高考数学公式及知识点总结
高考数学知识点总结及公式

高考数学知识点总结及公式高考数学必考知识点第一部分集合(1)含n个元素的集合的子集数为2^n,真子集数为2^n—1;非空真子集的数为2^n—2;(2)注意:讨论的时候不要遗忘了的情况。
第二部分函数与导数1、映射:注意①第一个集合中的元素必须有象;②一对一,或多对一。
2、函数值域的求法:①分析法;②配方法;③判别式法;④利用函数单调性;⑤换元法;⑥利用均值不等式;⑦利用数形结合或几何意义(斜率、距离、绝对值的意义等);⑧利用函数有界性;⑨导数法3、复合函数的有关问题(1)复合函数定义域求法:①若f(x)的定义域为〔a,b〕,则复合函数f[g(x)]的定义域由不等式a≤g(x)≤b 解出。
②若f[g(x)]的定义域为[a,b],求f(x)的定义域,相当于x∈[a,b]时,求g(x)的值域。
(2)复合函数单调性的判定:①首先将原函数分解为基本函数:内函数与外函数;②分别研究内、外函数在各自定义域内的单调性;③根据“同性则增,异性则减”来判断原函数在其定义域内的单调性。
注意:外函数的定义域是内函数的值域。
4、分段函数:值域(最值)、单调性、图象等问题,先分段解决,再下结论。
5、函数的奇偶性(1)函数的定义域关于原点对称是函数具有奇偶性的必要条件;(2)是奇函数;(3)是偶函数;(4)奇函数在原点有定义,则;(5)在关于原点对称的单调区间内:奇函数有相同的单调性,偶函数有相反的单调性;(6)若所给函数的解析式较为复杂,应先等价变形,再判断其奇偶性;三角函数。
注意归一公式、诱导公式的正确性。
数列题。
1、证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;2、最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。
利用上假设后,如何把当前的`式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。
高考数学知识点复习之数列公式及结论总结

高考数学知识点复习之数列公式及结论总结一、高中数列差不多公式:1、一样数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。
3、等差数列的前n项和公式:Sn=Sn=Sn=当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。
4、等比数列的通项公式:an= a1qn-1an= akqn-k(其中a1为首项、ak为已知的第k项,an0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q1时,Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m -S2m、S4m- S3m、仍为等差数列。
2、等差数列{an}中,若m+n=p+q,则3、等比数列{an}中,若m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m -S2m、S4m- S3m、仍为等比数列。
5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。
6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{anbn}、仍为等比数列。
7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。
8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。
9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个数成等比的错误设法:a/q3,a/q,aq,aq3 (什么缘故?)11、{an}为等差数列,则(c0)是等比数列。
12、{bn}(bn0)是等比数列,则{logcbn} (c0且c1) 是等差数列。
高考数学公式及知识点总结

高考数学公式及知识点总结高考数学是许多同学感到头疼的科目,但只要掌握了重点公式和知识点,就能在考试中取得更好的成绩。
以下是对高考数学中重要公式和知识点的详细总结。
一、函数1、函数的定义:设 A、B 是非空的数集,如果按照某个确定的对应关系 f,使对于集合 A 中的任意一个数 x,在集合 B 中都有唯一确定的数 f(x)和它对应,那么就称 f:A→B 为从集合 A 到集合 B 的一个函数。
2、函数的性质单调性:设函数 f(x)的定义域为 I,如果对于定义域 I 内某个区间D 上的任意两个自变量的值 x1,x2,当 x1<x2 时,都有 f(x1)<f(x2)(或 f(x1)>f(x2)),那么就说函数 f(x)在区间 D 上是增函数(或减函数)。
奇偶性:对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则f(x)为偶函数;对于函数 f(x)的定义域内任意一个 x,都有 f(x)=f(x),则 f(x)为奇函数。
周期性:对于函数 y=f(x),如果存在一个不为零的常数 T,使得当x 取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数 y=f(x)叫做周期函数,不为零的常数 T 叫做这个函数的周期。
3、常见函数的图像和性质一次函数:y = kx + b(k、b 为常数,k≠0),图像是一条直线。
二次函数:y = ax²+ bx + c(a≠0),图像是一条抛物线。
当 a>0 时,开口向上;当 a<0 时,开口向下。
对称轴为 x = b/2a,顶点坐标为(b/2a,(4ac b²)/4a)。
反比例函数:y = k/x(k 为常数,k≠0),图像是双曲线。
当 k>0 时,图像在一、三象限;当 k<0 时,图像在二、四象限。
二、三角函数1、三角函数的定义正弦函数:sinα =对边/斜边余弦函数:cosα =邻边/斜边正切函数:tanα =对边/邻边2、特殊角的三角函数值|角度|0°|30°|45°|60°|90°|||||||||sin|0|1/2|√2/2|√3/2|1||cos|1|√3/2|√2/2|1/2|0||tan|0|√3/3|1|√3|不存在|3、三角函数的基本关系式sin²α +cos²α = 1tanα =sinα/cosα4、三角函数的图像和性质正弦函数y =sin x 的图像,定义域为R,值域为-1,1,周期为2π,对称轴为 x =kπ +π/2(k∈Z),对称中心为(kπ,0)(k∈Z)。
高三数学知识点公式总结大全

高三数学知识点公式总结大全高三是每个学生都经历过的一个重要的阶段,而数学则是其中最为关键和复杂的科目之一。
为了帮助高三学生们更好地复习数学知识,我将在本文中总结一些重要的数学知识点公式,希望对学生们有所帮助。
一、代数与函数1. 一元二次方程的求解公式:对于一元二次方程ax²+bx+c=0,它的解可以通过以下公式求得:x=(-b±√(b²-4ac))/(2a)2. 因式分解公式:(a+b)²=a²+2ab+b²(a-b)²=a²-2ab+b²a²-b²=(a+b)(a-b)3. 二次函数的顶点坐标公式:对于一般式的二次函数y=ax²+bx+c,它的顶点坐标可以通过以下公式计算:x=-b/(2a)y=f(x)=-∆/(4a),其中∆表示抛物线的判别式。
二、三角学1. 三角函数的定义:sinθ=opposite/hypotenusecosθ=adjacent/hypotenusetanθ=opposite/adjacent2. 三角函数的基本关系:sin²θ+cos²θ=1tanθ=sinθ/cosθ3. 三角函数的和差公式:sin(α±β)=sinαcosβ±cosαsinβcos(α±β)=cosαcosβ∓sinαsinβ三、数列与数列极限1. 等差数列通项公式:对于等差数列an=a1+(n-1)d,其中a1表示首项,d表示公差,an表示第n项。
2. 等比数列通项公式:对于等比数列an=a1×r^(n-1),其中a1表示首项,r表示公比,an表示第n项。
3. 常用数列求和公式:等差数列前n项和:Sn=(a1+an)n/2等差数列前n项和:Sn=a1(r^n-1)/(r-1)四、微积分1. 导数的定义:导数是函数在某一点上的变化率,记作f'(x)或dy/dx。
高三数学公式及知识点汇总

高三数学公式及知识点汇总高三数学公式及知识点汇总a(1)=a,a(n)为公差为r的等差数列通项公式:a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r. 可用归纳法证明。
n=1时,a(1)=a+(1-1)r=a。
成立。
假设n=k时,等差数列的通项公式成立。
a(k)=a+(k-1)r则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。
求和公式:S(n)=a(1)+a(2)+...+a(n)=a+(a+r)+...+[a+(n-1)r]=na+r[1+2+...+(n-1)]=na+n(n-1)r/2同样,可用归纳法证明求和公式。
a(1)=a,a(n)为公比为r(r不等于0)的等比数列通项公式:a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1). 可用归纳法证明等比数列的通项公式。
求和公式:S(n)=a(1)+a(2)+...+a(n)=a+ar+...+ar^(n-1)=a[1+r+...+r^(n-1)]r不等于1时,S(n)=a[1-r^n]/[1-r]r=1时,S(n)=na.同样,可用归纳法证明求和公式。
高三数学学习方法数学是应用性很强的学科,做题是数学学习过程中必不可少的环节。
甚至有同学说,学习数学就是学习解题,因此数学要诀就在每天做题上。
做数学题应注意以下几点:一、精做题做题不是做得越多越好,而是做得越精越好。
怎样才算“精”呢?学会“解剖麻雀”。
充分理解题意,注意分析题型,深化对题中每个条件的认识,看看与哪些数学基础知识相联系,做完题,还要针对自己做错的题,分析自己当时想法的产生及错因的由来,要求用口语化的语言真实地叙述自己的做题经过和感想,以便挖掘出一些好的数学思维方法;一题多解,一题多变,多元归一。
新高考高中数学知识点总结及公式大全

新高考高中数学知识点总结及公式大全包括以下内容
一、集合与常用逻辑用语
1.集合的运算:交集、并集、补集。
2.常用逻辑用语:充分条件、必要条件、充要条件。
二、复数
复数的概念、复数的四则运算。
三、平面向量
1.向量的概念及表示。
2.向量的运算(加减法、数乘法、数量积)。
3特殊向量(单位向量、零向量)。
四、算法、推理与证明
1.算法的概念与程序框图。
2.推理与证明的方法:直接证明、间接证明(反证法、同一法、归纳法等)。
五、不等式、线性规划
1.不等式的性质与解法。
2.线性规划的应用。
六、计数原理与二项式定理
1.计数原理(加法原理、乘法原理)。
2.二项式定理及其展开式。
七、函数、基本初等函数的图像与性质
1.函数的概念与性质(单调性、奇偶性、周期性)。
2.初等函数的图像与性质(幂函数、指数函数、对数函数等)。
八、函数与方程、函数模型及其应用
1.函数与方程的思想(求方程的解)。
2.函数模型的应用(线性回归、曲线拟合等)。
九、导数及其应用
1.导数的概念与性质(极限思想、变化率等)。
2.导数的应用(单调性判别、极值计算等)。
十、三角函数的图形与性质
1.三角函数的图像与性质(正弦函数、余弦函数等)。
2.三角恒等变换(和差倍角公式、正弦定理等)。
3.解三角形(正弦定理、余弦定理等)。
4.三角函数的图象与性质在生活中的应用。
高中数学知识点总结及公式大全

高中数学知识点总结及公式大全1.函数与方程(1)函数的概念、性质及表示方法(2)一次函数、二次函数、幂函数、指数函数、对数函数的性质和图像(3)函数的运算(4)一次方程、二次方程、一元高次方程的解法(5)多项式方程、分式方程的解法(6)不等式的解法2.数列与数学归纳法(1)数列的概念及表示方法(2)等差数列和等比数列的性质和求和公式(3)递推数列与通项公式(4)数学归纳法的原理和应用3.几何与三角函数(1)平面几何的基本概念和性质(2)三角函数的基本概念和性质(3)三角恒等式与解三角方程(4)解三角形(5)平面向量的概念和运算(6)解向量的应用问题4.数与图的关系(1)直角坐标系与平面图形的性质(2)平面图形的对称性质与判定方法(3)空间图形的投影与视图(4)立体图形的表面积与体积5.概率与统计(1)概率的基本概念(2)古典概型与几何概型(3)事件的概率与计数原理(4)随机变量的概念和分布(5)统计的基本概念和方法(6)参数估计与假设检验1.一次函数的一般式方程:y=ax+b2.一次函数的斜率公式:a=(y2-y1)/(x2-x1)3.二次函数的一般式方程:y=ax^2+bx+c4.二次函数的顶点坐标公式:x= -b/(2a),y= -(b^2-4ac)/(4a)5.二次函数的判别式公式:△=b^2-4ac6.指数函数的定义域:(-∞,+∞)7.指数函数的性质:a^m * a^n= a^(m+n),a^(-n)=1/(a^n),(a^m)^n= a^(mn)8.对数函数的性质:log(xy)=log(x)+log(y),log(x/y)=log(x)-log(y),log(a^n)=nlog(a)9.等差数列的通项公式:an=a1+(n-1)d10.等差数列的求和公式:Sn=n/2(a1+an)11.等比数列的通项公式:an=a1*r^(n-1)12.等比数列的求和公式:Sn=a1(1-r^n)/(1-r)13.三角函数的互余关系:sin(π/2-θ)=cos(θ),tan(π/2-θ)=cot(θ),sec(π/2-θ)=csc(θ)14.三角函数的和差化积公式:sin(α±β)=sin(α)cos(β)±cos(α)sin(β),cos(α±β)=cos(α)cos(β)∓sin(α)sin(β)15.立体图形的表面积和体积的公式:长方体的表面积=2(ab+bc+ac),长方体的体积=abc,球体的表面积=4πr^2,球体的体积=(4/3)πr^3。
高三知识点归纳数学公式总结大全

高三知识点归纳数学公式总结大全一、代数1. 一次二次方程公式一次方程:ax + b = 0二次方程:ax² + bx + c = 02. 因式分解公式a² - b² = (a + b)(a - b)a³ - b³ = (a - b)(a² + ab + b²)3. 平方差公式(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²4. 完全平方公式a² + 2ab + b² = (a + b)²a² - 2ab + b² = (a - b)²5. 二次完全平方公式(a + b)² = a² + 2ab + b²(a - b)² = a² - 2ab + b²a² + b² = (a + b)² - 2aba² - b² = (a + b)(a - b)6. 一次函数与直线方程斜率公式:k = (y₂ - y₁) / (x₂ - x₁)点斜式:y - y₁ = k(x - x₁)两点式:(y - y₁) / (y₂ - y₁) = (x - x₁) / (x₂ - x₁)一般式:Ax + By + C = 07. 二次函数与抛物线方程一般式:y = ax² + bx + c顶点坐标公式:(h, k) = (-b / (2a), c - b² / (4a))开口方向:a > 0为开口向上,a < 0为开口向下8. 等差数列求和公式Sn = (n / 2)(a₁ + an)Sn = (n / 2)[2a₁ + (n - 1)d],其中d为公差二、几何1. 三角形余弦定理:a² = b² + c² - 2bc cosA正弦定理:a / sinA = b / sinB = c / sinC海伦公式:S = √[s(s - a)(s - b)(s - c)],其中s为三角形的半周长中线定理:m₁ = √(2b² + 2c² - a²) / 2内切圆半径公式:r = A / s外接圆半径公式:R = abc / 4S2. 圆圆心坐标公式:(x - h)² + (y - k)² = r²弧长公式:L = rθ,其中θ为弧度扇形面积公式:A = 1/2 r²θ圆环面积公式:A = π(R² - r²)圆柱体体积公式:V = πr²h圆锥体体积公式:V = 1/3 πr²h球体表面积公式:S = 4πr²球体体积公式:V = 4/3 πr³3. 直角三角形勾股定理:a² = b² + c²45°角的正弦值和余弦值均为1/√24. 直线相关公式两直线垂直:k₁ * k₂ = -1两直线平行:k₁ = k₂5. 空间几何空间两点距离公式:d = √[(x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²]平面方程:Ax + By + Cz + D = 0三、概率与统计1. 事件概率公式P(A ∪ B) = P(A) + P(B) - P(A ∩ B)P(A|B) = P(A ∩ B) / P(B)互斥事件概率:P(A ∪ B) = P(A) + P(B)2. 排列组合公式排列:A(n, m) = n! / (n - m)!组合:C(n, m) = n! / (m!(n - m)!)3. 正态分布公式标准正态分布:Z = (X - μ) / σ标准正态分布概率表使用方法:查表后进行线性插值计算总结:以上是高三数学中常用的一些公式,涵盖了代数、几何、概率与统计等多个部分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考前数学知识点总结一. 备考内容: 知识点总结二. 复习过程:高考临近,对以下问题你是否有清楚的认识?1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg中元素各表示什么?2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅ 注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
3. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n()若,;2A B A B A A B B ⊆⇔==(3)德摩根定律:()()()()()()C CC C C C U U U UUUA B A B A B A B==,4. 你会用补集思想解决问题吗?(排除法、间接法)5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧ “非”().⌝若为真,当且仅当、均为真p q p q ∧若为真,当且仅当、至少有一个为真p q p q ∨ 若为真,当且仅当为假⌝p p 6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B 中有元素无原象。
)8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域)9. 求函数的定义域有哪些常见类型? 10. 如何求复合函数的定义域?[]如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_____________。
[](答:,)a a -11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 12. 反函数存在的条件是什么? (一一对应函数)求反函数的步骤掌握了吗?(①反解x ;②互换x 、y ;③注明定义域) 13. 反函数的性质有哪些?①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;③设的定义域为,值域为,,,则y f(x)A C a A b C f(a)=b f 1=∈∈⇔=-()b a[][]∴====---f f a f b a f f b f a b111()()()(),14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?[](,,则(外层)(内层)y f u u x y f x ===()()()ϕϕ[][]当内、外层函数单调性相同时为增函数,否则为减函数。
)f x f x ϕϕ()()()如:求的单调区间y x x =-+log 1222(设,由则u x x u x =-+><<22002()且,,如图:log 12211u u x ↓=--+当,时,,又,∴x u u y ∈↑↓↓(]log 0112当,时,,又,∴x u u y ∈↓↓↑[)log 1212∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
(在个别点上导数等于a b f x f x '()()≥0 零,不影响函数的单调性),反之也对,若呢?f x '()≤0[)如:已知,函数在,上是单调增函数,则的最大a f x x ax a >=-+∞013()值是( ) A. 0B. 1C. 2D. 3(令f x x a x a x a '()=-=+⎛⎝ ⎫⎭⎪-⎛⎝ ⎫⎭⎪≥333302则或x a x a≤-≥33由已知在,上为增函数,则,即f x aa ()[)1313+∞≤≤∴a 的最大值为3)16. 函数f(x)具有奇偶性的必要(非充分)条件是什么? (f(x)定义域关于原点对称)若总成立为奇函数函数图象关于原点对称f x f x f x ()()()-=-⇔⇔若总成立为偶函数函数图象关于轴对称f x f x f x y ()()()-=⇔⇔注意如下结论:(1)在公共定义域内:两个奇函数的乘积是偶函数;两个偶函数的乘积是偶函数;一个偶函数与奇函数的乘积是奇函数。
()若是奇函数且定义域中有原点,则。
2f(x)f(0)0=17. 你熟悉周期函数的定义吗? ()(若存在实数(),在定义域内总有,则为周期T T f x T f x f x ≠+=0()()函数,T 是一个周期。
) ()如:若,则f x a f x +=-()(答:是周期函数,为的一个周期)f x T a f x ()()=2 ()又如:若图象有两条对称轴,f x x a x b ()==⇔即,f a x f a x f b x f b x ()()()()+=-+=-则是周期函数,为一个周期f x a b ()2-如:18. 你掌握常用的图象变换了吗? f x f x y ()()与的图象关于轴对称- f x f x x ()()与的图象关于轴对称- f x f x ()()与的图象关于原点对称--f x f x y x ()()与的图象关于直线对称-=1f x f a x x a ()()与的图象关于直线对称2-=f x f a x a ()()()与的图象关于点,对称--20将图象左移个单位右移个单位y f x a a a a y f x a y f x a =>−→−−−−−−−−>=+=-()()()()()00上移个单位下移个单位b b b b y f x a b y f x a b ()()()()>−→−−−−−−−−>=++=+-00注意如下“翻折”变换:f x f x f x f x ()()()(||)−→−−→−19. 你熟练掌握常用函数的图象和性质了吗?()()一次函数:10y kx b k =+≠()()()反比例函数:推广为是中心,200y k x k y b kx a k O a b =≠=+-≠'()的双曲线。
()()二次函数图象为抛物线30244222y ax bx c a a x b a ac b a =++≠=+⎛⎝ ⎫⎭⎪+-顶点坐标为,,对称轴--⎛⎝ ⎫⎭⎪=-b aac b a x ba 24422开口方向:,向上,函数a y ac b a >=-0442mina y acb a <=-0442,向下,max 应用:①“三个二次”(二次函数、二次方程、二次不等式)的关系——二次方程ax bx c x x y ax bx c x 212200++=>=++,时,两根、为二次函数的图象与轴∆ 的两个交点,也是二次不等式解集的端点值。
ax bx c 200++><()②求闭区间[m ,n ]上的最值。
③求区间定(动),对称轴动(定)的最值问题。
④一元二次方程根的分布问题。
()()指数函数:,401y a a a x =>≠()()对数函数,501y x a a a =>≠log由图象记性质! (注意底数的限定!)a x(a>1)()()“对勾函数”60y x kx k =+>利用它的单调性求最值与利用均值不等式求最值的区别是什么?20. 你在基本运算上常出现错误吗?指数运算:,a a a a a p p 01010=≠=≠-(())aaa aa a mnmn m nmn=≥=>-((010)),()对数运算:·,log log log a a a M N M N M N =+>>00log log log log log a a a a n a M N M N M n M=-=,1对数恒等式:a x a xlog =对数换底公式:log log log log log a c c a n a b b a b nm bm =⇒=21. 如何解抽象函数问题? (赋值法、结构变换法) 如:(),满足,证明为奇函数。
1x R f x f x y f x f y f x ∈+=+()()()()() (先令再令,……)x y f y x ==⇒==-000()(),满足,证明是偶函数。
2x R f x f xy f x f y f x ∈=+()()()()() [](先令·x y t f t t f t t ==-⇒--=()()() ∴f t f t f t f t ()()()()-+-=+∴……)f t f t ()()-=()[]()证明单调性:……32212f x f x x x()=-+=22. 掌握求函数值域的常用方法了吗? (二次函数法(配方法),反函数法,换元法,均值定理法,判别式法,利用函数单调性法,导数法等。
) 如求下列函数的最值:()123134y x x =-+-()2243y x x =-+(),33232x y x x >=-[]()()设,,449302y x x x =++-=∈cos θθπ(),,54901y x x x =+∈(]23. 你记得弧度的定义吗?能写出圆心角为α,半径为R 的弧长公式和扇形面积公式吗?(·,··)扇l l ===ααR S R R 1212224. 熟记三角函数的定义,单位圆中三角函数线的定义sin cos tan ααα===MP OM AT ,,yTA xα B SO M P如:若,则,,的大小顺序是-<<πθθθθ80sin cos tan又如:求函数的定义域和值域。
y x =--⎛⎝ ⎫⎭⎪122cos π(∵)122120--⎛⎝ ⎫⎭⎪=-≥cos sin πx x∴,如图:sin x ≤22()∴,25424012k x k k Z y ππππ-≤≤+∈≤≤+25. 你能迅速画出正弦、余弦、正切函数的图象吗?并由图象写出单调区间、对称点、对称轴吗?sin cos x x ≤≤11,yxO-π2 π2πy tgx =对称点为,,k k Zπ20⎛⎝ ⎫⎭⎪∈()y x k k k Z =-+⎡⎣⎢⎤⎦⎥∈sin 的增区间为,2222ππππ ()减区间为,22232k k k Z ππππ++⎡⎣⎢⎤⎦⎥∈()()图象的对称点为,,对称轴为k x k k Z πππ02=+∈[]()y x k kk Z =+∈cos 的增区间为,22πππ[]()减区间为,222k k k Z ππππ++∈()图象的对称点为,,对称轴为k x k k Z πππ+⎛⎝ ⎫⎭⎪=∈2y x k k k Z=-+⎛⎝ ⎫⎭⎪∈tan 的增区间为,ππππ22()()[]26. y =Asin x +正弦型函数的图象和性质要熟记。