABCD是正方形,∴AC=AB=,∵△AEG为等腰直角三角形,GF⊥AE,∴GF=AF=EF=1,∴AG=GE=,∵AC2=AG2+GC2,∴10=2+(EC+)2,∴EC=(负根已经舍弃).2.(1)证明:∵四边形ABDE是平行四边形,∴AB∥DE,AB=ED,∵DC=ED,∴DC=AB,DC∥AB,∴四边形ABCD是平行四边形,∵DE⊥AD,∴∠ADC=90°,∴四边形ABCD是矩形;(2)解:过O作OF⊥CD于F,∵四边形ABCD是矩形,AD=4,AB=2∴DE=CD=AB=2,AD=BC=4,AC=BD,AO=OC,BO=DO,∴OD=OC,∵OF⊥CD,∴DF=CF=CD==1,∴OF=BC==2,EF=DE+DF=2+1=3,∴OE===.3.证明:(1)∵四边形ABCD是平行四边形∴AD∥BC,∴∠EBF=∠AFB,∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠ABF=∠AFB,∴AB=AF,∵BO⊥AE,∴∠AOB=∠EOB=90°,∵BO=BO,∴△BOA≌△BOE(ASA),∴AB=BE,∴BE=AF,BE∥AF,∴四边形ABEF是平行四边形,∵AB=AF.∴四边形ABEF是菱形.(2)解:作FG⊥BC于G,∵四边形ABEF是菱形,AE=6,BF=8,∴AE⊥BF,OE=AE=3,OB=BF=4,∴BE==5,∵S菱形ABEF=•AE•BF=BE•FG,∴GF=,∴S平行四边形ABCD=BC•FG=(BE+CE)•FG=(5+5)×=48.4.(1)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD,∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形;(2)解:∵四边形ABCD是菱形,∴AC⊥BD,AO=AC=3,BO=BD=4,∴AB===5,∴BC=AB=5,∴BC•AG=AC•BD,即5AG=×6×8,∴AG=.5.证明:(1)∵四边形ABCD为矩形,∴AB∥CD,AB=CD,∠ABC=90°,∴CB⊥AE,又∵AC=EC,∴AB=BE,∴BE=CD,BE∥CD,∴四边形BECD为平行四边形;(2)∵AB=AD,∴矩形ABCD是正方形,∴∠GAD=∠GAE=45°,∵EG⊥AC,∴∠E=∠GAE=45°,∴GE=GA,又∵AF=BE,∴AF+BF=BE+BF,即AB=EF,∴EF=AD,在△EGF和△AGD中,,∴△EGF≌△AGD(SAS).6.解:(1)设AB,OE交于F,∵AE∥BD,BE∥AC,∴四边形AEBO是平行四边形,∴AF=BF,∵四边形ABCD是平行四边形,∴DC∥AB,OD=OB.∵OE⊥CD,∴OE⊥AB.∴AB⊥BC,∴四边形ABCD是矩形;(2)连接DE,过E作EH⊥DA交DA的延长线于H,∵四边形AEBO是平行四边形,∴AE=OB,∵OD=OB∴BD=2AE=2,∵AD=BC=2,∴AB===2,∴AF=AB=,∵∠AFE=∠F AH=∠AHE=90°,∴四边形AHEF是矩形,∴EH=AF=,AH=EF=OF=AD=1,∴DE===.7.(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,AO=CO,∴∠AEF=∠CFE,在△AOE和△COF中,,∴△AOE≌△COF(AAS),∵AO=CO,∴四边形AFCE是平行四边形;∵EF平分∠AEC,∴∠AEF=∠CEF,∴∠CFE=∠CEF,∴CE=CF,∴四边形AFCE是菱形;(2)解:由(1)得:四边形AFCE是菱形,∴AC⊥EF,EO=FO=EF=2,∴∠AOE=90°,∵∠DAC=60°,∴∠AEO=30°,∴OA=EO=2,∴AC=2OA=4,∴四边形AFCE的面积=AC×EF=×4×4=8.8.证明:(1)∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠ADB=∠DBC,∵CQ∥DB,∴∠BCQ=∠DBC,∴∠ADB=∠BCQ∵DP=CQ,∴△ADP≌△BCQ(SAS),∴AP=BQ;(2)∵CQ∥DB,且CQ=DP,∴四边形CQPD是平行四边形,∴CD=PQ,CD∥PQ,∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴AB=PQ,AB∥PQ,∴四边形ABQP是平行四边形,∵△ADP≌△BCQ,∴∠APD=∠BQC,∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,∴∠ABP=∠APB,∴AB=AP,∴四边形ABQP是菱形.9.证明:(1)∵四边形ABCD是矩形,∴OB=OD,∵AE∥CF,∴∠E=∠F,∠OBE=∠ODF,在△BOE与△DOF中,,∴△BOE≌△DOF(AAS);(2)当EF⊥AC时,四边形AECF是菱形.证明:∵△BOE≌△DOF,∴OE=OF,∵四边形ABCD是矩形,∴OA=OC,∴四边形AECF是平行四边形,∵EF⊥AC,∴四边形AECF是菱形.10.(1)证明:∵AE∥BC,AB∥DE,∴四边形ABDE为平行四边形,∴AE=BD,又∵AD为Rt△ABC斜边上的中线,∴BD=CD,∴AE=DC,∴四边形ADCE为平行四边形,又∵DE∥AB,∠BAC=90°,∴DO⊥OC,∴四边形ADCE为菱形,(2)设OD=a,∴DE⊥AC,AO=,在Rt△AOD中,由勾股定理得:=,∴菱形ADCE的周长为4a.11.证明:(1)∵D、F分别为BC、AC的中点,使DF=FE,∴CF=F A,∴四边形AECD是平行四边形,∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADC=90°,∴平行四边形AECD是矩形;(2)当∠BAC=90°时,理由:∵∠BAC=90°,AB=AC,AD是△ABC的角平分线,∴AD=BD=CD,∵由(1)得四边形AECD是矩形,∴矩形AECD是正方形.12.解:(1)在△ABC和△DEF中,∴△ABC≌△DEF(SAS),∴BC=EF,∠ACB=∠DFE,∴BC∥EF,∴四边形BCEF是平行四边形;(2)当时,四边形BCEF是菱形.理由如下:连接BE,交CF与点H,∵AC=DF,∴AC﹣FC=DF﹣FC,即AF=CD,若四边形BCEF是菱形时,∴BE⊥CF,,EF=BC=3.在Rt△ABC中,AB=4,BC=3,∴.∵,即.在Rt△BCH中,,BC=3,∴.∴,∴,∴当时,四边形BCEF是菱形.13.证明:∵四边形ABCD是平行四边形,∴OB=OD=BD,∵BD=2AB,∴AB=OB,∵AE∥BD,OE∥AB,∴四边形ABOE是平行四边形,∵AB=OB,∴四边形ABOE是菱形.14.解:(1)如图,作EM⊥BC于M,EN⊥CD于N,∴∠MEN=90°,∵点E是正方形ABCD对角线上的点,∴EM=EN,∵∠DEF=90°,∴∠DEN=∠MEF=90°﹣∠FEN,∵∠DNE=∠FME=90°,在△DEN和△FEM中,,∴△DEN≌△FEM(ASA),∴EF=DE,∵四边形DEFG是矩形,∴矩形DEFG是正方形;(2)①CE⊥CG,理由如下:∵正方形DEFG和正方形ABCD,∴DE=DG,AD=DC,∵∠CDG+∠CDE=∠ADE+∠CDE=90°,∴∠CDG=∠ADE,在△ADE和△CDG中,,∴△ADE≌△CDG(SAS),∴∠CDA=∠DCG,∵∠ACD+∠CAD+∠ADC=180°,∠ADC=90°,∴∠ACG=∠ACD+∠DCG=∠ACD+∠CAD=90°,∴CE⊥CG;②由①知,△ADE≌△CDG,∴AE=CG,∴CE+CG=CE+AE=AC=AB=×=2,故答案为:2.15.证明:(1)∵四边形ABDE是平行四边形(已知),∴AB∥DE,AB=DE(平行四边形的对边平行且相等);∴∠B=∠EDC(两直线平行,同位角相等);又∵AB=AC(已知),∴AC=DE(等量代换),∠B=∠ACB(等边对等角),∴∠EDC=∠ACD(等量代换);∵在△ADC和△ECD中,,∴△ADC≌△ECD(SAS),∴∠ACD=∠EDC(全等三角形对应角相等),∴OA=OC(等角对等边);(2)∵四边形ABDE是平行四边形(已知),∴BD∥AE,BD=AE(平行四边形的对边平行且相等),∴AE∥CD;又∵BD=CD,∴AE=CD(等量代换),∴四边形ADCE是平行四边形(对边平行且相等的四边形是平行四边形);在△ABC中,AB=AC,BD=CD,∴AD⊥BC(等腰三角形的“三合一”性质),∴∠ADC=90°,∴▱ADCE是矩形.16.(1)证明:∵EF是对角线AC的垂直平分线,∴AF=CF,AE=CE,OA=OC,∴∠EAC=∠ECA,∠F AC=∠FCA,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠EAC=∠FCA,∴∠F AO=∠ECO,在△AOF和△COE中,,∴△AOF≌△COE(ASA),∴AF=CE,∵AF=CF,AE=CE,∴AE=EC=CF=AF,∴四边形AECF为菱形;(2)解:过C作CH⊥AD于H,则∠CHD=∠CHF=90°,∵∠D=45°,∴△CDH是等腰直角三角形,∴CH=DH=CD=1,∵AD=3,∴AH=2,∵四边形AECF是菱形,∴AF=CF,设AF=CF=x,则FH=2﹣x,在Rt△CHF中,由勾股定理得:CF2=FH2+CH2,即x2=(2﹣x)2+12,解得:x=,∴AF=CF=,∴菱形AECF的周长=×4=5.17.(1)证明:在△ABC中,D是BC边的中点,∴BD=CD,∵CF∥BE,∴∠CFD=∠BED,在△CFD和△BED中,,∴△CFD≌△BED(AAS),∴CF=BE,∴四边形BFCE是平行四边形;(2)满足条件AB=AC时四边形BECF为菱形.理由:若AB=AC时,△ABC为等腰三角形,∵AD为中线,∴AD⊥BC,即FE⊥BC,由(1)知,△CFD≌△BED,∴BD=CD,ED=FD,∴平行四边形BECF为菱形.18.(1)证明:作AG⊥EF于G,如图1,则∠AGE=∠AGF=90°,∵AB⊥CE,AD⊥CF,∴∠B=∠D=90°=∠C,∴四边形ABCD是矩形,∵∠CEF,∠CFE外角平分线交于点A,∴AB=AG,AD=AG,∴AB=AD,∴四边形ABCD是正方形;(2)解:∵四边形ABCD是正方形,∴BC=CD=6,在Rt△ABE和Rt△AGE中,,∴Rt△ABE≌Rt△AGE(HL),∴BE=BG,同理:Rt△ADF≌Rt△AGF(HL),∴DF=GF,∴BE+DF=GE+GF=EF,设BE=x,DF=y,则CE=BC﹣BE=6﹣x,CF=CD﹣DF=6﹣y,EF=x+y,在Rt△CEF中,由勾股定理得:(6﹣x)2+(6﹣y)2=(x+y)2,整理得:xy+6(x+y)=36,∴(BE+6)(DF+6)=(x+6)(y+6)=xy+6(x+y)+36=36+36=72;(3)解:如图2所示:把△PQH沿PQ翻折得△PQD,把△PRH沿PR翻折得△PRM,延长DQ、MR交于点G,由(1)(2)得:四边形PMGD是正方形,MR+DQ=QR,MR=HR,DQ=HQ=2,∴MG=DG=MP=PH=6,∴GQ=4,设MR=HR=a,则GR=6﹣a,QR=a+2,在Rt△GQR中,由勾股定理得:(6﹣a)2+42=(2+a)2,解得:a=3,即HR=3.当△PQR是钝角三角形时,过P作PT⊥PR交RQ延长线于T,如图3所示:则∠TPQ=90°﹣45°=45°,由①得:TH=3,∴PT===3,设HR=x,PR=y,则TR=x+3,∵△PTR的面积=(x+3)×6=×3y,∴y=6+2x,∴5y2=(6+2x)2①,在Rt△PRH中,由勾股定理得:y2=62+x2②,由①②得:(x﹣12)2=0,∴x=12,即HR=12;综上所述,HR为3或12,19.解:(1)AE=BF且AE⊥BF,理由是:∵四边形ABCD是正方形,∴∠ABE=∠C=90°,AB=BC,在△ABE和△BCF中,∴△ABE≌△BCF(SAS),∴AE=BF,∠BAE=∠CBF,∵∠ABE=90°,∴∠BAE+∠AEB=90°,∴∠CBF+∠AEB=90°,∴∠BHE=180°﹣90°=90°,∴AE⊥BF.(2)BF=GE,证明:过点A作AM∥GE交BC于M,∵EG⊥BF,∴AM⊥BF,∴∠BAM+∠ABF=90°,∵四边形ABCD是正方形,∴AB=BC,AD∥BC,∠ABC=∠BCD=90°,∴∠CBF+∠ABF=90°,∴∠BAM=∠CBF,在△ABM和△BCF中,∴△ABM≌△BCF(ASA),∴AM=BF,∵AM∥GE且AD∥BC,∴AM=GE,∴BF=GE.20.证明:如图1,∵四边形ABCD是正方形,∴AD=AB,∠BAD=90°,∴∠ABD=∠ADB=45°;∵ME⊥BD,∴∠BME=90°;∵点O是BE中点,∴AO=BE=BO,∴∠OAB=∠OBA,∴∠AOE=∠OAB+∠OBA=2∠OBA;同理,∠MOE=2∠OBM,∴∠AOM=∠AOE+∠MOE=2(∠OBA+∠OBM)=2∠ABD=90°.(2)DM2+NB2=MN2,理由如下:如图2,作EF∥BD,交AN于点F,连接MO、MF、ME,∵∠OEF=∠OBN,OE=OB,∠EOF=∠BON,∴△EOF≌△BON(ASA),∴FE=NB,OF=ON,∵OM⊥FN,∴MF=MN;∵∠DME=90°,∠MDE=45°,∴∠MED=45°,∴∠MDE=∠MED,∴EM=DM;∵∠MEF=∠DME=90°,∴EM2+FE2=MF2,∴DM2+NB2=MN2.。
特殊平行四边形知识点归纳

特殊平行四边形知识点归纳1.对角线:特殊平行四边形的对角线分别连接了两对相对顶点,它们相交于一个点,并且该交点将对角线分为两个相等的部分。
2.平行线性质:特殊平行四边形的两对边分别是平行的。
根据平行线的性质,可以推论出特殊平行四边形的一些重要性质,如对边相等和内角和为180度。
3.对角线性质:特殊平行四边形的对角线相等,即对角线BD=AC。
这个性质可以通过两个相似三角形的性质证明得出。
4.垂直线性质:特殊平行四边形的对角线相交于一个垂直点,即∠BOC=90度。
这个性质可以通过垂直线的性质证明得出。
5.邻补角性质:特殊平行四边形的邻补角(共享一条边且内角和为180度的两个角)之和为180度。
这个性质可以通过平行线的性质证明得出。
6.夹角性质:特殊平行四边形的夹角(相邻且共享一条边的两个内角)之和为180度。
这个性质也可以通过夹角的定义和平行线的性质证明得出。
7.对角线中点连线性质:特殊平行四边形的对角线的中点分别连接,即中点E和F相连,则EF平行于对边AB和CD,并且EF=AB=CD。
这个性质可以通过对角线中点连线构造等腰直角三角形的性质证明得出。
特殊平行四边形的这些性质和概念在几何学中有着广泛的应用。
例如,在解决平行四边形的面积、周长、角度和边长等问题时,可以利用这些性质来求解。
特殊平行四边形还与三角形、四边形和多边形等几何图形的关系密切相关,在几何证明和问题求解中起着重要的作用。
总之,特殊平行四边形是一个重要的几何概念,它具有一系列的重要性质和应用。
通过深入理解这些知识点,并善于运用它们来解决问题,可以提高我们的几何学思维能力和分析问题的能力。
第一章特殊的平行四边形 复习测试 2021-2022学年北师大版九年级数学上册(word含答案)

北师大版九年级数学上册第一章特殊的平行四边形复习测试一.选择题1.对角线互相垂直平分的四边形是()A.平行四边形B.菱形C.矩形D.任意四边形2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°3.下列关于∠ABCD的叙述,正确的是()A.若AB∠BC,则∠ABCD是菱形B.若AC=BD,则∠ABCD是矩形C.若AC平分∠BAD,则∠ABCD是正方形D.若AC∠BD,则∠ABCD是正方形4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()A.AB=BE B.CE∠DE C.∠ADB=90°D.BE∠DC5.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()A.∠DAB′=∠CAB′ B.∠ACD=∠B′CD C.AD=AE D.AE=CE 6.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()A.2B.C.6D.87.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠CBF为()A.75°B.60°C.55°D.45°8.如图,在菱形ABCD中,AC=8,BD=6,则∠ABC的周长是()A.14B.16C.18D.209.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,在正方形ABCD中,∠ABE和∠CDF为直角三角形,∠AEB=∠CFD =90°,AE=CF=5,BE=DF=12,则EF的长是()A.7B.8C.7D.711.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连接OE.若OE=3,则菱形ABCD的周长是()A.6B.12C.18D.2412.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∠BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=()A.60°B.45°C.30°D.22.5°二.填空题13.如图,在Rt∠ABC中,E是斜边AB的中点,若AC=8,BC=6,则CE=.14.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件,使四边形DBCE是矩形.15.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD 上移动,则PE+PC的最小值是.16.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF =20°,则∠AED等于度.17.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别为AB,BC,CD,DA的中点,连接EG,HF交于点O.则EG2+FH2=.18.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=___ .三.解答题19.如图,在菱形ABCD中,CE=CF.求证:AE=AF.20.如图,将∠ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:∠ABD∠∠BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.21.已知:如图,在∠ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:∠ABE∠∠CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∠AC交BC的延长线于点E,当AB=6,AC=8时,求∠BDE 的周长.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)∠当AE=cm时,四边形CEDF是矩形;∠当AE=cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)25.在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连接BE.【感知】如图∠,过点A作AF∠BE交BC于点F.易证∠ABF∠∠BCE.(不需要证明)【探究】如图∠,取BE的中点M,过点M作FG∠BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连接CM,若CM=1,则FG的长为.【应用】如图∠,取BE的中点M,连接CM.过点C作CG∠BE交AD于点G,连接EG、MG.若CM=3,则四边形GMCE的面积为.北师大版九年级数学上册第一章特殊的平行四边形复习测试答案提示一.选择题1.对角线互相垂直平分的四边形是()选:B.A.平行四边形B.菱形C.矩形D.任意四边形2.如图,剪两张对边平行且宽度相同的纸条随意交叉叠放在一起,转动其中一张,重合部分构成一个四边形,则下列结论中不一定成立的是()选:D.A.∠ABC=∠ADC,∠BAD=∠BCD B.AB=BCC.AB=CD,AD=BC D.∠DAB+∠BCD=180°3.下列关于∠ABCD的叙述,正确的是()选:B.A.若AB∠BC,则∠ABCD是菱形B.若AC=BD,则∠ABCD是矩形C.若AC平分∠BAD,则∠ABCD是正方形D.若AC∠BD,则∠ABCD是正方形4.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是()选:D.A.AB=BE B.CE∠DE C.∠ADB=90°D.BE∠DC5.如图,把一张矩形纸片ABCD沿对角线AC折叠,点B的对应点为B′,AB′与DC相交于点E,则下列结论一定正确的是()选:D.A.∠DAB′=∠CAB′B.∠ACD=∠B′CDC.AD=AE D.AE=CE6.菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF.若EF=,BD=2,则菱形ABCD的面积为()选:A.A.2B.C.6D.87.如图,在正方形ABCD外侧,作等边三角形ADE,AC,BE相交于点F,则∠CBF为()选:A.A.75°B.60°C.55°D.45°8.如图,在菱形ABCD中,AC=8,BD=6,则∠ABC的周长是()选:C.A.14B.16C.18D.209.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD 一定是()选:D.A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形10.如图,在正方形ABCD中,∠ABE和∠CDF为直角三角形,∠AEB=∠CFD =90°,AE=CF=5,BE=DF=12,则EF的长是()选:C.A.7B.8C.7D.7解:如图所示:∠四边形ABCD是正方形,∠∠BAD=∠ABC=∠BCD=∠ADC=90°,AB=BC=CD=AD,∠∠BAE+∠DAG=90°,在∠ABE和∠CDF中,,∠∠ABE∠∠CDF(SSS),∠∠ABE=∠CDF,∠∠AEB=∠CFD=90°,∠∠ABE+∠BAE=90°,∠∠ABE=∠DAG=∠CDF,同理:∠ABE=∠DAG=∠CDF=∠BCH,∠∠DAG+∠ADG=∠CDF+∠ADG=90°,即∠DGA=90°,同理:∠CHB=90°,在∠ABE和∠ADG中,,∠∠ABE∠∠ADG(AAS),∠AE=DG,BE=AG,同理:AE=DG=CF=BH=5,BE=AG=DF=CH=12,∠EG=GF=FH=EF=12﹣5=7,∠∠GEH=180°﹣90°=90°,∠四边形EGFH是正方形,∠EF=EG=7;11.如图,菱形ABCD的对角线AC,BD相交于点O,E是AD的中点,连接OE.若OE=3,则菱形ABCD的周长是()选:D.A.6B.12C.18D.2412.如图,在矩形ABCD中,对角线AC与BD相交于点O,过点A作AE∠BD,垂足为点E,若∠EAC=2∠CAD,则∠BAE=()选:D.A.60°B.45°C.30°D.22.5°二.填空题13.如图,在Rt∠ABC中,E是斜边AB的中点,若AC=8,BC=6,则CE=5.14.如图,在平行四边形ABCD中,延长AD到点E,使DE=AD,连接EB,EC,DB请你添加一个条件EB=DC,使四边形DBCE是矩形.15.如图,正方形ABCD的边长为2,点E为边BC的中点,点P在对角线BD 上移动,则PE+PC的最小值是.16.如图,在正方形ABCD中,点F为CD上一点,BF与AC交于点E.若∠CBF =20°,则∠AED等于65度.17.如图,在四边形ABCD中,AC=BD=6,E,F,G,H分别为AB,BC,CD,DA的中点,连接EG,HF交于点O.则EG2+FH2=.答案36解析连接EF,FG,GH,HE,∠点E,F,G,H分别是AB,BC,CD,DA的中点,AC=3,∠EF∠AC∠GH,EF=GH=12BD=3,EH∠BD∠FG,EH=FG=12∠EF=FG=GH=EH,∠四边形EFGH是菱形.∠EG∠FH,OE=OG,OH=OF.∠EG2+FH2=(2OE)2+(2OH)2=4OE2+4OH2=4(OE2+OH2)=4EH2=36.18.已知,如图,∠MON=45°,OA1=1,作正方形A1B1C1A2,周长记作C1;再作第二个正方形A2B2C2A3,周长记作C2;继续作第三个正方形A3B3C3A4,周长记作C3;点A1、A2、A3、A4…在射线ON上,点B1、B2、B3、B4…在射线OM上,…依此类推,则第n个正方形的周长Cn=__2n+1__.三.解答题19.如图,在菱形ABCD中,CE=CF.求证:AE=AF.证明:如图,连接AC,∠四边形ABCD是菱形,∠∠BCA=∠DCA,∠CE=CF,AC=AC,∠∠ECA∠∠FCA(SAS),∠AE=AF.20.如图,将∠ABCD的边AB延长至点E,使AB=BE,连接DE,EC,DE交BC于点O.(1)求证:∠ABD∠∠BEC;(2)连接BD,若∠BOD=2∠A,求证:四边形BECD是矩形.证明:(1)在平行四边形ABCD中,AD=BC,AB=CD,AB∠CD,则BE∠CD.又∠AB=BE,∠BE=DC,∠四边形BECD为平行四边形,∠BD=EC.∠在∠ABD与∠BEC中,,∠∠ABD∠∠BEC(SSS);(2)由(1)知,四边形BECD为平行四边形,则OD=OE,OC=OB.∠四边形ABCD为平行四边形,∠∠A=∠BCD,即∠A=∠OCD.又∠∠BOD=2∠A,∠BOD=∠OCD+∠ODC,∠∠OCD=∠ODC,∠OC=OD,∠OC+OB=OD+OE,即BC=ED,∠平行四边形BECD为矩形.21.已知:如图,在∠ABCD中,E,F分别是边AD,BC上的点,且AE=CF,直线EF分别交BA的延长线、DC的延长线于点G,H,交BD于点O.(1)求证:∠ABE∠∠CDF;(2)连接DG,若DG=BG,则四边形BEDF是什么特殊四边形?请说明理由.(1)证明:∠四边形ABCD是平行四边形,∠AB=CD,∠BAE=∠DCF,在∠ABE和∠CDF中,,∠∠ABE∠∠CDF(SAS);(2)解:四边形BEDF是菱形;理由如下:如图所示:∠四边形ABCD是平行四边形,∠AD∠BC,AD=BC,∠AE=CF,∠DE=BF,∠四边形BEDF是平行四边形,∠OB=OD,∠DG=BG,∠EF∠BD,∠四边形BEDF是菱形.22.如图,在菱形ABCD中,对角线AC与BD相交于点O,MN过点O且与边AD、BC分别交于点M和点N.(1)请你判断OM和ON的数量关系,并说明理由;(2)过点D作DE∠AC交BC的延长线于点E,当AB=6,AC=8时,求∠BDE 的周长.解:(1)∠四边形ABCD是菱形,∠AD∠BC,AO=OC,∠,∠OM=ON.(2)∠四边形ABCD是菱形,∠AC∠BD,AD=BC=AB=6,∠BO==2,∠,∠DE∠AC,AD∠CE,∠四边形ACED是平行四边形,∠DE=AC=8,∠∠BDE的周长是:BD+DE+BE=BD+AC+(BC+CE)=4+8+(6+6)=20即∠BDE的周长是20.23.如图,在正方形ABCD中,E、F是对角线BD上两点,且∠EAF=45°,将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,连接EQ,求证:(1)EA是∠QED的平分线;(2)EF2=BE2+DF2.证明:(1)∠将∠ADF绕点A顺时针旋转90°后,得到∠ABQ,∠QB=DF,AQ=AF,∠BAQ=∠DAF,∠∠EAF=45°,∠∠DAF+∠BAE=45°,∠∠QAE=45°,∠∠QAE=∠F AE,在∠AQE和∠AFE中,∠∠AQE∠∠AFE(SAS),∠∠AEQ=∠AEF,∠EA是∠QED的平分线;(2)由(1)得∠AQE∠∠AFE,∠QE=EF,由旋转的性质,得∠ABQ=∠ADF,∠ADF+∠ABD=90°,则∠QBE=∠ABQ+∠ABD=90°,在Rt∠QBE中,QB2+BE2=QE2,又∠QB=DF,∠EF2=BE2+DF2.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE,DF.(1)求证:四边形CEDF是平行四边形;(2)∠当AE= 3.5cm时,四边形CEDF是矩形;∠当AE=2cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)(1)证明:∠四边形ABCD是平行四边形,∠CF∠ED,∠∠FCG=∠EDG,∠G是CD的中点,∠CG=DG,在∠FCG和∠EDG中,,∠∠FCG∠∠EDG(ASA)∠FG=EG,∠CG=DG,∠四边形CEDF是平行四边形;(2)∠解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM∠BC于M,∠∠B=60°,AB=3,∠BM=1.5,∠四边形ABCD是平行四边形,∠∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∠AE=3.5,∠DE=1.5=BM,在∠MBA和∠EDC中,,∠∠MBA∠∠EDC(SAS),∠∠CED=∠AMB=90°,∠四边形CEDF是平行四边形,∠四边形CEDF是矩形,故答案为:3.5;∠当AE=2时,四边形CEDF是菱形,理由是:∠AD=5,AE=2,∠DE=3,∠CD=3,∠CDE=60°,∠∠CDE是等边三角形,∠CE=DE,∠四边形CEDF是平行四边形,∠四边形CEDF是菱形,故答案为:2.25.在正方形ABCD中,E是边CD上一点(点E不与点C、D重合),连接BE.【感知】如图∠,过点A作AF∠BE交BC于点F.易证∠ABF∠∠BCE.(不需要证明)【探究】如图∠,取BE的中点M,过点M作FG∠BE交BC于点F,交AD于点G.(1)求证:BE=FG.(2)连接CM,若CM=1,则FG的长为2.【应用】如图∠,取BE的中点M,连接CM.过点C作CG∠BE交AD于点G,连接EG、MG.若CM=3,则四边形GMCE的面积为9.解:感知:∠四边形ABCD是正方形,∠AB=BC,∠BCE=∠ABC=90°,∠∠ABE+∠CBE=90°,∠AF∠BE,∠∠ABE+∠BAF=90°,∠∠BAF=∠CBE,在∠ABF和∠BCE中,,∠∠ABF∠∠BCE(ASA);探究:(1)如图∠,过点G作GP∠BC于P,∠四边形ABCD是正方形,∠AB=BC,∠A=∠ABC=90°,∠四边形ABPG是矩形,∠PG=AB,∠PG=BC,同感知的方法得,∠PGF=∠CBE,在∠PGF和∠CBE中,,∠∠PGF∠∠CBE(ASA),∠BE=FG,(2)由(1)知,FG=BE,连接CM,∠∠BCE=90°,点M是BE的中点,∠BE=2CM=2,∠FG=2,故答案为:2.应用:同探究(2)得,BE=2ME=2CM=6,∠ME=3,同探究(1)得,CG=BE=6,∠BE∠CG,∠S四边形CEGM=CG×ME=×6×3=9,故答案为9.。
【单元复习】第一章 特殊平行四边形(知识精讲+考点例析+举一反三+实战演练)(解析版)

【单元复习】第一章特殊平行四边形知识精讲第一章特殊平行四边形一、平行四边形1.平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。
2.平行四边形的性质(1)平行四边形的对边平行且相等。
(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。
(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。
常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。
(2)推论:夹在两条平行线间的平行线段相等。
3.平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。
(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。
(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。
(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。
(对角)(5)定理4:对角线互相平分的四边形是平行四边形。
(对角线)4.两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。
注意:平行线间的距离处处相等。
5.平行四边形的面积: S平行四边形=底边长×高=ah二、菱形1.菱形的定义:有一组邻边相等的平行四边形叫做菱形2.菱形的性质(1)菱形的四条边相等,对边平行。
(边)(2)菱形的相邻的角互补,对角相等。
(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。
(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。
3.菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。
(2)定理1:四边都相等的四边形是菱形。
(边)(3)定理2:对角线互相垂直的平行四边形是菱形。
(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。
(对角线)4.菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1.矩形的定义:有一个角是直角的平行四边形叫做矩形。
2021-2022学年北师大版九年级数学上册《第1章特殊的平行四边形》期末综合复习训练(附答案)
2021-2022学年北师大版九年级数学上册《第1章特殊的平行四边形》期末综合复习训练(附答案)1.如图,矩形ABCD中,对角线AC、BD交于点O.若∠AOB=50°,则∠OAD的度数为()A.25°B.30°C.35°D.15°2.下列说法正确的是()A.对角线互相垂直平分的四边形是菱形B.对角线相等的四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.一组对边相等且一组对角相等的四边形是平行四边形3.如图,在菱形ABCD中,AB=5、AC=8,则该菱形的面积为()A.40B.20C.48D.244.要使▱ABCD成为矩形,需要添加的条件是()A.AB=BC B.AC⊥BD C.∠ABC=90°D.∠ABD=∠CBD 5.如图,已知四边形ABCD是平行四边形,下列说法正确的是()A.若AB=AD,则▱ABCD是矩形B.若AB=AD,则▱ABCD是正方形C.若AB⊥BC,则▱ABCD是矩形D.若AC⊥BD,则▱ABCD是正方形6.如图,菱形ABCD的对角线AC,BD相交于点O,且AC=8,BD=6,过点O作OH上AB于点H,则OH的长为()A.3B.4C.D.7.如图,在长方形ABCD中,AE平分∠BAD交BC于点E,连接ED,若ED=5,EC=3,则长方形的周长为()A.20B.22C.24D.268.如图,矩形ABCD的对角线AC、BD相交于点O,AE平分∠BAD交BC于点E,连接OE,若OE⊥BC,OE=1,则AC的长为()A.4B.2C.D.29.如图,将矩形ABCD放置在平面直角坐标系的第一象限内,使顶点A,B分别在x轴、y 轴上滑动,矩形的形状保持不变,若AB=2,BC=1,则顶点C到坐标原点O的最大距离为()A.1+B.1+C.3D.10.如图,正方形ABCD的边长为,O是对角线BD上一动点(点O与端点B,D不重合),OM⊥AD于点M,ON⊥AB于点N,连接MN,则MN长的最小值为()A.1B.2C.D.11.如图,在矩形ABCD中,对角线AC、BD交于点O,AE⊥BD于E,若OE:ED=1:3,AE=,则BD=.12.如图,矩形ABCD,∠BAC=60°,以点A为圆心,以任意长为半径作弧分别交AB,AC于点M,N两点,再分别以点M,N为圆心,以大于MN的长作半径作弧交于点P,作射线AP交BC于点E,若BE=1,则矩形ABCD的面积等于.13.如图,菱形ABCD中,E、F分别是BC、CD的中点,过点E作EG⊥AD于G,连接GF,若∠A=70°,则∠DGF的度数为.14.如图所示,四边形ABCD中,AC⊥BD于点O,AO=CO=4,BO=DO=3,点P为线段AC上的一个动点.过点P分别作PM⊥AD于点M,作PN⊥DC于点N.连接PB,在点P运动过程中,PM+PN+PB的最小值等于.15.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,AE∥BD,OE与AB交于点F.(1)试判断四边形AEBO的形状,并说明理由;(2)若OE=10,AC=16,求菱形ABCD的面积.16.如图,在△ABC中,AD是BC边上的中线,点E是AD的中点,过点A作AF∥BC交BE的延长线于F,连接CF.(1)求证:△AEF≌△DEB;(2)若∠BAC=90°,求证:四边形ADCF是菱形.17.已知,如图,在平行四边形ABCD中,E、F分别为边AB、CD的中点,BD是对角线,AG∥DB交CB的延长线于G.(1)求证:四边形AGBD为平行四边形;(2)若四边形AGBD是矩形,则四边形BEDF是什么特殊四边形?证明你的结论.18.如图,菱形ABCD的对角线AC,BD相交于点O,过点D作DE∥AC且DE=OC,连接CE,OE.(1)求证:OE=CD;(2)若菱形ABCD的边长为4,∠ABC=60°,求AE的长.19.如图,在▱ABCD中,E、F分别为边ABCD的中点,BD是对角线,过A点作AG∥DB 交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90,求证:四边形DEBF是菱形.20.如图,菱形ABCD中,E是AB的中点,且DE丄AB,AE=2.求:(1)∠ABC的度数;(2)对角线AC,BD的长;(3)菱形ABCD的面积.21.如图,菱形ABCD中,对角线AC、BD交于O点,DE∥AC,CE∥BD.(1)求证:四边形OCED为矩形;(2)在BC上截取CF=CO,连接OF,若AC=16,BD=12,求四边形OFCD的面积.22.如图,正方形ABCD中,AB=4,点E是对角线AC上的一点,连接DE.过点E作EF ⊥ED,交AB于点F,以DE、EF为邻边作矩形DEFG,连接AG.(1)求证:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰为AB中点,连接DF交AC于点M,请直接写出ME的长.23.如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于点D,交AB于点E,点F在DE的延长线上,且AF=CE.(1)四边形ACEF是平行四边形吗?说明理由;(2)当∠B的大小满足什么条件时,四边形ACEF为菱形?请说明你的结论;(3)四边形ACEF有可能是正方形吗?为什么?24.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且P A =PE,PE交CD于F.(1)证明:PC=PE;(2)求∠CPE的度数;(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.参考答案1.解:∵四边形ABCD是矩形,∴OA=OB,∵∠AOB=50°,∴∠BAO=,∴∠OAD=90°﹣∠BAO=90°﹣65°=25°,故选:A.2.解:A、对角线互相垂直平分的四边形是菱形,是真命题;B、对角线相等的平行四边形是矩形,原命题是假命题;C、对角线平分且相等且互相垂直的四边形是正方形,原命题是假命题;D、一组对边相等且一组对角相等的四边形不一定是平行四边形,如△ABC是等腰三角形,点D是底边BC上异于BC中点的一个点,∠ADE=∠DAC,DE=AC,但四边形ABCE不是平行四边形,原命题是假命题;故选:A.3.解:BD交AC于点O,∵四边形ABCD是菱形,∴AC⊥BD,AO=CO=4,∴BO=,故BD=6,则菱形的面积是:×6×8=24.故选:D.4.解:A、∵▱ABCD中,AB=BC,∴平行四边形ABCD是菱形,故选项A不符合题意;B、∵▱ABCD中,AC⊥BD,∴平行四边形ABCD是菱形,故选项B不符合题意;C、∵▱ABCD中,∠ABC=90°,∴平行四边形ABCD是矩形,故选项C符合题意;D、∵▱ABCD中,AB∥CD,∴∠ABD=∠CDB,∵∠ABD=∠CBD,∴∠CDB=∠CBD,∴BC=DC,∴平行四边形ABCD为菱形,故选项D不符合题意;故选:C.5.解:A、若AB=AD,则▱ABCD是菱形,选项说法错误;B、若AB=AD,则▱ABCD是菱形,选项说法错误;C、若AB⊥BC,则▱ABCD是矩形,选项说法正确;D、若AC⊥BD,则▱ABCD是菱形,选项说法错误;故选:C.6.解:∵四边形ABCD是菱形,AC=8,BD=6,∴BO=BD=3,AO=AC=4,AC⊥BD,∴∠AOB=90°,∴AB===5,∵OH⊥AB,∴AO•BO=AB•OH,∴OH===,故选:C.7.解:∵四边形ABCD是长方形,∴∠B=∠C=90°,AB=DC,∵ED=5,EC=3,∴DC===4,则AB=4,∵AE平分∠BAD交BC于点E,∴∠BAE=∠DAE,∵AD∥BC,∴∠DAE=∠AEB,∴∠BAE=∠BEA,∴AB=BE=4,∴长方形的周长为:2×(4+4+3)=22.故选:B.8.解:∵四边形ABCD是矩形,∴∠ABC=∠BAD=90°,OA=OC,OB=OD,AC=BD,∴OB=OC,∵OE⊥BC,∴BE=CE,∴OE是△ABC的中位线,∴AB=2OE=2,∵AE平分∠BAD,∴∠BAE=∠BAD=×90°=45°,∴△ABE是等腰直角三角形,∴BE=AB=2,∴BC=2BE=4,∴AC===2,故选:B.9.解:如图,取AB的中点E,连接OE,CE,OC,∵∠AOB=90°,∴Rt△AOB中,OE=AB=1,又∵∠ABC=90°,AE=BE=CB=1,∴Rt△CBE中,CE=,又∵OC≤CE+OE=1+,∴OC的最大值为1+,即点C到原点O距离的最大值是1+,故选:A.10.解:如图,连接AO,∵四边形ABCD是正方形,∴AB=AD=2,BD=AB=4,∠DAB=90°,又∵OM⊥AD,ON⊥AB,∴四边形AMON是矩形,∴AO=MN,∵当AO⊥BD时,AO有最小值,∴当AO⊥BD时,MN有最小值,此时AB=AD,∠BAD=90°,AO⊥BD,∴AO=BD=2,∴MN的最小值为2,故选:B.11.解:∵四边形ABCD是矩形,∴BD=2OA=2OD,∵OE:ED=1:3,∴设OE=x,ED=3x,则OD=2x,∵AE⊥BD,AE=,在Rt△OEA中,根据勾股定理,得x2+()2=(2x)2,解得x=1,∴BD=4.故答案为:4.12.解:如图,∵四边形ABCD是矩形,∴∠B=∠BAD=90°,∵∠BAC=60°,∴∠ACB=30°,由作图知,AE是∠BAC的平分线,∴∠BAE=∠CAE=30°,∴∠EAC=∠ACE=30°,∴AE=CE,过E作EF⊥AC于F,∴EF=BE=1,∴AC=2CF=2,∴AB=,BC=3,∴矩形ABCD的面积=AB•BC=3,故答案为:3.13.解:如图,延长AD、EF相交于点H,∵F是CD的中点,∴CF=DF,∵菱形对边AD∥BC,∴∠H=∠CEF,在△CEF和△DHF中,,∴△CEF≌△DHF(AAS),∴EF=FH,∵EG⊥AD,∴GF=FH,∴∠DGF=∠H,∵四边形ABCD是菱形,∴∠C=∠A=70°,∵菱形ABCD中,E、F分别是BC、CD的中点,∴CE=CF,在△CEF中,∠CEF=(180°﹣70°)=55°,∴∠DGF=∠H=∠CEF=55°.故答案为:55°.14.解:∵AO=CO=4,BO=DO=3,∴AC=8,四边形ABCD是平行四边形,∵AC⊥BD于点O,∴平行四边形ABCD是菱形,AD===5,∴CD=AD=5,连接PD,如图所示:∵S△ADP+S△CDP=S△ADC,∴AD•PM+DC•PN=AC•OD,即×5×PM+×5×PN=×8×3,∴5×(PM+PN)=8×3,∴PM+PN=4.8,∴当PB最短时,PM+PN+PB有最小值,由垂线段最短可知:当BP⊥AC时,PB最短,∴当点P与点O重合时,PM+PN+PB有最小值,最小值=4.8+3=7.8,故答案为:7.8.15.解:(1)四边形AEBO是矩形.证明:∵BE∥AC,AE∥BD∴四边形AEBO是平行四边形.又∵菱形ABCD对角线交于点O∴AC⊥BD,即∠AOB=90°.∴四边形AEBO是矩形.(2)∵菱形ABCD,∴OA=8,∵OE=10,∴AE=6,∴OB=6,∴△ABC的面积=,∴菱形ABCD的面积=2△ABC的面积=96.16.证明:(1)∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AEF=∠DEB,∴△AEF≌△DEB;(2)∵△AEF≌△DEB,∴AF=DB,∵AD是BC边上的中线,∴DC=DB,∴AF=DC,∵AF∥DC,∴四边形ADCF是平行四边形,∵∠BAC=90°,AD是BC边上的中线,∴AD=DC,∴▱ADCF是菱形.17.解:(1)∵平行四边形ABCD中,AD∥BC,∴AD∥BG,又∵AG∥BD,∴四边形AGBD是平行四边形;(2)四边形DEBF是菱形,理由如下:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD.∵点E、F分别是AB、CD的中点,∴BE=AB,DF=CD.∴BE=DF,BE∥DF,∴四边形DFBE是平行四边形,∵四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中,∵E为AB的中点,∴AE=BE=DE,∴平行四边形DEBF是菱形.18.(1)证明:在菱形ABCD中,OC=AC.∴DE=OC.∵DE∥AC,∴四边形OCED是平行四边形.∵AC⊥BD,∴平行四边形OCED是矩形.∴OE=CD.(2)解:在菱形ABCD中,∠ABC=60°,∴AC=AB=4,∴在矩形OCED中,CE=OD===2.在Rt△ACE中,AE==2.19.(1)证明:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∵E、F分别为边AB、CD的中点,∴DF=BE,又AB∥CD,∴四边形DEBF是平行四边形,∴DE∥BF;(2)∵AG∥DB,AD∥CG,∴四边形AGBD是平行四边形,∵∠G=90°,∴平行四边形AGBD是矩形,∴∠ADB=90°,又E为边AB的中点,∴ED=EB,又四边形DEBF是平行四边形,∴四边形DEBF是菱形.20.解:(1)∵E为AB的中点,DE⊥AB,∴AD=BD,∵菱形ABCD中,AD=AB,∴AD=AB=BD,∴△ABD是等边三角形,∴∠ABD=60°,∴∠ABC=120°;(2)∵△ABD是等边三角形,AE=2,∴AB=BD=AD=4,∴DE=AO===2,∴AC=4;(3)菱形ABCD的面积=BD•AC=×4×4=8.21.(1)证明:∵DE∥AC,CE∥BD,∴四边形OCED为平行四边形,又∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED为矩形;(2)解:作FH⊥OC于点H,如图所示:∵四边形ABCD是菱形,∴AC⊥BD,OD=OB=BD=6,OA=OC=AC=8,∴S△DOC==24,在Rt△OBC中,BC==10,sin∠OCB==,在Rt△CFH中,CF=CO=8,sin∠HCF==,∴FH=CF=,∴S△OCF==,∴S四边形OFCD=S△DOC+S△OCF=.22.解:(1)如图,作EM⊥AD于M,EN⊥AB于N.∵四边形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四边形ANEM是矩形,∵EF⊥DE,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四边形DEFG是矩形,∴四边形DEFG是正方形.(2)∵四边形DEFG是正方形,四边形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE(SAS),∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如图,作EH⊥DF于H.∵四边形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中点,∴AF=FB∴DF==2,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM==.23.解:(1)四边形ACEF是平行四边形;∵DE垂直平分BC,∴D为BC的中点,ED⊥BC,又∵AC⊥BC,∴ED∥AC,∴E为AB中点,∴ED是△ABC的中位线.∴BE=AE,FD∥AC.∴BD=CD,∴Rt△ABC中,CE是斜边AB的中线,∴CE=AE=AF.∴∠F=∠5=∠1=∠2.∴∠F AE=∠AEC.∴AF∥EC.又∵AF=EC,∴四边形ACEF是平行四边形;(2)当∠B=30°时,四边形ACEF为菱形;理由:∵∠ACB=90°,∠B=30°,∴AC=AB,由(1)知CE=AB,∴AC=CE又∵四边形ACEF为平行四边形∴四边形ACEF为菱形;(3)四边形ACEF不可能是正方形,∵∠ACB=90°,∴∠ACE<∠ACB,即∠ACE<90°,不能为直角,所以四边形ACEF不可能是正方形.24.(1)证明:在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∵P A=PE,∴PC=PE;(2)由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,∵P A=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;(3)在菱形ABCD中,AB=BC,∠ABP=∠CBP=60°,在△ABP和△CBP中,,∴△ABP≌△CBP(SAS),∴P A=PC,∠BAP=∠BCP,∵P A=PE,∴PC=PE,∴∠DAP=∠DCP,∵P A=PC,∴∠DAP=∠AEP,∴∠DCP=∠AEP∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠AEP,即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,∴AP=CE.。
第一章 特殊平行四边行知识点
上淘师·易得优
第一章特殊平行四边行
1.菱形的性质与判定
1.定义:有一组邻边星等的四边形叫做菱形。
2.性质
(1)菱形的四条边都相等;
(2)菱形的对角线互相垂直;
(3)菱形是轴对称图形,七对称轴是对角线所在的直线。
3.判定
(1)定义:有一组邻边星等的四边形叫做菱形。
(2)定理1:对角线互相垂直的平行四边形是菱形。
(3)定理2:四条边相等的四边形是菱形。
2.矩形的性质与判定
1.定义:有一个角是直角的平行四边形叫做矩形,也叫做长方形。
2.性质
(1)矩形的四个角都是直角。
(2)矩形的对角线相等。
(3)矩形是轴对称图形。
3.判定
(1)定义:有一个角是直角的平行四边形是矩形。
(2)定理1:对角线相等的平行四边形是矩形。
(3)定理2:有三个角是直角的四边形是矩形。
4.直角三角形的斜边上的中线等于斜边的一半。
3.正方形的性质与判定
1.定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。
2.性质
(1)正方形的四个角都是直角,四条边相等。
(2)正方形的对角线相等且互相垂直平分,每条对角线平分一组对角。
(3)正方形是中心对称图形,对角线的交点时它的对称中心。
上淘师·易得优
(4)正方形是轴对称图形。
两条对角线所在直线以及过每一组对边中点的直线都是它的对称轴。
3.判定
(1)对角线相等的菱形是正方形。
(2)对角线垂直的矩形是正方形。
(3)有一个角是直角的菱形是正方形。
2019-2020北师大版九年级数学(上)期末单元复习第1章特殊的平行四边形1(解析版)
第1章特殊的平行四边形一.选择题(共8小题)1.下列说法中,正确的有()个.①对角线互相垂直的四边形是菱形;②一组对边平行,一组对角相等的四边形是平行四边形;③有一个角是直角的四边形是矩形;④对角线相等且垂直的四边形是正方形;⑤每一条对角线平分每一组对角的四边形是菱形.A.1 B.2 C.3 D.42.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若AB=4,∠BAD=60°,则△OCE的面积是()A.4 B.2C.2 D.3.如图,在正方形OABC中,点A的坐标是(﹣3,1),则C点的坐标是()A.(1,3)B.(2,3)C.(3,2)D.(3,1)4.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.55.如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为()A.24 B.36 C.72 D.1446.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2 D.7.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.48.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8 B.10 C.10.4 D.12二.解答题(共10小题)9.如图,过矩形ABCD的对角线AC的中点O做EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求EF的长.10.如图,点E,F为菱形ABCD对角线BD的三等分点.试判断四边形AECF的形状,并加以证明.11.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=5,AB=6,求菱形ADCF的面积.12.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.13.如图,在△ABC中,BD是AC的垂直平分线.过点D作AB的平行线交BC于点F,过点B 作AC的平行线,两平行线相交于点E,连接CE.求证:四边形BECD是矩形.14.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.15.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.16.两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.求证:四边形BNDM为菱形.17.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.18.如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.(1)求证:四边形DBEC是平行四边形.(2)若∠ABC=120°,AB=BC=4,则在点E的运动过程中:①当BE=时,四边形BECD是矩形,试说明理由;②当BE=时,四边形BECD是菱形.参考答案与试题解析一.选择题(共8小题)1.下列说法中,正确的有()个.①对角线互相垂直的四边形是菱形;②一组对边平行,一组对角相等的四边形是平行四边形;③有一个角是直角的四边形是矩形;④对角线相等且垂直的四边形是正方形;⑤每一条对角线平分每一组对角的四边形是菱形.A.1 B.2 C.3 D.4【分析】利用矩形的判定定理、平行四边形的判定定理、菱形的判定定理及正方形的判定定理分别判断后即可确定正确的选项.【解答】解:①对角线互相垂直平分的四边形是菱形,错误;②一组对边平行,一组对角相等的四边形是平行四边形,正确;③有一个角是直角的平行四边形是矩形,错误;④对角线平分、相等且垂直的四边形是正方形,错误;⑤每一条对角线平分每一组对角的四边形是菱形,正确,故选:B.2.如图,菱形ABCD的对角线AC,BD相交于点O,点E为CD的中点,连接OE,若AB=4,∠BAD=60°,则△OCE的面积是()A.4 B.2C.2 D.【分析】由已知条件可求出菱形的面积,则△ADC的面积也可求出,易证OE为△ADC的中位线,所以OE∥AD,再由相似三角形的性质即可求出△OCE的面积.【解答】解:过点D作DH⊥AB于点H,∵四边形ABCD是菱形,AO=CO,∴AB=BC=CD=AD,∵∠BAD=60°,∴DH=4×=2,∴S菱形ABCD=4×2=8,∴S△CDA=S菱形ABCD=4,∵点E为边CD的中点,∴OE为△ADC的中位线,∴OE∥AD,∴△CEO∽△CDA,∴△OCE的面积=×S△CDA=×4=,故选:D.3.如图,在正方形OABC中,点A的坐标是(﹣3,1),则C点的坐标是()A.(1,3)B.(2,3)C.(3,2)D.(3,1)【分析】作CD⊥x轴于D,作AE⊥x轴于E,由AAS证明△AOE≌△OCD,得出AE=OD,OE =CD,由点A的坐标是(﹣3,1),得出OE=3,AE=1,则OD=1,CD=3,得出C(1,3).【解答】解:如图所示:作CD⊥x轴于D,作AE⊥x轴于E,则∠AEO=∠ODC=90°,∴∠OAE+∠AOE=90°,∵四边形OABC是正方形,∴OA=CO=BA,∠AOC=90°,∴∠AOE+∠COD=90°,∴∠OAE=∠COD,在△AOE和△OCD中,,∴△AOE≌△OCD(AAS),∴AE=OD,OE=CD,∵点A的坐标是(﹣3,1),∴OE=3,AE=1,∴OD=1,CD=3,∴C(1,3),故选:A.4.如图,四边形ABCD是菱形,AC=12,BD=16,AH⊥BC于H,则AH等于()A.B.C.4 D.5【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AH,即可得出AH的长度.【解答】解:∵四边形ABCD是菱形,AC=12,BD=16,∴CO=AC=6,BO=BD=8,AO⊥BO,∴BC==10,∴S菱形ABCD=AC•BD=×16×12=96,∵S菱形ABCD=BC×AH,∴BC×AH=96,∴AH==5.如图:点E、F为线段BD的两个三等分点,四边形AECF是菱形,且菱形AECF的周长为20,BD为24,则四边形ABCD的面积为()A.24 B.36 C.72 D.144【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,EO=OF,再求出BO=OD,证明四边形ABCD是菱形,根据菱形的四条边都相等求出边长AE,根据菱形的对角线互相平分求出OE,然后利用勾股定理列式求出AO,再求出AC,最后根据四边形的面积等于对角线乘积的一半列式计算即可得解.【解答】解:如图,连接AC交BD于点O,∵四边形AECF是菱形,∴AC⊥BD,AO=OC,EO=OF,又∵点E、F为线段BD的两个三等分点,∴BE=FD,∴BO=OD,∵AO=OC,∴四边形ABCD为平行四边形,∵AC⊥BD,∴四边形ABCD为菱形;∵四边形AECF为菱形,且周长为20,∴AE=5,∵BD=24,点E、F为线段BD的两个三等分点,∴EF=8,OE=EF=×8=4,由勾股定理得,AO===3,∴AC=2AO=2×3=6,∴S四边形ABCD=BD•AC=×24×6=72;6.如图,在矩形ABCD中,对角线AC与BD相交于点O,CE⊥BD,垂足为点E,CE=5,且EO=2DE,则ED的长为()A.B.2C.2 D.【分析】由矩形的性质得到∠ADC=90°,BD=AC,OD=BD,OC=AC,求得OC=OD,设DE=x,OE=2x,得到OD=OC=3x,根据勾股定理即可得到答案.【解答】解:∵四边形ABCD是矩形,∴∠ADC=90°,BD=AC,OD=BD,OC=AC,∴OC=OD,∵EO=2DE,∴设DE=x,OE=2x,∴OD=OC=3x,∵CE⊥BD,∴∠DEC=∠OEC=90°,在Rt△OCE中,∵OE2+CE2=OC2,∴(2x)2+52=(3x)2,解得:x=∴DE=;故选:A.7.如图,在矩形ABCD中,点A的坐标是(﹣1,0),点C的坐标是(2,4),则BD的长是()A.6 B.5 C.3D.4【分析】利用矩形的性质求得线段AC的长即可求得BD的长.【解答】解:∵点A的坐标是(﹣1,0),点C的坐标是(2,4),∴线段AC==5,∵四边形ABCD是矩形,∴BD=AC=5,故选:B.8.如图,将两张长为5,宽为1的矩形纸条交叉,若两张纸条重叠部分为一个四边形(两纸条不互相重合),则这个四边形的周长的最大值是()A.8 B.10 C.10.4 D.12【分析】由矩形和菱形的性质可得AE=EC,∠B=90°,由勾股定理可求AE的长,即可求四边形AECF的周长.【解答】解:如图所示,此时菱形的周长最大,∵四边形AECF是菱形∴AE=CF=EC=AF,在Rt△ABE中,AE2=AB2+BE2,∴AE2=1+(5﹣AE)2,∴AE=2.6∴菱形AECF的周长=2.6×4=10.4故选:C.二.解答题(共10小题)9.如图,过矩形ABCD的对角线AC的中点O做EF⊥AC,交BC边于点E,交AD边于点F,分别连接AE、CF.(1)求证:四边形AECF是菱形;(2)若AB=,∠DCF=30°,求EF的长.【分析】(1)由过AC的中点O作EF⊥AC,根据线段垂直平分线的性质,可得AF=CF,AE=CE,OA=OC,然后由四边形ABCD是矩形,易证得△AOF≌△COE,则可得AF=CE,继而证得结论;(2)由四边形ABCD是矩形,易求得CD的长,然后利用三角函数求得CF的长,继而求得答案.【解答】解:(1)证明:∵O是AC的中点,且EF⊥AC,∴AF=CF,AE=CE,OA=OC,∵四边形ABCD是矩形,∴AD∥BC,∴∠AFO=∠CEO,在△AOF和△COE中,,∴△AOF≌△COE(AAS),∴AF=CE,∴AF=CF=CE=AE,∴四边形AECF是菱形;(2)∵四边形ABCD是矩形,∴CD=AB=,在Rt△CDF中,cos∠DCF=,∠DCF=30°,∴CF==2,∵四边形AECF是菱形,∴CE=CF=2.10.如图,点E,F为菱形ABCD对角线BD的三等分点.试判断四边形AECF的形状,并加以证明.【分析】根据菱形的对角线互相垂直平分可得AC⊥BD,AO=OC,OB=OD,再求出OE=OF,然后根据对角线互相垂直平分的四边形是菱形即可.【解答】解:四边形AECF是菱形,理由如下:连接AC交BD于点O,如图所示:∵四边形ABCD是菱形,∴OB=OD,AC⊥BD,∵点E,F为菱形ABCD对角线BD的三等分点,∴BE=EF=DF,∴OE=OF,∴四边形AECF是平行四边形,又∵AC⊥BD,∴四边形AECF是菱形.11.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:四边形ADCF是菱形;(2)若AC=5,AB=6,求菱形ADCF的面积.【分析】(1)可先证得△AEF≌△DEB,可求得AF=DB,可证得四边形ADCF为平行四边形,再利用直角三角形的性质可求得AD=CD,可证得结论;(2)根据条件可证得S菱形ADCF=S△ABC,结合条件可求得答案.【解答】(1)证明:∵E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,在△AEF和△DEB中,∴△AEF≌△DEB(AAS),∴AF=DB,∴四边形ADCF是平行四边形,∵∠BAC=90°,D是BC的中点,∴AD=CD=BC,∴四边形ADCF是菱形;(2)解:设AF到CD的距离为h,∵AF∥BC,AF=BD=CD,∠BAC=90°,∴S菱形ADCF=CD•h=BC•h=S△ABC=AB•AC=.12.如图,AE∥BF,AC平分∠BAE,且交BF于点C,BD平分∠ABF,且交AE于点D,连接CD.(1)求证:四边形ABCD是菱形;(2)若∠ADB=30°,BD=12,求AD的长.【分析】(1)由平行线的性质和角平分线定义得出∠ABD=∠ADB,证出AB=AD,同理:AB=BC,得出AD=BC,证出四边形ABCD是平行四边形,即可得出结论;(2)由菱形的性质得出AC⊥BD,OD=OB=BD=6,再由三角函数即可得出AD的长.【解答】证明:(1)∵AE∥BF,∴∠ADB=∠CBD,又∵BD平分∠ABF,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AB=AD,同理:AB=BC,∴AD=BC,∴四边形ABCD是平行四边形,又∵AB=AD,∴四边形ABCD是菱形;(2)∵四边形ABCD是菱形,BD=12,∴AC⊥BD,OD=OB=BD=6,∵∠ADB=30°,∴cos∠ADB=,∴AD=.13.如图,在△ABC中,BD是AC的垂直平分线.过点D作AB的平行线交BC于点F,过点B 作AC的平行线,两平行线相交于点E,连接CE.求证:四边形BECD是矩形.【分析】求出∠BDC=90°,根据平行四边形的判定得出四边形ABED是平行四边形,关键平行四边形的性质得出AD=BE,根据平行四边形的判定得出四边形BECD是平行四边形,根据矩形的判定得出即可.【解答】证明:∵BD是AC的垂直平分线∴AD=DC,BD⊥CA,∴∠BDC=90°,∵由题意知:AB∥DE,AD∥BE∴四边形ABED是平行四边形,∴AD=BE,∴DC=BE,又AC∥BE即DC∥BE∴四边形BECD是平行四边形,∴四边形BECD是矩形.14.如图,在▱ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点.(1)求证:△ADE≌△CBF;(2)若∠G=90°,求证:四边形DEBF是菱形.【分析】(1)根据已知条件证明AE=CF,从而根据SAS可证明两三角形全等;(2)先证明DE=BE,再根据邻边相等的平行四边形是菱形,从而得出结论.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,∠A=∠C,∵点E、F分别是AB、CD的中点,∴AE=AB,CF=CD,∴AE=CF,在△ADE和△CBF中,∵,∴△ADE≌△CBF(SAS);(2)∵∠G=90°,AG∥BD,AD∥BG,∴四边形AGBD是矩形,∴∠ADB=90°,在Rt△ADB中∵E为AB的中点,∴AE=BE=DE,∵DF∥BE,DF=BE,∴四边形DEBF是平行四边形,∴四边形DEBF是菱形.15.如图,在矩形ABCD中,E,F分别为边AD,BC上的点,AE=CF,对角线AC平分∠ECF.(1)求证:四边形AECF为菱形.(2)已知AB=4,BC=8,求菱形AECF的面积.【分析】(1)根据矩形的性质先证明四边形AECF是平行四边形,然后证明∠EAC=∠ACE 得出AE=CE,从而可证得四边形AECF是菱形;(2)首先设BF=x,则FC=8﹣x,然后由勾股定理求得(8﹣x)2+42=x2,求出x的值,得出FC,再根据菱形面积计算方法即可求得答案.【解答】证明:(1)∵四边形ABCD是矩形∴AE∥CF∵AE=CF∴四边形AECF是平行四边形∵AC平分∠ECF∴∠ACF=∠ACE∵AE∥CF∴∠ACF=∠EAC∴∠EAC=∠ACE∴AE=CE∴四边形AECF是菱形(2)设BF=x,则FC=8﹣x∴AF=FC=8﹣x在Rt△ABF中AB2+BF2=AF2∴(8﹣x)2=x2+42解得:x=3∴FC=8﹣3=5∴S菱形AECF=FC•AB=5×4=2016.两个完全相同的矩形纸片ABCD、BFDE如图放置,AB=BF.求证:四边形BNDM为菱形.【分析】易证四边形BNDM是平行四边形;根据AB=BF,运用AAS可证明Rt△ABM≌Rt△FBN,得BM=BN.根据有一邻边相等的平行四边形是菱形得证.【解答】证明:∵两个完全相同的矩形纸片ABCD、BFDE,根据矩形的对边平行,∴BC∥AD,BE∥DF,∴四边形BNDM是平行四边形,∵∠ABM+∠MBN=90°,∠MBN+∠FBN=90°,∴∠ABM=∠FBN.在△ABM和△FBN中,∴△ABM≌△FBN,(ASA).∴BM=BN,∴四边形BNDM是菱形.17.如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A 停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.【分析】(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动的时间t;(3)菱形的四条边相等,则菱形的周长=4×10,根据菱形的面积求出面积即可.【解答】解:(1)∵在矩形ABCD中,AB=8cm,BC=16cm,∴BC=AD=16cm,AB=CD=8cm,由已知可得,BQ=DP=tcm,AP=CQ=(16﹣t)cm,在矩形ABCD中,∠B=90°,AD∥BC,当BQ=AP时,四边形ABQP为矩形,∴t=16﹣t,得t=8,故当t=8s时,四边形ABQP为矩形;(2)∵AP=CQ,AP∥CQ,∴四边形AQCP为平行四边形,∴当AQ=CQ时,四边形AQCP为菱形即=16﹣t时,四边形AQCP为菱形,解得t=6,故当t=6s时,四边形AQCP为菱形;(3)当t=6s时,AQ=CQ=CP=AP=16﹣6=10cm,则周长为4×10cm=40cm;面积为10cm×8cm=80cm2.18.如图,在△ABC中,点F是BC的中点,点E是线段AB的延长线上的一动点,连接EF,过点C作AB的平行线CD,与线段EF的延长线交于点D,连接CE、BD.(1)求证:四边形DBEC是平行四边形.(2)若∠ABC=120°,AB=BC=4,则在点E的运动过程中:①当BE= 2 时,四边形BECD是矩形,试说明理由;②当BE= 4 时,四边形BECD是菱形.【分析】(1)先证明△EBF≌△DCF,可得DC=BE,可证四边形BECD是平行四边形;(2)①根据四边形BECD是矩形时,∠CEB=90°,再由∠ABC=120°可得∠ECB=30°,再根据直角三角形的性质可得BE=2;②根据四边形BECD是菱形可得BE=EC,再由∠ABC=120°,可得∠CBE=60°,进而可得△CBE是等边三角形,再根据等边三角形的性质可得答案.【解答】(1)证明:∵AB∥CD,∴∠CDF=∠FEB,∠DCF=∠EBF,∵点F是BC的中点,∴BF=CF,在△DCF和△EBF中,,∴△EBF≌△DCF(AAS),∴DC=BE,∴四边形BECD是平行四边形;(2)解:①BE=2;∵当四边形BECD是矩形时,∠CEB=90°,∵∠ABC=120°,∴∠CBE=60°;∴∠ECB=30°,∴BE=BC=2,故答案为:2;②BE=4,∵四边形BECD是菱形时,BE=EC,∵∠ABC=120°,∴∠CBE=60°,∴△CBE是等边三角形,∴BE=BC=4.故答案为:4.。
特殊平行四边形的复习
18.2特殊平行四边形复习(1)一、学习目标:1.进一步理解矩形、菱形、正方形的概念及其相互联系;2.掌握矩形、菱形、正方形的性质和判定;3.会把各种平行四边形的相关知识进行结构化整理.二、学习重点:梳理特殊平行四边形的知识结构体系,根据具体问题情境,选择适当的知识进行推理计算,并解决问题.三、创设情境回顾知识本章学习了哪些特殊的四边形?是按照什么顺序学习这些四边形的?请说说这些四边形之间的关系.(一)、矩形的定义及性质1、定义:有一个角是直角的平行四边形叫做矩形.2、性质:(1)矩形的对边平行且相等;(2)矩形矩的四个角都是直角;(3)矩形的对角线相等且互相平分.(4)直角三角形斜边上的中线等于斜边的一半.(5)矩形是轴对称图形,连接对边中点的直线是它的两条对称轴.3、判定:(1)有一个角是直角的平行四边形叫做矩形;(2)对角线相等的平行四边形是矩形;(3)有三个角是直角的四边形是矩形.(二)菱形的定义及性质及判定1、定义:有一组邻边相等的平行四边形叫做菱形。
2、性质(1)菱形具有平行四边形的一切性质;(2)菱形的四条边都相等;(3)菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;(4)菱形是轴对对称图形;也是中心对称图形;(5)菱形的面积=底×高=对角线乘积的一半。
3、判定(1)一组邻边相等的平行四边形是菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边都相等的四边形是菱形。
(三)正方形的定义及性质及判定1、定义:四个角都是直角,四条边都相等的四边形叫正方形.2、性质:正方形既是矩形又是菱形.(1)四个角都是直角,四条边都相等;(2)两组对边分别平行;(3)对角线互相平分,相等,互相垂直,每一条对角线平分一组对角。
3、判定:既是矩形又是菱形的四边形是正方形.如:矩形+一组邻边相等→正方形菱形+一个直角→正方形四、基础练习1、在图中的标号下面写出所有的判定定理:___________________________________________;___________________________________________;___________________________________________.平四边形菱形正方形①④?2、如果矩形的对角线长为13,一边长为5,则该矩形的周长是__________.3、已知菱形的周长是12cm,那么它的边长是______4、菱形ABCD中∠ABC=60度,则∠BAC=_______。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
思维点拨:由于新线段是以点 F 为一个端点,另一个端点是 图中已标明字母的某一点,因 此可连 BF (或 DF ),运用三 角形全等或平行四边形的特征 说明BF=DE(或DF=BE).
在矩形ABCD中
∴ CO=DO ∴定,又用到 了矩形的性质,有一定的综合性。如果题目中的矩 形变为菱形(图一),结论应变为什么?如果题目中 的矩形变为正方形(图二),结论又应变为什么?
图一
图二
创新题:如图(1)所示,在平行四边形ABCD中, 点E、F在对角线AC上,且AE=CF.请你以F为 一个端点,和图中已标明字母的某一点连成一条 新线段,猜想并说明它和图中已有的某一条线段 相等(只须说明一组线段相等即可). (1)连结____________; (2)猜想:____________=____________; (3)说明所猜想的结论的正确性.
3. 四边形的两条对角线相等,且互相垂直, D 则这个四边形是( )。 A 平行四边形 B 菱形 C 矩形 D 以上都不对 4.矩形具有而菱形不一定 具有的性质是( B )。 A 对角线互相平分 B 对角线相等 C 对角线平分一组对角 D 对角线互相垂直 5.能判定一个四边形是平行四边形的条件是 A 一组对角相等 B 两条对角线互相平分 C 两对角线互相垂直D一对邻角的和为180°
2.矩形的四个角都相等 (√ )
3.菱形的对角线互相垂直平分
4.对角线相等的四边形是矩形
√
X
(二)选择: 1.具备条件(D )的四边形是矩形。
A 两条对角线相等 B 对边互相垂直 C 一组对角是直角 D 三个角是直角 2.已知菱形的边长等于2cm,菱形的一 条对角线也是2cm,那么另一条对角线 是( D )。A. 4cm B. 3cm C. 3cm D. 23cm
D O A B C
边?
周长?
角?
面积?
当矩形对角线夹角为60°时,以 等边三角形为突破口;
4.如图,菱形ABCD的边长为8㎝, ∠BAD=120°,你可以求什么?
A D
B
C
菱形的面积 等于它的两 条对角线乘 积的一半.
当菱形有一个内角为60°时, 以等边三角形为突破口.
巩固练习 (一)判断题:
1.平行四边形的对角线相等( X )
四.两个有用的推论: 1.直角三角形斜边上的中线等于斜边 的一半. O 符号语言:CO是Rt△ABC A 斜边上的中线, 2.直角三角形30o角所对直角边 等于斜边的一半. 符号语言:Rt△ABC中,
1 CO= AB 2
B
C
A
C=90o,
BC=
1
A=30o
AB C B
3.如图,矩形ABCD的对角线AC、BD相 交于点O,∠AOB=2∠BOC, 若对角线 AC=6cm,则你能求什么?
三、证明题
已知:如图,矩形ABCD中,AC与BD交于O, CP∥DB, DP∥AC, CP与DP相交于P点,求证:四 B A 边形CODP是菱形。
分析:OC与OD的双重角色 证明: ∵ CP∥DB, DP∥AC
O
D P
C
∴ 四边形CODP是平行四边形
又∵
CO
1 1 CA, DO DB , CA=DB 2 2
C. 2b
D
D. 3b
11.(2004· 重庆)如图,在菱形ABCD中,∠BAD=80°, AB 的垂直平分线交对角线 AC 于点 F , E 为垂足,连接 DF。则∠CDF等于 ( D ) A.80° B.70° C.65° D.60°
12.(2004 · 南京市 ) 用两个边长为 a 的等边三角形 纸片拼成的四边形是 ( ) D A.等腰梯形 B.正方形 C.矩形 D.菱形
F C A
G
E
D
B
8.如图所示,在平行四边形ABCD中,DB=DC, o ∠C=70 ,AE⊥BD于E,则∠DAE等于( A ) A. 20° B. 25° C. 30° D. 35°
D C E
A O
D
A
B
B
(2)
C
10.在矩形ABCD中,AE平分∠DAB交CD于E, DE=4,CE=2,则矩形ABCD周长为___. 20
一、平行四边形与 特殊平行四边形的关系
矩形
平行四边形
菱形
二、几种特殊四边形的性质
边
角
对角线
平行 对边平 对角相 两条对角线互相平 分 四边 行且相 等邻角 等 互补 形 菱 对边平 对角相 两条对角线互相垂直 行,四 等邻角 平分 , 每条对角线平 形 边相等 互补 分一组对角 矩 对边平 四个角 两条对角线互相平分 且相等 行且相 都是直 形 等 角
9.菱形有一个内角是120 ,较短对 角线长是8㎝,那么菱形边长是 8㎝
o
。
10. 如图所示,平行四边形 ABCD 的对角线相 交于O点,且AB≠BC,过O点作OE⊥AC,交BC 于 E ,如果△ ABE 的周长为 b ,则平行四边形 ABCD的周长是( C ) A. b B. 1.5b
A
O B E C
6.不能判定四边形ABCD是平行四边形的条件是
(A)AB =CD, AD =BC。 // (B) BC AD。
D
(C ) AB//DC, AD//BC。 (D) AB =CD,AD//BC。 7. 如图所示,直线AF∥BG,AB∥CD,CE⊥BG,FG⊥ BG,E、G为垂足,则下列说法错误的是( D ) A. AB=CD B. EC=FG C. 点C和直线BG的距离就是线段CE的长 D. 直线AF与直线BG的距离就是线段CD的长
三、特殊四边形的常用判定方法
(1)两组对边分别平行的四边形; 平行 (2)两组对边分别相等的四边形; 四边形 (3)一组对边平行且相等的四边形; (4)两条对角线互相平分的四边形 (1)一组邻边相等的平行四边形; 菱形 (2)对角线互相垂直的平行四边形; (3)四条边都相等的四边形. 矩形 (1)有一个角是直角的平行四边形; (2)对角线相等的平行四边形.