高一数学竞赛练习卷八
数学竞赛试题高一及答案

数学竞赛试题高一及答案一、选择题(每题5分,共20分)1. 若函数f(x) = 2x^2 + 3x + 1的图像关于直线x = -1/2对称,则下列哪个函数的图像也关于直线x = -1/2对称?A. g(x) = x^2 + 2x + 3B. h(x) = -x^2 + 2x - 3C. i(x) = x^2 - 2x + 3D. j(x) = -x^2 - 2x - 3答案:B2. 已知集合A = {1, 2, 3},集合B = {2, 3, 4},则A∪B等于:A. {1, 2, 3, 4}B. {1, 2, 3}C. {2, 3}D. {1, 3, 4}答案:A3. 若方程x^2 - 5x + 6 = 0的两个根为α和β,则α + β的值为:A. 1B. 2C. 3D. 5答案:C4. 函数y = |x - 2| + 3的图像与x轴交点的个数是:A. 0B. 1C. 2D. 3答案:B二、填空题(每题5分,共20分)1. 已知等差数列的前三项依次为2, 5, 8,则该数列的第五项为________。
答案:112. 圆的方程为x^2 + y^2 - 6x - 8y + 25 = 0,则圆心坐标为________。
答案:(3, 4)3. 函数y = sin(x)在区间[0, π]上的最大值为________。
答案:14. 已知三角形的三边长分别为3, 4, 5,则该三角形的面积为________。
答案:6三、解答题(每题15分,共30分)1. 证明:若一个三角形的两边长分别为a和b,且满足a^2 + b^2 =c^2(c为第三边长),则该三角形为直角三角形。
证明:根据勾股定理,若三角形的两边长为a和b,且满足a^2 + b^2 = c^2,则第三边c所对的角θ为直角,即θ = 90°。
因此,该三角形为直角三角形。
2. 解方程:2x^2 - 3x - 2 = 0。
解:首先,我们计算判别式Δ = b^2 - 4ac = (-3)^2 - 4*2*(-2) = 9 + 16 = 25。
高一数学竞赛试题含答案

高一数学竞赛试题高一数学竞赛试题时间:时间:8:30-11:00 8:30-11:00 8:30-11:00 总分:总分:总分:150150分一、填空题(本大题共15小题,每小题5分,共75分)分)1、如图,、如图,P P 为⊙O 外一点,过P 点作⊙O 的两条切线,切点分别为A ,B ,过PA 的中点Q 作割线交⊙O 于C ,D 两点,若QC QC==1,CD CD==3,则PB PB==________________。
2、若函数()()2ln f x x x a x=++为偶函数,则a = 。
3、函数()()2ax bf x x c +=+的图像如图所示,则a 0 0,,b 0 0,,c 0 0。
4、已知()221x f x x=+,则()()()()111123...2015...232015f f f f f f f æöæöæö+++++++=ç÷ç÷ç÷èøèøèø。
5、函数则()()222log 2log 3f x x x =-+的单调递减区间为的单调递减区间为 。
6、若方程2104xxeae -+=有负实数根,则a 的取值范围是的取值范围是。
7、设函数()31,12,1x x x f x x -<ì=í³î,则满足()()()2f af f a =的a 的取值范围是的取值范围是 。
8、设集合}{1,2,3......6A =,则集合A 的所有非空子集元素和的和为的所有非空子集元素和的和为 。
9、设函数()y f x =的图像与2x ay +=的图像关于y x =-对称,且()()241f f -+-=,则a = 。
1010、已知实数、已知实数,x y 满足()()()()3312011*********x x y y ì-+-=-ïí-+-=ïî,则x y += 。
湖北高一高中数学竞赛测试带答案解析

湖北高一高中数学竞赛测试班级:___________ 姓名:___________ 分数:___________一、选择题1.把函数的图象向右平移个单位,再把所得函数图象上各点的橫坐标缩短为原来的,所得函数的解析式为()A.B.C.D.2.已知,则的值为()A.B.-C.D.-3.函数在一个周期内的图象如右,此函数的解析式为()A. B.C D.4.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.5.各项均为正数的等比数列的前项和记为()A.150B.-200C.150或-200D.-50或4006.已知数列的首项,且,则为()A.7B.15C.30D.317.用火柴棒摆“金鱼”,按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A.B.C.D..8.设等差数列中首项为公差为,且从第5项开始是正数,则公差的范围是( ).A .B .C .D .9.中,角所对的边分别是,若角依次成等差数列,且则等于( ). A .B .C .D .10.在的对边分别为,若成等差数列,则( ). A .B .C .D .二、填空题1.给出下面命题:①函数是奇函数;②存在实数,使得;③若是第一象限角且,则;④是函数的一条对称轴;⑤在区间上的最小值是-2,最大值是,其中正确命题的序号是 .2.已知,若,化简______________.3.设△ABC 的三个内角A 、B 、C 所对的三边分别为a, b, c ,若△ABC 的面积为 S = a 2-(b -c)2,则= .4.已知数列的前项和,则此数列的通项公式为5.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成等比数列,c=2a ,则cosB 的值为 .6.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 .7.已知函数f (x )=s1n2x +2cos 2x +m 在区间[0,]上的最大值为3,则(1)m = ;(2)当f (x )在[a ,b ]上至少含有20个零点时,b -a 的最小值为 .三、解答题1.在中,角A 、B 、C 的对边分别为a 、b 、c ,且角A 、B 、C 成等差教列.(1)若,求边c 的值; (2)设,求t 的最大值.2.已知向量,(1)求;(2)若的最小值是,求实数的值.3.已知数列{an}的前n 项和,(1)求通项公式an ;(2)令,求数列{bn}前n 项的和Tn.4.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的、、.(1)求数列的通项公式;(2)数列的前n项和为,求证:数列是等比数列.湖北高一高中数学竞赛测试答案及解析一、选择题1.把函数的图象向右平移个单位,再把所得函数图象上各点的橫坐标缩短为原来的,所得函数的解析式为()A.B.C.D.【答案】D【解析】向右平移个单位,函数解析式为=,横坐标缩短为原来的,所得函数的解析式为.【考点】三角函数的图形变换.2.已知,则的值为()A.B.-C.D.-【答案】A【解析】,=====.【考点】诱导公式.3.函数在一个周期内的图象如右,此函数的解析式为()A. B.C D.【答案】B【解析】由图象最高点可知,,则,.原函数化为,图象过,则.可得 .【考点】的图像与系数的关系.4.在中,角所对的边分别为,若,且,则下列关系一定不成立的是()A.B.C.D.【答案】B【解析】将代入可得,所以或,当时有有.【考点】解三角形.5.各项均为正数的等比数列的前项和记为()A.150B.-200C.150或-200D.-50或400【答案】A【解析】由等比数列的前项和公式,,,由两式解得,,.【考点】等比数列的前项和.6.已知数列的首项,且,则为()A.7B.15C.30D.31【答案】D【解析】由两边同加1,可得,,则是以2为首项,以2 为公比的等比数列.则,所以,.【考点】构造法求数列的通项公式.7.用火柴棒摆“金鱼”,按照上面的规律,第个“金鱼”图需要火柴棒的根数为()A.B.C.D..【答案】D【解析】第一个需8根,第二个需8+6=14(根),第三个8+6+6=20(根),需要的火柴棒根数呈等差数列,首项为8,公差为6,则第个需(根).【考点】等差数列的通项公式.8.设等差数列中首项为公差为,且从第5项开始是正数,则公差的范围是( ).A.B.C.D.【答案】C【解析】由题可知则.则.所以公差的范围是.【考点】等差数列的通项公式.9.中,角所对的边分别是,若角依次成等差数列,且则等于().A.B.C.D.【答案】D【解析】角依次成等差数列,则,所以,且.【考点】等差数列,三角形内角和,三角形面积公式.10.在的对边分别为,若成等差数列,则().A.B.C.D.【答案】C【解析】由题可得,由正弦定理可得,即,则,B=.【考点】正弦定理.二、填空题1.给出下面命题:①函数是奇函数;②存在实数,使得;③若是第一象限角且,则;④是函数的一条对称轴;⑤在区间上的最小值是-2,最大值是,其中正确命题的序号是.【答案】①④【解析】①=为奇函数;②,最大值;③令,,,但;④对称轴可由,求得,也满足;⑤在区间上的最大值为2.【考点】三角函数的性质.2.已知,若,化简 ______________.【答案】【解析】,,又,则,所以【考点】三角恒等变形,三角函数的性质.3.设△ABC的三个内角A、B、C所对的三边分别为a, b, c,若△ABC的面积为S = a2-(b-c)2,则= .【答案】4【解析】,可化为,又,代入可得,所以=.【考点】余弦定理.4.已知数列的前项和,则此数列的通项公式为【答案】【解析】当时,,当时,,上式不成立,则可得通项公式.【考点】由前n 项和公式求通项公式.5.若△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a ,b ,c 成等比数列,c=2a ,则cosB 的值为 . 【答案】【解析】由题可得,又c=2a ,所以.考点:等比数列的概念,余弦定理.6.设等比数列{a n }的公比为q ,前n 项和为S n ,若S n+1,S n ,S n+2成等差数列,则q 的值为 . 【答案】【解析】由题可知,且,据等比数列的前n项和公式可得,解之.【考点】等比数列的前n项和公式,等差数列的定义.7.已知函数f (x )=s1n2x +2cos 2x +m 在区间[0,]上的最大值为3,则(1)m = ;(2)当f (x )在[a ,b ]上至少含有20个零点时,b -a 的最小值为 . 【答案】(1)3 (2)【解析】(1),在区间[0,]上的函数值范围为,又最大值为3,刚.(2)原函数周期,与函数在每个周期内有两个零点,结合图像,b-a 的最小值为【考点】二倍角公式,辅助角公式,的图角与性质.三、解答题1.在中,角A 、B 、C 的对边分别为a 、b 、c ,且角A 、B 、C 成等差教列.(1)若,求边c 的值; (2)设,求t 的最大值. 【答案】(1)(2)【解析】(1)由三内角成等差可求,再利用余弦定理可求c;(2)由,可将转化为,再由A 范围求出最值.试题解析:解:(1)因为角成等差数列,所以,因为,所以. 2分因为,,,所以.所以或(舍去). 6分(2)因为,所以9分因为,所以,所以当,即时,有最大值. 12分【考点】等差数列,余弦定理,的性质.2.已知向量,(1)求;(2)若的最小值是,求实数的值.【答案】(1),=2cosx(2)【解析】(1)由向量的坐标运算,利用公式化简即可;(2)原函数由向量坐标运算可化为即又最小值,则结合二次函数最值可求得. 试题解析:解:(1)==,∵,∴∴=2cosx. 6分(2)由(1)得即∵,∴时,当且仅当取得最小值-1,这与已知矛盾.时,当且仅当取最小值由已知得,解得时,当且仅当取得最小值由已知得,解得,这与相矛盾.综上所述,为所求. 12分【考点】向量的坐标运算,二次函数求最值,函数与方程的数学思想,分类讨论的数学思想.3.已知数列{an}的前n项和,(1)求通项公式an;(2)令,求数列{bn}前n项的和Tn.【答案】(1);(2).【解析】试题解析:解:(1)当时,.又,也满足上式,所以(2),所以,,两式相减,得所以【考点】数列的通项公式的求法,错位相减法求前n项和公式,等比数列前n项和公式.4.成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列中的、、.(1)求数列的通项公式;(2)数列的前n项和为,求证:数列是等比数列.【答案】(1)(2)证明见解析.【解析】(1)设成等差数列的三个正数分别为,可得,又成等比,可得方程,则等比数列的三项进一步求公比,可得通项公式.(2)等比数列前n 项和为,由可知数列是等比数列.试题解析:解:(1)设成等差数列的三个正数分别为依题意,得所以中的依次为依题意,有(舍去)故的第3项为5,公比为2.由所以是以为首项,2为以比的等比数列,其通项公式为 6分(2)数列的前项和,即所以所以,数列是等比数列. 12分【考点】等差数列定义,等比数列的定义,等比数列的前n项和公式.。
高一数学竞赛试题参考答案

高一数学竞赛试题参考答案一、选择题:(本题共10小题,每题4分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求的。
)1.[答案] B[解析] 当a ≤0时,B =∅,满足B ⊆A ;当a >0时,欲使B ⊆A ,则⎩⎪⎨⎪⎧3-a ≥-43+a ≤4⇒a ≤1.故选B.2.[答案] C[解析] 由已知ax 2+ax -3≠0恒成立, 当a =0时,-3≠0成立; 当a ≠0时,Δ<0,∴a 2+12a <0, ∴-12<a <0,综上所述,a ∈(-12,0].3.C 【解析】 依题意,函数y =x 2-ax +12存在大于0的最小值,则a >1且a 2-2<0,解得a∈(1,2),选择C.4.B 【解析】 ∵2=log 24>log 23>log 22=1,故f (log 23)=f (1+log 23)=f (2+log 23)=f (3+log 23)=⎝ ⎛⎭⎪⎫123+log 23=124 5.C 【解析】 由f (x -1)=f (x +1)知f (x )是周期为2的偶函数,因为x ∈[0,1]时,f (x )=x 2,故当x ∈[-1,0],-x ∈[0,1]时,f (x )=f (-x )=(-x )2=x 2,由周期为2可以画出图象,结合y =⎝⎛⎭⎫110x的图象可知,方程f (x )=⎝⎛⎭⎫110x在x ∈⎣⎡⎦⎤0,103上有三个根,要注意在x ∈⎝⎛⎦⎤3,103内无解. 6.[答案] D[解析] 由题意,DE ⊥平面AGA ′, ∴A ,B ,C 正确,故选D. 7.[答案] B[解析] 设f (x )=2x -3-x ,因为2x ,-3-x 均为R 上的增函数,所以f (x )=2x -3-x 是R 上的增函数.又由2x -3-x >2-y -3y =2-y -3-(-y ),即f (x )>f (-y ),∴x >-y ,即x +y >0.8.[答案] A[解析] m =x -1-x ,令t =1-x ≥0,则x =1-t 2,∴m =1-t 2-t =-(t +12)2+54≤1,故选A.9.[答案] B[解析] 将f (x )=x 2+(a -4)x +4-2a 看作是a 的一次函数,记为g (a )=(x -2)a +x 2-4x +4. 当a ∈[-1,1]时恒有g (a )>0,只需满足条件⎩⎪⎨⎪⎧ g (1)>0,g (-1)>0,即⎩⎪⎨⎪⎧x 2-3x +2>0,x 2-5x +6>0,解之得x <1或x >3. 10.[答案] B[解析] 由已知得f (x )=⎩⎨⎧x 2-2(-1≤x ≤32),x -x 2(x <-1或x >32),如图,要使y =f (x )-c 与x 轴恰有两个公共点,则-1<c <-34或c ≤-2,应选B.二、填空题(本大题共4小题,每小题4分,共16分。
【高中数学竞赛专题大全】 竞赛专题8 立体几何(50题竞赛真题强化训练)解析版+原卷版

【高中数学竞赛专题大全】 竞赛专题8 立体几何 (50题竞赛真题强化训练)一、填空题1.(2018·四川·高三竞赛)在三棱锥P ABC -中,三条棱PA PB PC 、、两两垂直,且122PA PB PC ===、、.若点Q 为三棱锥P ABC -的外接球球面上任意一点,则Q 到面ABC距离的最大值为______.【答案】32 【解析】 【详解】三棱锥P ABC -的外接球就是以PA PB PC 、、为长、宽、高的长方体的外接球,其直径为2 3.R ==又1cos 5BAC ∠=,从而sin BAC ∠=于是,ABC ∆的外接圆半径为2sin BC r BAC ==∠故球心O 到ABC =从而,点Q 到面ABC 距离的最大值是32+故答案为322.(2018·辽宁·高三竞赛)四面体ABCD 中,已知2AB =,1119,8,22AD BC CD ===,则异面直线AC 与BD 所成角的正弦值是_____. 【答案】1 【解析】 【详解】因为2222222219118210622BC AB CD AD ⎛⎫⎛⎫-=-=⨯=-=- ⎪ ⎪⎝⎭⎝⎭,故AC BD ⊥,因此异面直线AC 与BD 所成角的正弦值是1. 故答案为13.(2018·湖南·高三竞赛)四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为__________. 【答案】23a = 【解析】 【详解】设正方体的棱长为a ,上底为正方形ABCD ,中心为O ,则OA =.由对称性知,球心1O 在面ABCD 上的射影M 应在直线AC 或BD 上,且球1O 与邻球的切点P 在面ABCD 上的射影N 在过点O 且平行AB 的直线上.于是.OM OA AM ==+又11O M a =-,则AM =,从而整理得23840a a -+=,解得23a =,或2a =(舍去).故23a =. 故答案为23a =4.(2018·湖南·高三竞赛)在半径为R 的球内作内接圆柱,则内接圆柱全面积的最大值是_____.【答案】2(1R π 【解析】 【详解】设内接圆柱底面半径为sin R α,则高位2cos R α, 那么全面积为()22sin 2sin 2cos R R R παπαα+⨯ ()222sin sin2R παα=+()2122sin2R cos παα=-+()(22121R R παϕπ⎡⎤=-≤⎣⎦. 其中1tan 2ϕ=,等号成立的条件是22παϕ=+.故最大值为(21R π.故答案为(21R π5.(2018·湖南·高三竞赛)正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1CC 的中点.异面直线EF 与1AC 所成角的余弦值是_____. 【答案】223【解析】 【详解】设正方体棱长为1,以DA 为x 轴,DC 为y 轴,1DD 为z 轴建立空间直角坐标系,则 ()()1111,,0,0,1,,1,0,1,0,1,122E F A C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.故有()1111,,,1,1,122EF AC ⎛⎫=-=- ⎪⎝⎭.所以11·223·EF AC cos EF AC θ==. 故答案为2236.(2020·江苏·高三竞赛)在长方体1111ABCD A B C D -中,4AB =,122BC CC ==,M 是1BC 的中点,N 是1MC 的中点.若异面直线AN 与CM 所成的角为θ,距离为d ,则2020sin d θ=__________.【答案】1616 【解析】 【详解】因为1CM BC ⊥,故90θ=︒.过点M 作ME AN ⊥于点E ,则ME CM ⊥,故d ME =. 因为4AB =,3BN =,所以5AN =,则4sin 5d ME MN ANB ==∠=,从而可得2020sin1616dθ=.故答案为:1616.7.(2021·全国·高三竞赛)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的有__________面数.【答案】7个【解析】【详解】计算可得正四面体的两个相邻的半平面的二面角的余弦值为13,正八面体的两个相邻的半平面(两个四棱锥共底面的边的两个半平面)的二面角的余弦值为13-,故所得多面体的有7个面,故答案为:7.8.(2018·全国·高三竞赛)在三棱锥P-ABC中,PA=PB=4,PC=3,∠APB=∠APC=60°,∠BPC=90°.则三棱锥P-ABC的体积为_______.【答案】42【解析】【详解】如图,过点A 作AH ⊥面PBC 于点H ,过H 作HD ⊥PB 于点D 、HE ⊥PC 于点E 由∠APB =∠APC =60°及PA =4,知 PD =PE =2.从而,PH 为∠BPC 的平分线,即 ∠DPH =45°则,222PH PD == 2222AH PA PH =-=故三棱锥P-ABC 的体积为 1423BPC AH S ∆⋅=9.(2018·全国·高三竞赛)已知长方体1111ABCD A B C D -的长、宽、高分别为1、2、3,P 为平面1A BD 内的一点,则AP 长的最小值为_________. 【答案】67【解析】 【详解】注意到,AP 长最小当且仅当1AP A BD ⊥面. 此时,由1111ABDA A BD A ABD A BDA A S V V AP S 三棱锥三棱锥∆--∆⋅=⇒=.由勾股定理得15A D 110A B =13BD =则11272cos sin BA D BA D ∠=∠=从而,172A BDS ∆=故min 67AP =. 10.(2021·全国·高三竞赛)已知三棱锥A BCD -的三个侧面及底面的面积分别为5、12、13、15,且侧面的斜高相等,则三棱锥的体积为___________. 【答案】56 【解析】 【分析】 【详解】设斜高为h ,则102426,,BC CD DB h h h===. 从而BCD △为直角三角形,故11024152BCDS h h==⋅⋅,得22h =. 设三棱锥的高为AH ,由斜高相等知H 为BCD △的内心. 由于内切圆半径22BCDS r BC CD BD==++,故高226AH h r =-=,体积为1615563⋅⋅=.故答案为:56.11.(2020·浙江·高三竞赛)如图所示,在单位正方体上有甲、乙两个动点,甲从P 点匀速朝P '移动;乙从Q 点匀速出发朝Q '移动,到达Q '后速度保持不变并折返.现甲、乙同时出发,当甲到达P '时,乙恰好在到达Q '后折返到Q ,则在此过程中,甲、乙两点的最近距离为__________.66【解析】 【详解】设甲、乙的速度分别为1v 、2v ,在此过程中,1232v v =,即1223v v =. 不妨设13v =、22v =,则总的时间为1.设在时间为0t 末,甲、乙之间的距离最短,即此时P 、Q 分别达到M 、N 点. 分两种情况讨论:路程前半程与路程后半程.(1)路程前半程:010,2t ⎡⎤∈⎢⎥⎣⎦,则02QN t =,03PM t =,0MH t =,02PH t =,220122QH t t =+-,进而有2220001223213333MN t t t ⎛⎫=-+=-+≥ ⎪⎝⎭,故63MN ≥(当且仅当013t =时取等号). (2)路程后半程:01,12t ⎡⎤∈⎢⎥⎣⎦,则()021QN t =-,03PM t =,0MH t =,02PH t =,220122QH t t =+-,进而有2220007661114511111111MN t t t ⎛⎫=-+=-+≥ ⎪⎝⎭,故6611MN ≥(当且仅当0711t =时取等号). 因为666311>,所以在此过程中,甲、乙两点的最近距离为6611.6612.(2021·全国·高三竞赛)在棱长为3的正方体1111ABCD A B C D -上,点P 为AB 中点,从点P 发出的光线经侧面11BCC B 内部(不含边界)一点Q 反射后投射到侧面11DCC D 内部(不含边界),则满足条件的点Q 所组成区域的面积为___________. 【答案】4【解析】 【详解】设点P 关于B 的对称点为1P ,以1P 为顶点,以11DCC D 为底面,作四棱锥111P DCC D -, 该四棱锥与侧面11BCC B 的截面即为满足条件的区域. 该梯形的面积为4. 故答案为:4.13.(2021·全国·高三竞赛)已知正三棱锥P ABC -高为2,底面边长为3,现在将三棱锥切去一部分,得到一个顶点为P ,底面在ABC 内的正四棱锥,则该四棱锥的体积最大为___________.【答案】8-【解析】 【详解】作图可知该四棱锥底边边长最大为3从而可得相应的体积为8-故答案为:8-14.(2021·全国·高三竞赛)正四面体ABCD 中,点G 为面ABC 的中心,点M 在线段DG 上,且tan AMB ∠=DM DG =___________. 【答案】78【解析】 【详解】解析;设,1AM BM x AB ===,由余弦定理得22x =,且3AG GB ==,则226GM AM AG =-=而6DG =66732486DM DG ==. 故答案为:78.15.(2021·全国·高三竞赛)A B C D 、、、是半径为1的球面上的4个点,若1AB CD ==,则四面体ABCD 体积的最大值是__. 3【解析】 【详解】设AB 与CD 间的距离为d ,夹角为θ.取AB 中点M 和CD 中点N ,则3d MN OM ON ≤≤+=故四面体体积13sin 6V AB CD d θ=⋅⋅⋅⋅≤AB CD ⊥且其中点连线过球心时等号成立.316.(2021·全国·高三竞赛)已知三棱锥S ABC -的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是SBC △的垂心,二面角H AB C --的大小为30,且2SA =,则此三棱锥的体积为_________.【答案】34【解析】 【分析】 【详解】由点A 在侧面SBC 上的射影H 是SBC △的垂心,知三棱锥S ABC -的三组对棱互相垂直,从而点S 在底面ABC 上的射影也是ABC 的垂心Q .又ABC 为正三角形,所以垂心Q 为ABC 的中心,则三棱锥S ABC -是正三棱锥. 延长BH 交SC 于点E ,则二面角E AB C --的大小为30.又SAC SBC ≌,得AE BE =,取AB 的中点D ,则易证EDC ∠为二面角E AB C --的平面角,EC ED ⊥(SC ⊥平面AHB ).设BC a =,则2212CD CE BC BE ==-,2344a a =,3a =,从而三棱锥S ABC -的体积为34.故答案为:34.17.(2021·全国·高三竞赛)如图,已知正方体1111ABCD A B C D -的棱长为2,P 为空间一点,且满足1111,A P AB APB ADB ⊥∠=∠,则1D P 的最小值为_______.316【解析】 【分析】 【详解】先不看条件11A P AB ⊥,只关注11APB ADB ∠=∠,即1APB ∠为定角.若Р点在平面11AB C D 上,则如图2所示,此时有11APB ADB ∠=∠可知,P 在以1AC 为 直径的圆弧1ADB 上.那么在任意一个过直线1AB 的平面上,P 点均为类似地一段圆弧. 故P 点的轨迹即圆弧1ADB 绕1AB 旋转形成的一个曲面Γ(苹果曲面). 再由11A P AB ⊥知,P 在过1A 且垂直于1AB 的垂面,即平面11A BCD 上. 故P 为平面11A BCD 截曲面Γ所得的曲线,即图3所示的圆O , 故易知1D P 的最小值为1OP OD -316 316.18.(2021·全国·高三竞赛)四面体ABCD 中,,,,1CD BC AB BC CD AC AB BC ⊥⊥===,平面BCD 与平面ABC 成45︒的二面角,则点B 到平面ACD 的距离为___________. 3【解析】 【分析】 【详解】2DC AC ==DE ⊥平面ABC ,垂足为E ,连结CE 、AE ,由三垂线逆定理,EC BC ⊥,所以45DCE ∠=︒, 故2111,36ABCD ABCCE DE V DE S ====⋅=. 又因ABCE 为正方形,1AE =,则2AD = 因此正三角形ACD 3 设B 到平面ACD 的距离为h ,由1136ACDh S⋅=,得33h .19.(2021·全国·高三竞赛)已知正三棱锥P ABC -,M 是侧棱PC 的中点,PB AM ⊥.若N 是AM 的中点,则异面直线BN 与PA 所成角的余弦值为________.【解析】 【分析】 【详解】易证PA 、PB 、PC 互相垂直.以P 为坐标原点,分别以PB 、PC 、PA 所在的直线为x 、y 、z 轴建立空间直角坐标系.设1PA PB PC ===,则111(0,0,1),(0,1,0),(1,0,0),0,,0,0,,242A C B M N ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,所以111,,,(0,0,1)42BN PA ⎛⎫=-= ⎪⎝⎭,故1||||1BNPA BN PA ⋅==⋅⨯20.(2021·全国·高三竞赛)正方体1111ABCD A B C D -中,P 是线段11A C 上一点,平面PAB 与底面ABCD 的夹角为α,平面PBC 与底面ABCD 的夹角为β,则tan()αβ+的最小值为________. 【答案】43-【解析】 【分析】 【详解】过P 作1PP ⊥平面ABCD ,垂足为1P ;过1P 作1PM AB ⊥,垂足为M ,作1P N BC ⊥,垂足为N .易知11,PMP PNP αβ=∠=∠,设正方体的棱长为1,11,PM x PN y ==, 则111,tan ,tan x y x yαβ+===, 2tan tan 4tan()1tan tan 1312x y x y xy x y αβαβαβ++++==≥=---+⎛⎫- ⎪⎝⎭,当且仅当x y =时等号成立,所以tan()αβ+的最小值为43-.故答案为:43-.21.(2021·全国·高三竞赛)在三棱锥P ABC -中,7,8,9AP BC BP CA CP AB ======,则这个三棱锥的体积为________. 【答案】1611【解析】 【分析】 【详解】可以把这个三棱锥嵌人到一个长宽高分别为33,43使其六条棱分别为长方体六个面的面对角线,于是三棱锥的体积恰为长方体的13,即14334316113⨯故答案为:161122.(2021·全国·高三竞赛)在三棱锥P ABC -中,6,8,10BC CA AB ===.若三侧面与顶面所成二面角均为45︒,则三棱锥P ABC -的体积为__________. 【答案】16 【解析】 【分析】作PO ⊥平面ABC ,垂足为O ,作,,OD BC OE CA OF AB ⊥⊥⊥,垂足分别为D E F 、、. 设OP h =,则45,cot 45PDO PEO PFO OD OE OF h h ∠=∠=∠=︒===︒=. 在ABC 中,有6810248ABCOD OE OF S++==,解得2h =.故112241633ABCV hS==⨯⨯=. 故答案为:16.23.(2021·全国·高三竞赛)已知正方形,ABCD E 是边AB 的中点.将DAE △和CBE △分别沿DE 和CE 折起,使得AE 与BE 重合.记A 与B 重合后的点为P ,则平面PCD 与平面ECD 所成的二面角的大小为__________. 【答案】30 【解析】 【分析】 【详解】PCD 中,PC PD CD ==,故60PCD ∠=︒.PCE中,cos PCE ∠=CDE △中,cos DCE ∠=设二面角P CD E --大小为θ.对三面角C PDE -应用三面角余弦定理,得:cos cos cos cos sin sin PCE PCD ECD PCD ECD θ∠-∠∠===∠∠即30θ=︒. 故答案为:30.24.(2021·全国·高三竞赛)在菱形ABCD中,60,A AB ∠=︒=ABD △折起到PBD △的位置,若三棱锥–P BCD,则二面角P BD C --的正弦值为__________.【解析】 【分析】由外接球的体积为776π,则该球的半径72R =,设球心O 在平面PBD 和平面BCD 上的射影分别为12O O 、,则12O O 、为正PBD △和正BCD △的中心,取BD 的中点E ,连结12O E O E 、,则12,O E BD O E BD ⊥⊥, 则12O EO ∠是二面角P BD C --的平面角,在2Rt OO C 中,273,123OC R O C AB ====,则232OO =, 又在直角2OO E 中,23162O E AB ==,则21260,120O EO O EO ∠=∠=︒︒,则二面角P BD C --的正弦值为32. 故答案为:32. 25.(2021·全国·高三竞赛)如图,棱长为1的正四面体S ABC -的底面在平面α上,现将正四面体绕棱BC 逆时针旋转,当直线SA 与平面α第一次成30角时,点A 到平面α的距离为_______.61- 【解析】 【分析】 【详解】取BC 的中点D ,折叠后A 在平面α内的射影为E ,则 30ADE SAD ∠=∠-︒,()sin sin 30ADE SAD ∠=∠-︒ 323sin cos30cos sin 30SAD SAD -=∠︒-∠︒=所以332361sin 264AE AD ADE --=⨯∠=⨯=.故答案为:614-. 26.(2019·江西·高三竞赛)P 是正四棱锥V -ABCD 的高VH 的中点若点P 到侧面的距离为3,到底面的距离为5,则该正四棱锥的体积为____________ . 【答案】750 【解析】 【详解】如图所示,PF ⊥面VBC ,5,10VP VH ==,2222534VF VP PF =-=-=.而PHMF 共圆,VP •VH =VF •VM ,所以252VM =,22152HM VM VH =-=, 则AB =15.所以正四棱锥的体积217503V VH AB =⋅⋅=.故答案为:750.27.(2019·吉林·高三竞赛)已知三棱锥P -ABC 的四个顶点在球O 的球面上,P A =PB =PC ,△ABC 是边长为2的正三角形,E 、F 分别是AC 、BC 的中点,60EPF ︒∠=,则球O 的表面积为____________ . 【答案】6π 【解析】 【详解】由于P -ABC 为正三棱锥,故EP FP =,从而△EPF 为等边三角形,且边长EF =1.由此可知侧面P AC 的高PE =1,故棱长2PA =. 还原成棱长为2的正方体可知,P -ABC 的外接球的直径长恰为正方体的体对角线长6, 从而表面积为6π. 故答案为:6π.28.(2019·上海·高三竞赛)边长为2的正方形,经如图所示的方式裁剪后,可以围成一个正四棱锥,则此正四棱锥的体积最大值为________.165【解析】 【详解】设围成的正四棱锥为P ABCD -,PO 为四棱锥的高作OE ⊥BC ,垂足为E ,连结PE .令OE =x ,则p =1-x ,12PO x =-于是正四棱锥P -ABCD 的体积为21(2)123V x x =⋅-所以2416(12)9V x x =-44162(12)92x x ⎛⎫=⋅⋅⋅- ⎪⎝⎭512256222295x x x x x ⎛⎫++++- ⎪ ⎪ ⎪⎝⎭525695=⨯, 故165375V,当25x =165165 29.(2018·甘肃·高三竞赛)已知空间四点,,,A B C D 满足,,AB AC AB AD AC AD ⊥⊥⊥,且1,AB AC AD Q ===是三棱锥A BCD -的外接球上的一个动点,则点Q 到平面BCD 的最大距离是______.【解析】 【详解】将三棱锥A BCD -补全为正方体,则两者的外接球相同. 球心就是正方体的中心,记为O ,在正方体里,可求得点O 到平面BCD Q 到平面BCD 的最大距离是=30.(2018·天津·高三竞赛)半径分别为6、6、6、7的四个球两两外切.它们都内切于一个大球,则大球的半径是________ 【答案】14 【解析】 【详解】设四个球的球心分别为A 、B 、C 、D ,则AB=BC=CA=12,DA=DB=DC=13, 即A 、B 、C 、D 两两连结可构成正三棱锥.设待求的球心为X ,半径为r.,则由对称性可知DX ⊥平面ABC. 也就是说,X 在平面ABC 上的射影是正三角形ABC 的中心O.易知OA =11OD =.设OX=x ,则AX =由于球A 内切于球X ,所以AX=r-66r =- ①又DX=OD-OX=11-x ,且由球D 内切于球X 可知DX=r-7 于是 117x r -=- ② 从①②两式可解得4x =,14r = 即大球的半径为14. 故答案为1431.(2018·河南·高三竞赛)一个棱长为6的正四面体纸盒内放一个小正四面体,若小正四面体可以在纸盒内任意转动,则小正四面体棱长的最大值为______.【答案】2 【解析】 【详解】因为小正四面体可以在纸盒内任意转动,所以小正四面体的棱长最大时,为大正四面体内切球的内接正四面体.记大正四面体的外接球半径为R ,小正四面体的外接球(大正四面体的内切球)半径为r , 易知13r R =,故小正四面体棱长的最大值为1623⨯=. 32.(2018·河北·高三竞赛)1111ABCD A B C D -内部有一圆柱,此圆柱恰好以直线1AC 为轴,则该圆柱体积的最大值为_____. 【答案】2π 【解析】 【详解】由题意知只需考虑圆柱的底面与正方体的表面相切的情况.由图形的对称性可知,圆柱的上底面必与过A 点的三个面相切,且切点分别在1AB 、AC 、1AD 上.设线段1AB 上的切点为E ,圆柱上底面中心为1O ,半径1O E r =.由1111B AO E A C ∽得1AO =,则圆柱的高为1323AO -=-,()23V r π=-,由导数法或均值不等式得max 2V π=.33.(2018·河北·高二竞赛)若123A A A △的三边长分别为8、10、12,三条边的中点分别是B 、C 、D ,将三个中点两两连结得到三条中位线,此时所得图形是三棱锥A-BCD 的平面展开图,则此三棱锥的外接球的表面积是________. 【答案】772π【解析】 【详解】由已知,四面体A-BCD 的三组对棱的长分别是4、5、6.构造长方体使其面对角线长分别为4、5、6,设长方体的长、宽、高分别为x 、y 、z ,外接球半径为R ,则222222222456x y x z y z ⎧+=⎪+=⎨⎪+=⎩,得()22227722R x y z =++=,故2778R =,所以772S π=. 34.(2018·江西·高三竞赛)四棱锥P ABCD -的底面ABCD 是一个顶角为60︒的菱形,每个侧面与底面的夹角都是60︒,棱锥内有一点M 到底面及各侧面的距离皆为1,则棱锥的体积为______.【答案】83 【解析】 【详解】设菱形两对角线AC 、BD 的交点为H ,则PH 既是线段AC 的中垂线,又是BD 的中垂线,故是四棱锥的高,且点M 在PH 上,于是平面PBD 与底面ABCD 垂直,同理平面PAC 与与底面ABCD 垂直,平面PBD 将四棱锥分成两个等积的四面体.只需考虑四面体P ABD -.如图,设点M 在面PAD 上的投影为E ,平面MEH 过点P ,且交AD 于F ,因90MHF MEF ∠=︒=∠,则M 、E 、F 、H 四点共圆.由于ME ⊥面PAD ,得ME AD ⊥,由MH ⊥面ABD ,得MH AD ⊥, 所以AD ⊥面MEH ,故AD PF ⊥.FH 是PF 在面ABD 内的射影,则AD FH ⊥,即二面角的平面角60EFH ∠=︒,于是120EMH ∠=︒.据1ME MH ==,得3EH =MEF 与MHF 中,EF HF =. 因60EFH ∠=︒,所以EFH 是正三角形,即3FH EF EH === 在直角AFH 中,30HAF ∠=︒,则223AH FH == 故正ABD 的边长为4,于是43ABDS=.在直线PFH 中,tan603PH FH =︒=,1433P ABD ABDV PH S-=⋅=从而283P ABCD P ABD V V --==. 故答案为8335.(2018·福建·高三竞赛)如图,在三棱锥P ABC -中,PAC △、ABC 都是边长为6的等边三角形.若二面角P AC B --的大小为120︒,则三棱锥P ABC -的外接球的面积为______.【答案】84π 【解析】 【详解】如图,取AC 的中点D ,连结DP 、DB ,则由PAC 、ABC 都是边长为6的等边三角形,得PD AC ⊥,BD AC ⊥,PDB ∠为二面角P AC B --的平面角,120PDB ∠=︒.设O 为三棱锥P ABC -的外接球的球心,1O 、2O 分别为ABC 、PAC 的中心. 则1OO ⊥面ABC ,2OO ⊥面PAC ,且2113633O D O D ⎫===⎪⎪⎝⎭21OO OO =. 易知O 、2O 、D 、1O 四点共面,连结OD ,则160ODO ∠=︒,1133OO DO =. 所以三棱锥P ABC -的外接球半径()22221132321R OB OO O B ==++所以三棱锥P ABC -的外接球的面积为24π84πR =.36.(2018·全国·高三竞赛)在正方体1111ABCD A B C D -中,已知棱长为1,点E 在11A D 上,点F 在CD 上,112A E ED =,2DF FC =.则三棱锥1B FEC -的体积为__________. 【答案】527【解析】 【详解】如图,过点F 作111FF C D ⊥,联结11B F ,与1EC 交于点K.易知,111B F EC ⊥,1EC BFK ⊥面.因为BF 与1EC 异面垂直,且距离为1,BF=1EC 10, 所以,1113BFK B FEC V EC S ∆-=⋅三棱锥 2110153227=⨯=⎝⎭. 37.(2019·全国·高三竞赛)已知四面体ABCD 的四个面DBC DCA DAB ABC ∆∆∆∆、、、的面积分别为12、21、28、37,顶点D 到面ABC ∆的距离为h.则h=__________. 5042【解析】 【详解】注意到,222212212837++=. 因此,四面体ABCD 为直角四面体. 故332442565042ABC DA DB DC h S ∆⋅⋅⨯⨯===38.(2018·全国·高三竞赛)在四面体ABCD 中,已知3ADB BDC CDA π∠=∠=∠=,△ADB 、△BDC 、△CDA2、1.则此四面体体积为________.【解析】 【详解】设DA 、DB 、DC 分别为x 、y 、z.则333=21222xysinyzsin xzsin,,πππ==.三式相乘得xyz =设DC 与面ABD 所成角为a ,点C 到面ABD 的距离为h.则h=zsina.由图形的对称性知coscos ?cos cos sin 36a a a ππ=⇒⇒.故所求四面体体积为113·sin 332ABD xysinS h z a π∆⎛⎫⎪== ⎪ ⎪⎝⎭. 39.(2018·全国·高三竞赛)在金属丝制作的3×4×7的长方体框架中放置一个球,则该球的半径的最大值为________. 【答案】52【解析】 【详解】显然,球的直径不能超过3×45=,故该球半径的最大值为52.40.(2018·安徽·高三竞赛)在边长为1的长方体1111ABCD A B C D -内部有一小球,该小球与正方体的对角线段1AC 相切,则小球半径的最大值=___________.【解析】 【详解】当半径最大时,小球与正方体的三个面相切.不妨设小球与过点1D 的三个面相切.以1D 为原点,11DC 、11D A 、1D D 分别为x 、y 、z 轴正方向,建立空间直角坐标系.设A (0,1,1),1C (1,0,0),小球圆心P (r ,r ,r ),则P 到1AC 的距离112123AP AC r r AC ⨯=-=. 再由12r <,得465r -=. 故答案为465- 41.(2021·全国·高三竞赛)把半径为1的4个小球装入一个大球内,则此大球的半径的最小值为___________. 【答案】612+ 【解析】 【详解】4个小球在大球内两两相切,4个小球的球心连线构成1个正四面体,正四面体的中心与大球的球心重合,大球的半径等于正四面体的外接球半径加上小球的半径, 所以大球半径为336661121144342h a +=⨯⋅+=⨯+=+. (其中h 表示正四面体的高,a 表示正四面体的棱长.) 故答案为:612+. 42.(2019·浙江·高三竞赛)如图,在△ABC 中,∠ABC =120°,AB =BC =2.在AC 边上取一点D (不含A 、C ),将△ABD 沿线段BD 折起,得到△PBD .当平面PBD 垂直平面ABC 时,则P 到平面ABC 距离的最大值为____________.【答案】2 【解析】 【详解】在△ABC 中,因为AB =BC =2,∠ABC =120°,所以30BAD BCA ︒∠=∠=. 由余弦定理可得23AC =设AD =x ,则03,3x DC x <<=.在△ABD中,由余弦定理可得BD =在△PBD 中,PD =AD =x ,PB =BA =2,∠BPD =30°. 设P 到平面ABC 的距离为d ,则11sin 22PBDSBD d PD PB BPD =⨯=⋅∠,解得d由0x <<max 2d =. 故答案为:2.43.(2019·贵州·高三竞赛)若半径2R =的空心球内部装有四个半径为r 的实心球,则r 所能取得的最大值为____________cm . 【答案】2 【解析】 【详解】当半径为r 的四个实心球“最紧凑”时,即此四个球两两相切且内切于空心球时,r 取得最大值.此时,小球的四个球心连线构成棱长为2r 的正四面体,显然,此四面体外接球的球心即为实心球球心.在棱长为2r 的正四面体中,求得外接球半径.r +,2r +=r =2. 故答案为:2.44.(2019·四川·高三竞赛)已知正四棱锥Γ的高为3,侧面与底面所成角为3π,先在Γ内放入一个内切球O 1,然后依次放入球234,,,O O O ,使得后放入的各球均与前一个球及Γ的四个侧面均相切,则放入所有球的体积之和为_____ . 【答案】1813π 【解析】 【详解】设侧面与底面所成角为θ.记球Oi 的半径为ri ,体积为Vi ,i =1,2,3,…. 因为1cos 2θ=,故1113cos r h r r θ=+=,即1113r h ==. 定义12n n s r r r =+++,由于132(2)n n r h s n -=-,所以()132n n n r r r +-=,即113n n r r +=,所以113n n r -⎛⎫= ⎪⎝⎭.故333111441333i nnni i i i i V r ππ-===⎛⎫==⋅ ⎪⎝⎭∑∑∑,所以118lim 13ni n i V π→∞==∑. 故答案为:1813π. 45.(2019·山东·高三竞赛)空间有4个点A 、B 、C 、D ,满足AB BC CD ==.若∠ABC =∠BCD =∠CDA =36°,那么直线AC 与直线BD 所成角的大小是______ . 【答案】90°或36° 【解析】 【详解】如果△ABC 与△CDA 全等,那么AC ⊥BD ,此时直线AC 与直线BD 所成的角为90°; 如果△ABC 与△CDA 不全等,则易知A 、B 、C 、D 四点共面,且点D 在∠ACB 的内部, 由于△ABC ≌△DCB ,且他们均是等腰三角形, 故直线AC 与直线BD 所成的角是36°. 故答案为:90°或36°.46.(2019·重庆·高三竞赛)已知正四面体可容纳10个半径为1的小球则正四面体棱长的最小值为_______ .【答案】4+ 【解析】 【详解】当正四面体棱长最小时,设棱长为a ,此时,一、二、三层分别有1、3、6个小球,且相邻小球两两相切,注意到重心分四面体的高为1:3,所以正四面体的高3221h ==+,得4a =+故答案为:426+. 二、解答题47.(2019·甘肃·高三竞赛)已知三棱锥P -ABC 的平面展开图中,四边形ABCD 为边长等于22的正方形,△ABE 和△BCF 均为正三角形,在三棱锥P -ABC 中:(1)证明:平面P AC ⊥平面ABC ; (2)若点M 为棱P A 上一点且12PM MA =,求二面角P -BC -M 的余弦值. 【答案】(1)见解析(2)223【解析】 【详解】(1)如图①,设AC 的中点为O ,连结,BO PO .由题意,得22PA PB PC ===PO =2,2AO BO CO ===. 因为在△P AC 中,P A =PC ,O 为AC 的中点,所以PO ⊥AC.又因为在△POB 中,PO =2,OB =2,PB =22222PO OB PB +=,所以PO ⊥OB. 因为AC ∩OB =O ,AC ,OB ⊆平面ABC ,所以PO ⊥平面ABC. 又因为PO ⊆平面P AC ,所以平面P AC ⊥平面ABC .(2)由PO ⊥平面ABC ,OB ⊥AC ,所以,PO OB PO OC ⊥⊥.于是以OC 、OB 、OP 所在直线分别为x 轴、y 轴、z 轴建立如图②所示的空间直角坐标系,则(0,0,0),(2,0,0),(0,2,0)O C B ,24(2,0,0),(0,0,2),,0,33A P M ⎛⎫-- ⎪⎝⎭,(2,2,0),(2,0,2)BC PC =-=-,84,0,33MC ⎛⎫=- ⎪⎝⎭.设平面MBC 的法向量为()111,,m x y z =,则由00m BC m MC ⎧⋅=⎪⎨⋅=⎪⎩得1111020x y x z -=⎧⎨-=⎩,令11x =,则111,2y z ==,即(1,1,2)m =. 设平面PBC 的法向量为()222,,n x y z =,由00n BC n PC ⎧⋅=⎪⎨⋅=⎪⎩得22220x y x z -=⎧⎨-=⎩,令x 2=1,则221,1y z ==,即(1,1,1)n =.422cos ,||||318m n n m m n ⋅〈〉===⋅. 由图可知,二面角P -BC -M 的余弦值为223. 48.(2018·广东·高三竞赛)如图①,已知矩形ABCD 满足AB=5,34AC =,沿平行于AD 的线段EF 向上翻折(点E 在线段AB 上运动,点F 在线段CD 上运动),得到如图②所示的三棱柱ABE DCF -.⑴若图②中△ABG 是直角三角形,这里G 是线段EF 上的点,试求线段EG 的长度x 的取值范围;⑵若⑴中EG 的长度为取值范围内的最大整数,且线段AB 的长度取得最小值,求二面角C EF D --的值;⑶在⑴与⑵的条件都满足的情况下,求三棱锥A-BFG 的体积.【答案】(1)[)0,2.5(2)8arccos 25AEB π∠=-(3【解析】 【详解】⑴由题设条件可知△AEG 、△BEG 均为直角三角形, 因此222AG AE x =+,222BG BE x =+.由余弦定理2222cos AB AE BE AE BE AEB =+-⋅∠.于是22222222cos x AE BE AB AE BE AE BE AEB ++==+-⋅∠.()222cos 55 2.5x AE BE AEB AE BE t t t t =-⋅∠<⋅=-=-+≤.所以,[)0,2.5x ∈.又对任意[)0,2.5k ∈, 2.5AE EB ==,22arccos 2.5k AEB π∠=-.则x k =,故x 的取值范围为[)0,2.5.⑵因为AE ⊥EF ,BE ⊥EF ,所以∠AEB 就是二面角C-EF-D 的平面角 又由⑴知EG 的长度x 为[)0,2.5的最大整数,因此x=2. 于是()22225421029AB t t t t =+-+=-+,t ∈(0,5). 因此t=2.5时,线段AB 的长度取得最小值. 由此得252cos 4AEB =-∠,8arccos 25AEB π∠=-.⑶由⑴、⑵知8arccos25AEB π∠=-,52AE EB ==,AG BG ==2EG =且3EF ===. 因为AE ⊥EF ,BE ⊥EF ,AE BE E ⋂=. 所以EF ⊥平面EAB ,故()13A BFG A BEF A BEG AEB AGB V V V S EF S EG ---∆∆=-=⋅-⋅ 22111sin 322AE AEB EF BG EG ⎡⎤⎛⎫=∠- ⎪⎢⎥⎝⎭⎣⎦1413264⎫=-⨯=⎪⎪⎭. 49.(2021·全国·高三竞赛)空间中的n 个点,其中任何三点不共线,把它们分成点数互不相同的m 组()3n m >≥,且,2m n m ,在任何三个不同的组中各取一点为顶点作三角形,要使这种三角形的总数最大,各组的点数应是多少 【答案】答案见解析 【解析】 【分析】 【详解】把这n 个点分成m 组,设当每组点数分别为12,,,m a a a ,这里120m a a a <<<<,顶点分别在三个组的三角形的总数为:1i j k i j k mS a a a ≤<<≤=∑①取得最大值.(1)先证明:12,1,2,,1i i a a i m +-=-.若不然,设有0i 使0013i i a a +-≥,不妨设01i =,我们将①式改写为()1212333mi j k i j k i j k mi j k mS a a a a a a a a a a =≤<≤≤<<≤=+++∑∑∑. ②令11221,1a a a a ''=+=-,则1212a a a a ''+=+,()1212211212131a a a a a a a a a a ''=+--≥+->,当用12a a ''、代替12、a a ,其余值保持不变时S 值变大,矛盾. (2)证明使12i i a a +-=的i 值不多于1个,若有0011i j m ≤<≤-,使0000112,2i i j j a a a a ++-=-=,则当用0000111,1i i j j a a a a ''++=+=-代替001,i j a a +而其余k a 不变时,000011i j i j a a a a ''++>, 但000011i j i j a a a a ''+++=+,类似②式可知S 也变大,这是不可能的.(3)证明:使12i i a a +-=的值恰有一个.若对所有11i m ≤≤-,均有11i i a a +-=,则m 组的点数分别为,1,,(1)s s s m ++-,于是有:(1)(1)((1))2m m s s s m ms n -+++++-=+=. ③ 由题设2m 及③式,得mn ∣,而题设m n ,故矛盾.(4)设第0i 个差0012i i a a +-=,而其余的差均为1,于是可令01,1,2,,j a s j j i =+-=;0,1,,j a s j j i m =+=+, 所以0011(1)()i m j j i s j s j n ==++-++=∑∑,得0(1)2m m ms i n ++-=. ④ 又011i m ≤≤-,由④式得222222 22n m m n m m s m m--+-+-≤≤. ⑤ 故符合题意的对应各组的点数由④、⑤两式确定正整数s 与0i .50.(2021·全国·高三竞赛)证明:如下构造的空间曲线Γ的任意五等分点组都不在同一球面上,曲线Γ的构造:作周长为l 的圆O ,在圆O 上取AmB 使15l AmB <的长度25l <,并以AB 为轴将AmB 旋转180︒得弧Am B ',在圆O 上取BnC ,使AmB 的长度BnC +的长度25l <,并以BC 为轴将BnC 旋转θ度()0180θ︒<<︒得弧Bn C ',这样,由弧Am B BnC CrA ''、、组成的曲线便是空间曲线.(如图所示)【答案】证明见解析【解析】【分析】【详解】设12345A A A A A 、、、、是曲线Γ的任一五等分点组.由曲线Γ的构造知,曲线Γ的长度为,l AmB 的长度1,5CrA >的长度35l >, 那么至少有一个分点不妨设为1A ,落在弧Am B '内(不包括端点),同时至少有三个分点,不妨设为234A A A 、、,落在CrA 内(不包括端点).又由曲线Γ的构造知Am B '与弧CrA 在同一平面内,从而1234A A A A 、、、四点在同一平面内.由平面几何知识知,234A A A 、、三点只能确定唯一的圆O ,而1A 不在圆O 上,所以1234A A A A 、、、四点不共圆.于是1234A A A A 、、、四点必不共球面,否则过1234A A A A 、、、的平面与1234A A A A 、、、所在的球的截面是圆,即1234A A A A 、、、四点共圆,矛盾.故12345A A A A A 、、、、不可能共球面,即曲线Γ的任意五等分点组都不在同一球面上.【高中数学竞赛专题大全】竞赛专题8 立体几何(50题竞赛真题强化训练)一、填空题1.(2018·四川·高三竞赛)在三棱锥P ABC -中,三条棱PA PB PC 、、两两垂直,且122PA PB PC ===、、.若点Q 为三棱锥P ABC -的外接球球面上任意一点,则Q 到面ABC 距离的最大值为______.2.(2018·辽宁·高三竞赛)四面体ABCD 中,已知2AB =,1119,8,22AD BC CD ===,则异面直线AC 与BD 所成角的正弦值是_____.3.(2018·湖南·高三竞赛)四个半径都为1的球放在水平桌面上,且相邻的球都相切(球心的连线构成正方形).有一个正方体,其下底与桌面重合,上底的四个顶点都分别与四个球刚好接触,则该正方体的棱长为__________.4.(2018·湖南·高三竞赛)在半径为R 的球内作内接圆柱,则内接圆柱全面积的最大值是_____.5.(2018·湖南·高三竞赛)正方体1111ABCD A B C D -中,E 为AB 的中点,F 为1CC 的中点.异面直线EF 与1AC 所成角的余弦值是_____.6.(2020·江苏·高三竞赛)在长方体1111ABCD A B C D -中,4AB =,122BC CC ==,M 是1BC 的中点,N 是1MC 的中点.若异面直线AN 与CM 所成的角为θ,距离为d ,则2020sin d θ=__________.7.(2021·全国·高三竞赛)已知一个正四面体和一个正八面体的棱长相等,把它们拼接起来,使一个表面重合,所得多面体的有__________面数.8.(2018·全国·高三竞赛)在三棱锥P-ABC 中,PA =PB =4,PC =3,∠APB =∠APC =60°,∠BPC =90°.则三棱锥P-ABC 的体积为_______.9.(2018·全国·高三竞赛)已知长方体1111ABCD A B C D -的长、宽、高分别为1、2、3,P 为平面1A BD 内的一点,则AP 长的最小值为_________.10.(2021·全国·高三竞赛)已知三棱锥A BCD -的三个侧面及底面的面积分别为5、12、13、15,且侧面的斜高相等,则三棱锥的体积为___________.11.(2020·浙江·高三竞赛)如图所示,在单位正方体上有甲、乙两个动点,甲从P 点匀速朝P '移动;乙从Q 点匀速出发朝Q '移动,到达Q '后速度保持不变并折返.现甲、乙同时出发,当甲到达P '时,乙恰好在到达Q '后折返到Q ,则在此过程中,甲、乙两点的最近距离为__________.12.(2021·全国·高三竞赛)在棱长为3的正方体1111ABCD A B C D -上,点P 为AB 中点,从点P 发出的光线经侧面11BCC B 内部(不含边界)一点Q 反射后投射到侧面11DCC D 内部(不含边界),则满足条件的点Q 所组成区域的面积为___________.13.(2021·全国·高三竞赛)已知正三棱锥P ABC -高为2,底面边长为3,现在将三棱锥切去一部分,得到一个顶点为P ,底面在ABC 内的正四棱锥,则该四棱锥的体积最大为___________.14.(2021·全国·高三竞赛)正四面体ABCD 中,点G 为面ABC 的中心,点M 在线段DG 上,且351tan AMB ∠=DM DG =___________. 15.(2021·全国·高三竞赛)A B C D 、、、是半径为1的球面上的4个点,若1AB CD ==,则四面体ABCD 体积的最大值是__.16.(2021·全国·高三竞赛)已知三棱锥S ABC -的底面ABC 为正三角形,点A 在侧面SBC 上的射影H 是SBC △的垂心,二面角H AB C --的大小为30,且2SA =,则此三棱锥的体积为_________.17.(2021·全国·高三竞赛)如图,已知正方体1111ABCD A B C D -的棱长为2,P 为空间一点,且满足1111,A P AB APB ADB ⊥∠=∠,则1D P 的最小值为_______.。
数学竞赛高一试题及答案

数学竞赛高一试题及答案一、选择题(每题5分,共10分)1. 已知函数\( f(x) = 2x^2 - 3x + 1 \),求\( f(-1) \)的值。
A. 4B. 6C. 8D. 102. 一个圆的半径为5,求其面积。
A. 25πB. 50πC. 75πD. 100π二、填空题(每题5分,共10分)3. 已知\( a \)、\( b \)、\( c \)为三角形的三边长,且\( a^2 + b^2 = c^2 \),这个三角形是________。
4. 将\( 1 \)、\( 2 \)、\( 3 \)三个数字排列成三位数,所有可能的组合数是________。
三、解答题(每题15分,共30分)5. 已知数列\( \{a_n\} \)满足\( a_1 = 1 \),\( a_{n+1} = a_n + 2n \),求\( a_5 \)。
6. 一个直角三角形的斜边长为\( 5 \),一条直角边长为\( 3 \),求另一条直角边长。
四、证明题(每题15分,共30分)7. 证明:对于任意正整数\( n \),\( 1^3 + 2^3 + ... + n^3 = (1 + 2 + ... + n)^2 \)。
8. 证明:若\( a \)、\( b \)、\( c \)是三角形的三边长,且\( a^2 + b^2 = c^2 \),则这个三角形是直角三角形。
五、综合题(每题15分,共20分)9. 一个工厂计划在一年内生产\( x \)个产品,已知生产每个产品的成本是\( 10 \)元,销售每个产品的价格是\( 20 \)元。
如果工厂希望获得的利润不少于\( 10000 \)元,求\( x \)的最小值。
10. 已知函数\( g(x) = x^3 - 6x^2 + 11x - 6 \),求\( g(x) \)的极值点。
答案:一、选择题1. 答案:B. 6(计算方法:\( f(-1) = 2(-1)^2 - 3(-1) + 1 = 2 + 3 + 1 = 6 \))2. 答案:B. 50π(计算方法:圆面积公式为\( πr^2 \),代入\( r = 5 \))二、填空题3. 答案:直角三角形4. 答案:6(排列组合方法:\( 3 \times 2 \times 1 = 6 \))三、解答题5. 答案:\( a_5 = 1 + 2(1) + 2(2) + 2(3) + 2(4) = 1 + 2 + 4 +6 + 8 = 21 \)6. 答案:根据勾股定理,另一条直角边长为\( 4 \)(计算方法:\( 5^2 - 3^2 = 4^2 \))四、证明题7. 证明:根据等差数列求和公式,\( 1 + 2 + ... + n =\frac{n(n+1)}{2} \),立方后得到\( \left(\frac{n(n+1)}{2}\right)^2 \),展开后即为\( 1^3 + 2^3 + ... + n^3 \)。
高一全国数学竞赛试题

高一全国数学竞赛试题一、选择题(每题5分,共10分)1. 下列哪个数不是有理数?- A. π- B. √2- C. 0.33333...(无限循环小数)- D. -1/32. 如果一个函数f(x)在区间[a, b]上连续,并且在这个区间上f(x)的值域为[c, d],那么下列哪个选项是正确的?- A. f(a) = c- B. f(b) = d- C. f(a) ≤ c- D. f(x)在[a, b]上存在最大值和最小值二、填空题(每题5分,共20分)1. 已知函数f(x) = 2x^2 - 3x + 1,求f(-1)的值。
2. 若a、b、c是三角形的三边长,且满足a^2 + b^2 = c^2,那么这个三角形是____。
3. 一个圆的半径为5,求该圆的面积。
三、解答题(每题15分,共30分)1. 证明:对于任意正整数n,n^5 - n 能被30整除。
2. 解不等式:|x + 2| + |x - 3| ≥ 5。
四、综合题(每题25分,共50分)1. 某工厂生产一种产品,每件产品的成本为c元,售价为p元。
工厂每月固定成本为F元,每月生产x件产品。
求工厂的月利润函数,并讨论其增减性。
2. 在平面直角坐标系中,已知点A(-1, 2)和点B(4, -1),求直线AB的方程,并求出该直线与x轴和y轴的交点坐标。
五、附加题(10分)1. 一个数列{a_n}的前n项和为S_n,已知a_1 = 1,且对于所有n > 1,有a_n = 1/2(a_{n-1} + S_{n-1})。
求证:数列{a_n}是等差数列。
结束语数学竞赛不仅是一场智力的较量,更是一次思维的锻炼。
希望同学们能够通过练习这些题目,提高自己的数学素养和解题能力。
预祝大家在数学竞赛中取得优异的成绩!。
高一数学竞赛试题及答案201314

高一数学竞赛试题本卷满分为120分,考试时间为100分钟一、选择题:本大题共8小题,每小题6分,共48分。
1.已知集合{,,()},,,M a b a b a R b R =-+∈∈,集合{1,0,1}P =-,映射:f x x →表示把集合M 中的元素x 映射到集合P 中仍为x ,则以,a b 为坐标的点组成的集合S 有元素( )个A .2B .4C .6D .82 D 为△A B C 的边A B 的中点,P 为△A B C 内一点,且满足,25A P A D B C =+,则A P D AB CS S =△△( ) A.35B.25C.15D.3103. 设a ,b 是夹角为30°的异面直线,则满足条件“α⊆a ,β⊆b ,且βα⊥”的平面α,β ( ) A. 不存在 B. 有且只有一对 C. 有且只有两对 D. 有无数对4.已知α是函数 ()log 2008,(1)a f x x x a =->的一个零点,β是函数()2008xg x xa =-的一个零点,则αβ的值为( )A .1B .2008C .22008 D .40165.函数()f x 的定义域为D ,若满足①()f x 在D 内是单调函数,②存在[,],m n D ⊆使()f x 在[,]m n 上的值域为11[,]22m n ,那么就称()y f x =为“好函数”。
现有()log (),xa f x a k =+(0,1)a a >≠是“好函数”,则k 的取值范围是( )A .(0,)+∞B .1(,)4-∞ C .1(0,)4D .1(0,]46.若⎪⎭⎫⎝⎛∈3,0πα,则αs i n l o g 33等于( )A .αsin B .αsin 1 C .αsin -D .αcos 1-7.如图,一个棱长为a 的立方体内有1个大球和8个小球,大球与立方体的六个面都相切,每个小球与大球外切 且与共顶点的三个面也相切,现在把立方体的每个角 都截去一个三棱锥,截面都为正三角形并与小球相切,变成一个新的立体图形,则原立方体的每条棱还剩余( )。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学竞赛练习卷八
1.设U 为全集,M ,P 是U 的两个子集,且P P M C U =⋂)(,则P M ⋂等于
( ) A. M B. P C.Φ D.P C U
2.为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭
的图像,只需将函数sin 2y x =的图像 ( ) A .向右平移5π12个长度单位 B .向左平移5π12
个长度单位 C .向右平移5π6个长度单位 D .向左平移5π6
个长度单位 3.函数()()1,031≠>+=-a a a x f x 的图像过定点P ,且点P 在直线
1=+ny mx ()0,0>>n m 上,则n m 41+的最小值是 ( )
A .25
B .24
C .13
D .12 4.函数x x x f 2)1ln()(-
+=的零点所在的大致区间是 ( ) A .(1,2) B . (0,1) C .(2,)e D .(3,4)
5.在△ABC 中,已知AB=13,BC=5,CA=12,且13125=++,则O 一定是
△ABC 的 ( )
A .重心
B .外心
C .内心
D .垂心
6.若圆x 2+y 2-4x -4y -10=0上至少有三个不同的点到直线l :ax +by =0的距离为22,
则直线l 的倾斜角的取值范围是
( ) A.⎥⎦⎤⎢⎣⎡4,12ππ B. ⎥⎦⎤⎢⎣⎡125,12ππ C. ⎥⎦⎤⎢⎣⎡3,6ππ D. ⎥⎦
⎤⎢⎣⎡2,0π 7.正方形ABCD 内有一个正ABE ∆,设,AB i AD j == ,则DE 等于( )
A .1124i j -
B .1124i j --
C .1222i j -
D .1222
i j -- 8.在R 上定义的函数f(x)是偶函数,且f(x)=f(2-x),若f(x)在区间[1,2]上是减函数,
则f(x)在区间[-2,-1]上是( )函数,在区间[3,4]上是( )函数
A.增,增
B. 减,减
C.减,增
D.增,减 ( ) 9.若直线
1=+b y a x 通过点)sin ,(cos ααM ,则 ( ) A.122≤+b a B. 122≥+b a C.
11122≤+b a D. 11122≥+b a 10.若关于x 的不等式22<-+a x x 至少有一个正数解,则实数a 的取值范围是
A .)2,2(-
B .)2,49(-
C .)49,49(-
D .)4
9,2(- ( ) 11.函数)1,()32(log 22
1-∞+-=在mx x y 上为增函数,则实数m 的取值范围是______。
12.已知等差数列{}n a ,若2
4236132135,n n a a a a a a a a a a -+++=+++= ,且 2100n S =,则公差=__ ____。
13.,P Q 的坐标均满足不等式组4325022010x y x y x +-≤⎧⎪-+≤⎨⎪-≥⎩
,cos POQ ∠的最小值等于 _ 。
14.已知非零向量,夹角为 60,且满足2|2|=-,则b a ⋅的最大值为 _____ 。
15.若⎪⎭
⎫ ⎝⎛∈2,0πx ,则函数x x y cos 1sin 1+=的值域是_________。
16.在△ABC 中,2sin 2A=3sin 2B+3sin 2C ,cos2A+3cosA+3cos (B-C )=1,则A=______。
17.设函数)2
12,0)(sin()(πϕπωϕω<<->+=x x f , 给出以下四个论断:
①()f x 的周期为π; ②()f x 在区间(-6
π,0)上是增函数; ③()f x 的图象关于点(3π,0)对称; ④()f x 的图象关于直线12π=x 对称. 以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题: ⇒ (只需将命题的序号填在横线上)。
18.已知向量(1sin2,sin cos ),a x x x =+- (1,sin cos ),b x x =+ 设函数)(x f ⋅=
(Ⅰ)求)(x f 的最大值及相应的x 的值; (Ⅱ)若,θf 58)(=求)24
(2cos θπ-的值。
19.已知函数)(x f 对任意的R y x ∈,,有1)()()(-+=+y f x f y x f ,且当0>x 时,有1)(>x f 。
(1)求证:)(x f 在R 上为增函数;
(2)若不等式2)5(2<+-a ax x f 的解集为(-3,2),求)2009(f ;
(3)在(2)的条件下,设14)(-=n f a n ,问是否存在k ,使得数列{n a }从第k 项开始的连续20项之和等于102?
20.数列{}n a 中,12a =,1n n a a cn +=+(c 是不为零的常数,123n = ,,,),且123
a a a ,,成等比数列。
(1)求c 的值;
(2)求{}n a 的通项公式;
(3)求数列}{
n n c n c a ⋅-的前n 项之和n T 。
答案:CBAAC BCDDD ;[1,2];2;54;21;[)
+∞,22;120°;①③⇒②④; 18、(1)⎪⎭
⎫ ⎝⎛-+=42sin 21)(πx x f ,21)(max +=x f ,Z k k x ∈+=,83ππ; (2)25
16。
19、(1)略;
(2)令()2=m f ,则有m a ax x <+-52的解集为(-3,2),所以1=-=a m 。
所以()()11+=+x f x f ,()()2010200812009=+=f f 。
(3)S n =12+11+10+9+……+1+0+1+2+……+(n-13)。
发现连续20项之和是先减后增。
所以经验证得。
k=1或5时符合。
20、(1)c=2;
(2)()12-+=n n a n ;
(3)n n n T 211+-=。