全国卷双参数压轴题的四种改编方法及6个精彩变式
函数导数中双变量问题的四种转化化归思想-厦门一中

处理函数双变量问题的六种解题思想吴享平(福建省厦门第一中学)361000在解决函数综合题时,我们经常会遇到在某个范围内都可以任意变动的双变量问题,由于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路,造成无从下手的之感,正因为如此,这样的问题往往穿插在试卷压轴题的某些步骤之中,是学生感到困惑的难点问题之一,本文笔者给出处理这类问题的六种解题思想,希望能给同学们以帮助和启发。
一、改变“主变量”思想例1.已知时在|2|,1)(2≤≥-+=m m mx x x f 恒成立,求实数x 的取值范围.分析:从题面上看,本题的函数式)(x f 是以x 为主变量,但由于该题中的“恒”字是相对于变量m 而言的,所以该题应把m 当成主变量,而把变量x 看成系数,我们称这种思想方法为改变“主变量”思想。
解: 01)1(122≥-+-⇔≥-+x x m m mx x 时在|2|≤m 恒成立,即关于m 为自变量的一次函数=)(m h 1)1(2-+-x m x 在]2,2[-∈m 时的函数值恒为非负值{0)2(0)2(≥-≥⇔h h 得{1301203222≥-≤⇔≥+-≥-+x x x x x x 或。
对于题目所涉及的两个变元,已知其中一个变元在题设给定范围内任意变动,求另一个变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往往会利用我们习以常的x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们抓住“任意变动的量”为主变量,“所要求范围的量”为常数,便可找到问题所隐含的自变量,而使问题快速获解。
二、指定“主变量”思想例2.已知,0n m <≤试比较)1ln(++-m e m n 与)1ln(1++n 的大小,并给出证明.分析:本题涉及到两个变量m,n ,这里不妨把m 当成常数,指定n 为主变量x ,解答如下解:构造函数),[),1ln(1)1ln()(+∞∈+--++=-m x x m e x f m x ,0≥m , 由0)1()1(1111)(>+-+=+-=+-='-m mx m x m x ex e e x x e e x e x f 在),[+∞∈m x 上恒成立,∴)(x f 在),[+∞m 上递增,∴0)()(min ==m f x f ,于是,当n m <≤0时,0)1ln(1)1ln()(>+--++=-n m e n f m n 即)1ln(++-m e m n >)1ln(1++n 。
高考数学热点难点突破技巧精讲第06讲导数中的双参数问题的处理

第06讲:导数中的双参数问题的处理【知识要点】对于导数中的单参数问题(零点问题、恒成立问题和存在性问题),大家解答的比较多,一般利用分离参数和分类讨论来分析解答. 对于双参数这些问题,大家如何处理呢?一般利用下面分离次参法和反客为主法两种方法处理.【方法讲评】【例1】已知函数.(1)若函数与函数在点处有共同的切线,求的值;(2)证明:;(3)若不等式对所有,都成立,求实数的取值范围.【解析】(1),,,与在点处有共同的切线,,即,设,,故在上是增函数,在上是减函数,故,;(3)由题得不等式对所有的,都成立,因为,所以,所以,即所以,所以【点评】对于不等式,里面有两个参数和一个自变量,形式比较复杂,所以我们可以想到转化和化归的思想,想方法把双参数变成单参数,这个方法就是分离参数. 由于题目求的是的范围,所以我们称是主参数,是次参数.第(3)问首先分离次参,最后得到了的取值范围,因此这种方法可以称为“分离次参法”.【反馈检测1】已知,设函数.(1)存在,使得是在上的最大值,求的取值范围;(2)对任意恒成立时,的最大值为1,求的取值范围.【例2】已知函数.若不等式对所有,都成立,求实数的取值范围.因为,所以所以令所以函数在上是增函数,在上是减函数,所以所以综合得.【点评】(1)在中,是自变量,要求的范围,所以是主参,是次参.(2)对于不等式,由于,有正有负,不便分离次参,所以我们中把次参看成自变量,把看作参数,利要构造一次函数反客为主,用一次函数的性质分析解答.(3)一次函数在上恒成立,只须满足.(4)对于“分离次参”的题目,也可以利用反客为主的方法解答.【反馈检测2】已知函数,,,.(Ⅰ)讨论的单调性;(Ⅱ)对于任意,任意,总有,求的取值范围.【反馈检测3】已知函数.(1)当时,解关于的不等式;(2)若对任意及时,恒有成立,求实数的取值范围.高中数学热点难点突破技巧第06讲:导数中的双参数问题的处理参考答案【反馈检测1答案】(1);(2).③当时,在单调递增,在递减,在单调递增,∴即,∴,④当时,在单调递增,在单调递减,满足条件,综上所述:时,存在,使得是在上的最大值. (2)对任意恒成立,即对任意恒成立,因为的最大值为1,所以,所以,,恒成立,由于,则,当时,,则,若,则在上递减,在上递增,则,∴在上是递增的函数.∴,满足条件,∴的取值范围是.【反馈检测2详细解析】(Ⅰ)则当时,恒成立,即递减区间为,不存在增区间;当时,令得,令得,递减区间为,递增区间;综上:当时,递减区间为,不存在增区间;当时,递减区间为,递增区间;(Ⅱ)令,由已知得只需即若对任意,恒成立,即令,则设,则∴在递减,即∴在递减∴即的取值范围为.【反馈检测3答案】(Ⅰ)(Ⅱ)(2)由题意知对任意及时,恒有成立,等价于,当时,由得,因为,所以,从而在上是减函数,所以,所以,即,因为,所以,所以实数的取值范围为.。
旋转、中心对称、图形全等压轴题四种模型全攻略(原卷版) 七年级数学下册

专题13旋转、中心对称、图形全等压轴题四种模型全攻略【考点导航】目录【典型例题】 (1)【考点一根据旋转的性质求解】 (1)【考点二找旋转中心、旋转角、对应点】 (2)【考点三根据中心对称的性质求面积、长度、角度】 (3)【考点四利用全等图形求正方形网格中角度之和】 (5)【过关检测】 (6)【典型例题】【考点一根据旋转的性质求解】例题:(2023·浙江宁波·一模)如图,将ABC 绕点A 逆时针旋转80︒得到AB C ''△.若50BAC ∠=︒,则CAB '∠的度数为()A .30︒B .40︒C .50︒D .80︒【变式训练】1.(23-24九年级下·重庆巴南·阶段练习)如图,Rt ABC △中,90A ∠=︒,ABC α∠=,将Rt ABC △绕点C 逆时针旋转得到Rt EDC ,点A 的对应点E 正好落在BC 上,连接BD ,则CBD ∠的度数是()A .1452α︒+B .90α︒-C .45α︒+D .1902α︒-2.(23-24八年级下·辽宁沈阳·阶段练习)已知:在等腰ABC 中,AB AC AB BC =>,.把ABC 绕点C 逆时针旋转得到DEC ,其中点D ,E 分别是点A ,B 的对应点.(1)如图1,若40A ∠=︒,CB 平分ACD ∠,求ACE ∠的度数;(2)在ABC 旋转过程中,若直线BC DE ,相交于点F .①如图2,当点D ,E 在直线BC 右侧时,若45CFE ∠=︒,求ACE ∠的度数;②设()0CFE αα∠=≠,请直接用含α的式子表示ACE ∠.【考点二找旋转中心、旋转角、对应点】例题:(23-24七年级下·全国·课后作业)如图,将ABD △经旋转后到达ACE △的位置.问:(1)旋转中心是哪一点?(2)如果M 是边AB 的中点,那么经过上述旋转后,点M 转到了什么位置?【变式训练】1.(22-23九年级上·北京海淀·期中)已知:如图,ABC 绕某点按一定方向旋转一定角度后得到111A B C ,点A ,B ,C 分别对应点1A ,1B ,1C .(1)根据点1A 和1B 的位置确定旋转中心是点.(2)请在图中画出111A B C .2.(21-22九年级上·河北邢台·期末)如图,ABC 是边长为2的等边三角形,ABP 旋转后能与CBP 重合,(1)写出旋转中心;(2)求旋转角.【考点三根据中心对称的性质求面积、长度、角度】例题:(23-24八年级下·全国·课后作业)如图,已知ABC 和EFD △关于点O 成中心对称.(1)分别找出图中的对称点和对称线段;(2)ABC 和EFD △是否全等.【变式训练】1.(22-23九年级上·河北邢台·期末)如图,ABC 和DEF 关于点O 成中心对称.(1)找出它们的对称中心O ;(2)若6,5,4AB AC BC ===,求DEF 的周长;2.(21-22九年级上·湖北武汉·期中)如图,在9×9网格中的每个小正方形边长都为1个单位长度,我们把每个小正方形的顶点称为格点,A ,B ,C ,D ,E ,F ,P 均为格点,请按要求仅用一把无刻度的直尺作图.(1)将DEF 绕点P 逆时针旋转90°得到111D E F V ,请画出111D E F V ;(2)将ABC 绕点O 旋转180°得到2BAD ,请画出点O 和2BAD ;(3)将格点线段EF 平移至格点线段MN (点E ,F 的对应点分别为M ,N ),使得MN 平分四边形2ACBD 的面积,请画出线段MN ;(4)在线段2AD 上找一点M ,使得2AOM BOD ∠=∠,请画出点M .【考点四利用全等图形求正方形网格中角度之和】例题:(22-23八年级上·重庆潼南·期中)如图,在33⨯的正方形网格中标出了1∠和2∠,则12∠+∠=度.【变式训练】1.(22-23八年级上·湖北武汉·期中)在如图所示的3×3正方形网格中,123∠+∠+∠=度.2.(22-23八年级上·江苏无锡·阶段练习)如图,已知方格纸中是4个相同的小正方形,则∠1+∠2的度数为.【过关检测】一、单选题1.(2024八年级下·全国·专题练习)窗花是贴在窗子或窗户上的剪纸,是中国古老的传统民间艺术之一,下列窗花作品是中心对称图形的有()A .1个B .2个C .3个D .4个2.(23-24八年级下·陕西西安·阶段练习)如图,将ABC 绕点A 逆时针旋转至ADE V ,此时DE 边过点C ,AD BC ⊥于点O ,若25DAC ∠=︒,则BAD ∠的度数为().A .65︒B .60︒C .50︒D .30︒3.(2024八年级下·全国·专题练习)如图是由基本图案多边形ABCDE 旋转而成的,它的旋转角为()A .30︒B .45︒C .60︒D .120︒4.(21-22八年级上·江苏南京·期中)如图,在四边形ABCD 与A B C D ''''中,AB A B B B BC B C '''''=∠=∠=,,.下列条件中:①A A AD A D '''∠=∠=,;②A A CD C D '''∠=∠=,;③A A D D ''∠=∠∠=∠,;④AD A D CD C D ''''==,.添加上述条件中的其中一个,可使四边形ABCD ≌四边形A B C D '''',上述条件中符合要求的有()A .①②③B .①③④C .①④D .①②③④二、填空题5.(2024·江西南昌·一模)如图,将ABC 绕着点A 逆时针旋转得到ADE V ,使得点B 的对应点D 落在边AC 的延长线上,若12AB =,7AE =,则线段CD 的长为.6.(23-24九年级上·河南商丘·期中)如图,△ABC 和△DEC 关于点C 成中心对称,若2AC =,4AB =,90BAC ∠=︒,则AE 的长是.7.(2024·江苏盐城·一模)如图,在ABC 中,90ACB ∠=︒,20BAC =︒∠,将ABC 绕点C 顺时针旋转90︒得到A B C ''△,点B 的对应点B '在边AC 上(不与点A C 、重合),则AA B ∠''的度数为.8.(22-23九年级上·江西上饶·期末)如图,两张完全重合在一起的正三角形硬纸片,点O 是它们的中心,若按住下面的纸片不动,将上面的纸片绕O 顺时针旋转,设旋转角为()0360αα︒<<︒,当a =时,两张硬纸片所构成的图形为中心对称图形.三、解答题9.(23-24七年级下·全国·课后作业)如图,将ABC 逆时针旋转一定角度后得到DEC ,点D 恰好为BC 的中点.(1)若130ACE ∠=︒,指出旋转中心,并求出旋转角度;(2)若6BC =,求AC 的长.10.(23-24九年级上·河北保定·期中)如图,D 是ABC 边BC 的中点,连接AD 并延长到点E ,使DE AD =,连接BE .(1)ADC △和成中心对称;(2)已知ADC △的面积为4,则ABE 的面积是.11.(23-24七年级下·全国·课后作业)如图,正五边形ABCDE 的边长等于2,分别以正五边形各边为直径,向外作半圆.(1)这个图形________(填“是”或“不是”)旋转对称图形,若是,则旋转中心是点________,最小旋转角为________;(2)求阴影部分的周长和面积(用含π的式子表示).12.(2024七年级下·全国·专题练习)如图①,直角三角形DEF 与直角三角形ABC 的斜边在同一直线上,90ACB E ∠=∠=︒,36EDF ∠=︒,40ABC ∠=︒,CD 平分ACB ∠,将DEF 绕点D 按逆时针方向旋转,如图②,记ADF ∠为()0180αα︒<<︒,在旋转过程中:(1)当α∠=__________°时,DE BC ∥,当α∠=___________°时,DE BC ⊥;(2)如图③,当顶点C 在DEF 的内部时,边DF 、DE 分别交BC 、AC 的延长线于点M 、N .①求出此时α∠的度数范围;②1∠与2∠的度数和是否变化?若不变,请直接写出1∠与2∠的度数和;若变化,请说明理由.。
双重最值问题(原卷版)高考数学选填压轴题 第5讲

第5讲双重最值问题的解决策略一、方法综述形如求()()(){}{}1122max min ,,,n n f x f x f x ⋅⋅⋅等的问题称为“双重最值问题”.按其变元的个数可分为一元双重最值问题和多元双重最值问题.在本文中,提供一个常用的结论,取不同的值可得到很多命题.一个结论:设x ,0y >,p ,q ,α为正常数,则(1)()1111min max ,,px qy p q x y ααα+⎧⎫⎧⎫+=+⎨⎨⎬⎬⎩⎭⎩⎭;(2)()1111max min ,,px qy p q x y ααα+⎧⎫⎧⎫+=+⎨⎨⎬⎬⎩⎭⎩⎭.证明:设11max ,,t px qy x y αα⎧⎫=+⎨⎬⎩⎭,则1t x ≥,1t y ≥1x t ⇒≥,1y t ≥,所以()111p q p q t px qy t p q t p q t t tααααααα+++≥+=+=⇒≥+⇒≥+,当且仅当111x y p q α+⎛⎫== ⎪+⎝⎭时取等,即()1111min max ,,px qy p q x y ααα+⎧⎫⎧⎫+=+⎨⎨⎬⎬⎩⎭⎩⎭.二、解题策略一、一元双重最值问题1.分段函数法:分类讨论,将函数写成分段函数形式,求函数值域即可.例1.对于a ,b ∈R ,记Max {a ,b }=,函数f (x )=Max {1+x ,2-x }(x ∈R )的最小值是()(A).21(B).1(C).23(D).22.数形结合法:分别画出几个函数图象,结合图象直接看出最值点,联立方程组求出最值.例2.【2020河北正定一模】设函数f (x )=min {x 2﹣1,x +1,﹣x +1},其中min {x ,y ,z }表示x ,y ,z 中的最小者.若f (a +2)>f (a ),则实数a 的取值范围为()A .(﹣1,0)B .[﹣2,0]C .(﹣∞,﹣2)∪(﹣1,0)D .[﹣2,+∞)二、多元一次函数的双重最值问题1.利用不等式的性质例3.【2020江苏模拟】设实数x 1,x 2,x 3,x 4,x 5均不小于1,且x 1·x 2·x 3·x 4·x 5=729,则max{x 1x 2,x 2x 3,x 3x 4,x 4x 5}的最小值是__________.2.利用绝对值不等式例4.【2020绍兴模拟】设a ,R b ∈,求{}{}min max 12,12,2a b a b b +++-+的值.3.利用均值不等式例5.设max{f(x),g(x)}=,若函数n (x)=x 2+px+q(p ,q ∈R)的图象经过不同的两点(α,0)、(β,0),且存在整数n 使得n <α<β<n +1成立,则()A .max{n (n ),n (n +1)}>1B .max{n (n ),n (n +1)}<1C .max{n (n ),n (n +1)}>12D .max{n (n ),n (n +1)}>124.利用柯西不等式例6.若a ,b ,0c >且33a b c ++=,求22min max ,,232323a b c a b c b c a c a b ⎧⎫⎧⎫⎪⎪⎨⎨⎬⎬++++++⎪⎪⎩⎭⎩⎭.5.分类讨论例7.若a ,0b >,求14min max ,,a b a b ⎧⎫⎧⎫+⎨⎨⎬⎬⎩⎭⎩⎭的值.6.待定系数法例8.若a ,0b >,求14min max ,,a b a b ⎧⎫⎧⎫+⎨⎨⎬⎬⎩⎭⎩⎭的值.7.构造函数例9.【2020宜昌一模】已知二元函数f (x ,θ)=(x ∈R ,θ∈R ),则f (x ,θ)的最大值和最小值分别为?8.利用韦达定理例10.若a ,b ,0c >且12a b c ++=,45ab bc ca ++=,求{}{}min max ,,a b c .9.数形结合例11.【2020•绍兴二模】设函数f (x )=min {|x ﹣2|,x 2,|x +2|},其中min {x ,y ,z }表示x ,y ,z 中的最小者.下列说法错误的是()A .函数f (x )为偶函数B .若x ∈[1,+∞)时,有f (x ﹣2)≤f (x )C .若x ∈R 时,f (f (x ))≤f (x )D .若x ∈[﹣4,4]时,|f (x )﹣2|≥f (x )三、强化训练1.已知实数[2,3]a ∈,不等式2cos (4)sin 2(22)|sin 2|0a x a b x a b x a -+-++-+-≥对任意x ∈R 恒成立,则223a a b ++的最大值是()A .16-B .13-C .6-D .22.已知函数y=f (x ),若给定非零实数a ,对于任意实数x ∈M ,总存在非零常数T ,使得af (x )=f (x+T )恒成立,则称函数y=f (x )是M 上的a 级T 类周期函数,若函数y=f (x )是[0,+∞)上的2级2类周期函数,且当x ∈[0,2)时,f (x )=()2101212x x f x x ⎧-≤≤⎪⎨-<<⎪⎩,,,又函数g (x )=﹣2lnx+12x 2+x+m .若∃x 1∈[6,8],∃x 2∈(0,+∞),使g (x 2)﹣f (x 1)≤0成立,则实数m 的取值范围是()A .(﹣∞,112]B .(﹣∞,132]C .[112+∞)D .[132+∞,)3.已知函数()2f x x ax b =--,当[]2,2x ∈-时设()f x 的最大值为(),M a b ,则当(),M a b 取到最小值时a =()A .0B .1C .2D .12【来源】浙江省宁波市华茂外国语学校2020届高三下学期3月高考模拟数学试题4.已知函数()2log 1f x x =+的定义域为[]1,2,()()()22g x fx f x m =++,若存在实数a ,b ,(){}c y y g x ∈=,使得a b c +<,则实数m 的取值范围是()A .74m <-B .2m <C .3m <D .14m <5.定义:{}min ,a b 表示a ,b 两数中较小的数.例如{}min 2,42=.已知{}2()min ,2f x x x =---,()2()x g x x m m =++∈R ,若对任意1[2,0]x ∈-,存在2[1,2]x ∈,都有()()12f x g x ≤成立,则m 的取值范围为()A .[4,)-+∞B .[6,)-+∞C .[7,)-+∞D .[10,)-+∞【来源】湖南省常德市第二中学2020届高三下学期临考冲刺数学(文)试题6.如果函数21()(2)(8)1(0,0)2f x m x n x m n =-+-+≥≥在区间1,22⎡⎤⎢⎥⎣⎦上单调递减,那么mn 的最大值为()A .16B .18C .25D .8127.已知函数221()ax x f x x+-=,函数()2cos 22sin g x a x a x =--,若1(1,)x ∀∈+∞,20,3x π⎡⎤∃∈⎢⎥⎣⎦,使得不等式12()()f x g x <成立,则实数a 的取值范围为A .7(,)10-∞B .77(,108-C .77(,)108D .7(,)8-∞8.已知函数()32log f x x =+的定义域为[]1,3,()()()22g x fx f x m =++,若存在实数(){}123,,a a a y y g x ∈=,使得123a a a +<,则实数m 的取值范围是A .114m <-B .134m <-C .1m <D .2m <【来源】2020届吉林省东北师范大学附属中学高三上学期第二次模拟数学(文)试题。
2023届高考数学二轮复习大题专讲专练:双参数最值问题与切线放缩

第30讲双参数最值问题知识与方法含参问题一直是高考中的重点与难点. 高考真题及模拟题中常出现“恒成立”为背景的双参数的范围或最值问题. 处理此类问题, 常用有以下方法:1消元法2零点比大小法零点比大小是指将函数y=ax+b 与函数y=f(x) 的零点比较大小, 进而解决问题. 图象上看, 是观察直线y=ax+b 与曲线y=f(x) 的横截距的大小关系. 此方法要求y=f(x) 函数具有凹凸性, 可以解决形如“已知ax+b⩾f(x) (或⩽f(x)) 恒成立, 求bk 的最值”的问题,一般有如下两种形式:(1) 若ax+b⩾f(x) 恒成立, f(x) 为上凸函数, 如下左图, 则x1⩽x2;(2) 若y=ax+b⩽f(x) 恒成立, f(x) 为下凸函数, 如下右图, 则x1⩾x2.由(1)或(2)得出x1,x2的大小,进而可以求得bk的最值.3. 赋值法对比不等式与目标式的结构, 发现当自变量取某个值时恰好构造出目标式.赋值法是零点比大小法方法的优化和改进,能快速解决线性表达式型、比值型的客观题. 点睛意领会“等比例赋值法”进行恰到好处的赋值.典型例题【例1】若(x2+x)ln 1x −ax⩽23x3+(1−a)x2−2ax+b 恒成立, 求b−2a 的最小值.【答案】−53【解析】解法1: 消元法设F(x)=23x3+(1−a)x2−2ax+b−(x2+x)ln 1x+ax ,则F′(x)=(2x+1)(ln x+x+令 ℎ(x)=ln x +x +1−a 得 ℎ(x) 单调递增, 故存在唯一 x 0 使得 ℎ(x 0)=0 , 即 a =x 0+ln x 0+1当 x ∈(0,x 0) 时, F(x) 单调递减当 x ∈(x 0,+∞) 时, F(x) 单调递增,故 F(x)min =F (x 0)=−13x 03−x 02−x 0+b.所以 F(x)min =F (x 0)⩾0, 即 b ⩾13x 03+x 02+x 0,b −2a ⩾13x 03+x 02−x 0−2ln x 0−2,t(x)=13x 3+x 2−x −2ln x −2,t ′(x)=(x−1)(x 2+3x+2)x,当 x ∈(0,1),t(x) 单调递减; 当 x ∈(1,+∞),t(x) 单调递增, 故 t(x)min =t(1)=−53. 所以 b −2a 的最小值为 −53.解法 2: :赋值法f(x)⩽g(x)⇔b −(x 2+x )a ⩾−(x 2+x )ln x −23x 3−x 2令 x 2+x =2 (等比例赋值法), 解得 x =1 (舍 x =−2 ), 则 b −2a ⩾−53.当 b −2a =−53 时, 由 f(x)−g(x)⩽0=f(1)−g(1) 知 x =1 是 f(x)−g(x) 的极值点,所以 f ′(1)−g ′(1)=0, 解得 a =2,b =73.下面证明: 当 a =2,b =73时, f(x)⩽g(x).证明:令 ℎ(x)=g(x)−f(x)=23x 3−x 2−2x +73+(x 2+x )ln x. 则 ℎ′(x)=(2x +1)(x −1+ln x),当 x >1 时, ℎ′(x)>0,ℎ(x) 递增; 当 0<x <1 时, ℎ′(x)<0,ℎ(x) 递减. 所以 ℎ(x)⩾ℎ(1)=0, 即 f(x)⩽g(x) 恒成立. 综上可知, b −2a 的最小值为 −53.【点睛】求线性表达式型 ma +nb(m,n 为常数) 的最值时, 赋值的要点在于把原不等式变 成关于 a,b 的二元一次不等式, 然后根据 a,b 的系数比与 m:n 相等求出 x 0 (简称等比例赋值法 ).【例2】若函数 f(x)=aln x +12x 2+2bx 在区间 [1,3] 上单调递增, 则 a +4b 的最小值为 . 【答案】 −4【解析】 g(x)=f ′(x)=ax +x +2b ⩾0 对 x ∈[1,3] 恒成立, 即 ax +2b +x ⩾0 对 x ∈[1,3] 恒成立, 与目标式 a +4b 比较, 令 1x :2=1:4, 得 x =2,因此令 x =2 (等比例赋值则 g(2)=a2+2+2b ⩾0⇒a +4b ⩾−4. ( a =1,b =−54时等号成立)所以 a +4b 的最小值为 −4.【点睛】这里用了等比【例】赋值法, 要点睛意等号成立的条件. 由已知得 ax +2b +x ⩾0 对 x ∈ [1,3] 恒成立, 与目标式 a +4b 比较, 令 1x :2=1:4 , 得 x =2 , 因此令 x =2 . 当 a +4b = −4 时, 由 g(x)⩾0=g(2) 知 x =2 是 g(x) 的极值点, 所以 g ′(2)=0⇒a =4,b =−2.比值型【例3】已知函数 f(x)=ln x +(e −a)x −2b, 若不等式 f(x)⩽0 对 x ∈(0,+∞) 恒成立, 则 ba 的最小值为 . 【答案】-12e.【解析】解法 1 : 消元法显然 a >e,f ′(x)=1x +(e −a), 易知 x =1a−e为 f(x) 的极大值点,所以只需 f (1a−e)⩽0, 即 2b ⩾−ln (a −e)−1, 所以 2b a⩾−ln (a−e)−1a.今े ℎ(a)=−12⋅[ln (a−e)+1]a,则 ℎ′(a)=−12⋅ea−e−ln (a−e)a 2, 点睛意到 ℎ′(2e)=0,易知 a =2e 为 ℎ(a) 的极小值点, ℎ(2e)=−12e .所以 ba ⩾−12e , 故 ba 的最小值为 −12e . 解法 2:零点比大小f(x)⩽0⇔ln x +(e −a)x −2b ⩽0⇔ln x +ex ⩽ax +2b, 即 ln x +ex ⩽a (x +2b a)函数 y =ln x +ex 与 y =a (x +2ba) 的零点分别为 1e ,−2b a由图可知: −2b a⩾1e⇒b a⩽−12e, 故 ba的最小值为 −12e.解法 3 : 赋值法f(x)⩽0⇔ln x +ex ⩽ax +2b, 令 x =1e, 则 a ⋅1e+2b ⩾0⇒b a⩾−12e.故 b a的最小值为 −12e.【点睛 1】求比值型的最值时, 赋值的要点在于把原不等式改写成一边只含有目标式分子、 分母的线性结构, 再令另一边为 0 , 找到 x 0.【点睛 2】观察不等式 ln x +ex ⩽ax +2b 与目标式 ba 的结构, 进行恰到好处的赋值. 只需 让 ln x +ex =0 , 便得 a ⋅1e +2b ⩾0 , 进而可求得 b a 的最值. 解方程 ln x +ex =0 , 可得 x =1e , 从而有上面的解法.【点睛 3】本题我们用了消元法、零点比大小和赋值法, 显然赋值法最为简捷. 【例4】已知不等式 (e −a)e x +x +b +1⩽0 恒成立, 其中 e 为自然常数, 则 b+1a的最大值 为 . 【答案】 1e【解析】赋值法(e −a)e x +x +b +1⩽0⇔ae x −(b +1)⩾e x+1+x , 令 e x+1+x =0 , 得 x =−1 , 则 a ⋅1e−(b +1)⩾0⇒b+1a⩽1e, 故 b+1a的最大值为 1e.乘积型【例5】 若 e x −x +12x 2⩾12x 2+ax +b 恒成立, 求 (a +1)b 的最大值. 【答案】 e2【解析】解法 1 : 消元法e x −x +12x 2⩾12x 2+ax +b ⇔e x −(a +1)x −b ⩾0,令 g(x)=e x −(a +1)x −b, 则 g ′(x)=e x −(a +1),(1)若 a +1<0, 则 g ′(x)>0, 则 g(x)=e x −(a +1)x −b 在 R 上单增, 当 x →−∞ 时, f(x)→−∞,与 g(x)⩾0 矛盾, 舍去. (2)若 a +1>0, 由 g ′(x)=0 得 x =ln (a +1),所以 g(x) 在 (−∞,ln (a +1)) 单减, 在 (ln (a +1),+∞) 单增, 则 g(x)min =g(ln (a +1))=(a +1)−(a +1)ln (a +1)−b ⩾0,即 b ⩽(a +1)−(a +1)ln (a +1) , 则 b(a +1)⩽(a +1)2−(a +1)2ln (a +1)令 ℎ(t)=t 2−t 2ln t,t >0, 则 ℎ′(t)=t −2tln t =t(1−2ln t)所以ℎ(t) 在(0,√e) 单增, (√e,+∞) 单减, 所以ℎ(t)max=ℎ(√e)=e2, (3) 当a+1=0 时, (a+1)b=0,综上: (a+1)b 最大值为e2.解法2: 消元法e x−x+12x2⩾12x2+ax+b⇔e x−(a+1)x−b⩾0,即b⩽e x−(a+1)x(1)若a+1<0, 则(a+1)b⩾(a+1)e x−(a+1)2x,令ℎ(x)=(a+1)e x−(a+1)2x,ℎ′(x)=(a+1)e x−(a+1)2=(a+1)[e x−(a+1)]<0所以当x→−∞ 时, f(x)→+∞, 则(a+1)b⩾(a+1)e x−(a+1)2x 不成立(2) 若a+1>0, 则(a+1)b⩽(a+1)e x−(a+1)2x;令ℎ(x)=(a+1)e x−(a+1)2x,由ℎ′(x)=0 得x=ln (a+1), 则ℎ(x) 在(0,ln (a+1)) 单减, (ln (a+1),+∞) 单增,所以ℎ(x)=(a+1)2−(a+1)2ln (a+1),令g(t)=t2−t2ln t,t>0, 则g′(t)=t−2tln t=t(1−2ln t),所以g(t) 在(0,√e) 单增, (√e,+∞) 单减, 所以g(t)max=g(√e)=e2(3) 当a+1=0 时, (a+1)b=0,综上: (a+1)b 最大值为e2.【点睛】根据所求目标, 在a,b 都在变的情况下, 求(a+1)b 的最大值, 把b 移到一边, 同乘以(a+1), 构造出(a+1)b, 在等式的右边成功地消灭了变量b.【例6】已知函数f(x)=e x−xa −b ,当实数a>0 时, 对于x∈R 都有f(x)⩾0 恒成立, 则a2b 的最大值为()A. −1e2B. 1e2C. −2e2D. 2e2【答案】A【解析】f′(x)=e x−1a , 易知x=ln 1a为极小值点, 则f(x)min=f(1a)=1a+ln aa−b⩾ 0 ,所以1a +ln aa⩾b ,则a2b⩽a+aln a ,令g(a)=a+aln a ,易得g(a)min=g(1e2)= −1e2.故a2b 的最大值为−1e2.强化训练1.已知不等式ln (x+1)−1⩽a(x+ba ) 对一切正数x 恒成立, 则ba的最小值为.【答案】1-e【解析】解法 1: 零点比大小ln (x +1)−1⩽a (x +ba) 恒成立,直线 y =a (x +ba ) 在函数 y =ln (x +1)−1 图象的上方, 直线 y =a (x +ba ) 在 x 轴上的截距为 −ba ,函数 y =ln (x +1)−1 在 (e −1,0) 处的切线为 y =1e [x −(e −1)],则 −b a ⩽e −1⇒b a ⩾1−e, 故 (ba )min=1−e解法 2 : 赋值法取 x =e −1,便有 ba ⩾1−e2.已知函数 f(x)=2ax 2+bx −3a +1,x ∈[−4,4] , 若 f(x)⩾0 恒成立, 则 5a +b 的取值 范围是当 5a +b 取得最小值时, a = . 【答案】 a =121【解析】赋值法2ax 2+bx −3a +1⩾0,x ∈[−4,4], 即 (2x 2−3)a +xb +1⩾0,x ∈[−4,4]. 令,解得或则由 f(3)⩾0, 得 5a +b ⩾−13; 由 f (−12)⩾0, 得 5a +b ⩽2.所以 5a +b 的取值范围是 [−13,2].当 5a +b =−13 时, f(x)⩾0=f(3), 可知 x =3 是函数 f(x) 的极值点 (或对称轴), 所以 −b4a =3, 易得 a =121. 3.已知不等式 x −3ln x +1⩾mln x +n(m ≠−3) 对 x >0 恒成立, 则 n−3m+3 的最大值为 .【答案】 −ln 2 【解析】赋值法,令,可得4.若对于任意正实数x, 都有ln x−aex−b+1⩽0 (e 为自然对数的底数) 成立, 则a+b 的最小值是.【答案】0【解析】令x=1e, 代入得: a+b⩾0,以下说明a+b=0 时满足条件,当a=1,b=−1 时, 令f(x)=ln x−ex+1+1=ln x−ex+2,则f′(x)=1x −e=1−exx, 令f′(x)=0, 解得: x=1e,可知当x∈(0,1e ) 时, f′(x)>0, 当x∈(1e,+∞) 时, f′(x)<0,故对任意正实数x, 都有f(x)⩽f(1e)=0,故a=1,b=−1 时, a+b=0, 满足题意, 故a+b 的最小值是0 ,故答案为: 0 .5.已知不等式e x⩾ax+b(a,b∈R, 且a≠0) 对任意实数x 恒成立, 则b−2a 的最大值为A. 2−ln 2B. 1−ln 2C. −2ln 2D. −ln 2【答案】D【解析】解法1:零点比大小由e x⩾ax+b 得e x−2⩾ax+(b−2)=a(x+b−2a),考虑y=e x−2 与y=a(x+b−2a) 在x 轴上的截距,只需−b−2a ⩾ln 2⇒b−2a⩽−ln 2.解法2 : 赋值法令e x−2=0 即x=ln 2, 结合a>0, 立得b−2a⩽−ln 2.6.已知函数f(x)=e x−12x2+x3, 若x∈R 时, 恒有f′(x)⩾3x2+ax+b, 则ab+b的最大值为() A. √e B.√e 2C. e2D. e【答案】C【解析】因为函数 f(x)=e x −12x 2+x 3 , 则 f ′(x)=e x −x +3x 2 , 由题可知, 对 x ∈R ,恒 有 e x −x +3x 2⩾3x 2+ax +b ⇒e x −x −ax −b ⩾0 成立, 令 g(x)=e x −x −ax , 则 g ′(x)=e x −1−a 当 a <−1 时, 函数 g(x) 在 R 上单调递增, 且 x →−∞ 时, g(x)→−∞, 不符合题意;当 a =−1 时, ab +b =0, 当 a >−1 时, 令 g ′(x)=e x −1−a >0⇒x >ln (1+a), 所以函数 g(x) 在 (ln (1+a),+∞) 上单调递增, 且在 (−∞,ln (1+a)) 上单调递减; 所以 g(x)min =g[ln (1+a)]=e ln (1+a)−ln (1+a)−aln (1+a)=(1+a)− (1+a)ln (1+a),故 (1+a)−(1+a)ln (1+a)−b ⩾0⇒b(1+a)⩽(1+a)2−(1+a)2ln (1+a), 令 t =1+a >0, 则 ℎ(t)=t 2−t 2ln t, 且 ℎ′(t)=2t −(2tln t +t)=t(1−2ln t), 当 t ∈(0,√e) 时, ℎ′(t)>0, 函数 ℎ(t) 单调递增; 当 t ∈(√e,+∞) 时, ℎ′(t)<0, 函数 ℎ(t) 单调递减,所以 ℎ(t)max =ℎ(√e)=(√e)2−(√e)2ln √e =e2, 故 b(1+a)⩽e2, 综上所述, ab +b 的最大值为 e2.7.设函数 f(x)=ln (ax +b)−x(a,b ∈R), 若 f(x)⩽0 恒成立, 则 ab 的最大值为 .【答案】 e2【解析】 ln (ax +b)⩽x 恒成立, 即 e x ⩾ax +b >0 恒成立, a,x,b >0 e x ⩾ax +b ⩾2√ax ⋅b, 所以 ab ⩽e 2x 4x(x >0), 于是 ab ⩽(e 2x4x)min=e2.8.已知 a ≠0, 函数 y =f(x)=ae x ,y =g(x)=ealn x +b ( e 为自然对数的底数), 若存在一 条直线与曲线 y =f(x) 和 y =g(x) 均相切, 则 ba 最大值是 【答案】e【解析】 f ′(x)=ae x ,g ′(x)=ae x, 设切点分别为 (t,ae t ),(m,aelnm +b) , 则切线方程分别为 y −ae t =ae t (x −t);y −aelnm −b =ae m(x −m),由题意存在一条直线与曲线 y =f(x) 和 y =g(x) 均相切, 所以可得 ae m=ae t ,且 b =ae t (1−t)+ae −aelnm; 因为ae m=ae t , 且 a ≠0,=(1−t)e t+e−elnm=(1−t)e t−e(1−t)+e=e t+et−te t;所以ba令ℎ(t)=e t+et−te t, 则ℎ′(t)=−te t+e.当t=1 时, ℎ′(1)=0 ;当t<1 时, ℎ′(t)>0,ℎ(t) 单调递增; 当t>1 时, ℎ′(t)< 0,ℎ(t)单调递减;故当t=1 时取得最大值ℎ(1)=e.故答案为: e.切线放缩知识与方法1. 切线放缩对于含有指数、对数或三角函数等超越式的函数或不等式问题, 有时我们可以利用导数的几何意义进行以直代曲, 即考虑函数f(x) 图象上某点x=x0处的切线y=kx+b, 结合函数的凹凸性进行切线放缩, 使问题便于解决.特别地, 当f(x)⩾kx+b 为下凸函数时, 则f(x)⩾kx+b ;当f(x) 为上凸函数时, 则f(x)⩽kx+b. 两个不等式中等号成立的条件刚好是x=x0.将f(x) 放大或缩小为kx+b , 得到f(x)⩾kx+b 或f(x)⩽kx+b , (其中k= f′(x0),y =kx+b 为f(x) 在x=x0处的切线y=f′(x0)(x−x0)+f(x0)) 叫做切线放缩.对某些求函数的最小值或证明不等式的问题, 巧用切线放缩, 会有意想不到的效果.2. 常用的切线不等式(1) e x⩾x+1;(2)ln x⩽x−1;(3)e x⩾ex;(4)ln x⩽1x;(5)sin x⩽x(x⩾0).e【点睛】在 e x⩾x +1 中, 将 x 换成 ln x, 即得 x ⩾ln x +1⇒ln x ⩽x −1;在 e x ⩾x +1 中, 将 x 换成 x −1, 即得 e x−1⩾x ⇒e x ⩾ex; 在 e x ⩾ex 中, 将 x 换成 ln x, 即得 x ⩾elnx ⇔ln x ⩽1e x; 在 ln x ⩽x −1 中, 将 x 换成 x +1, 即得 ln (x +1)⩽x.典型例题逆用求导法则型【例1】若 x,y 是实数, e 是自然对数的底数, e x+y+2−3⩽ln (y −2x +1)+3x , 则2x +y = .【答案】- 83【解析】结合不等式 e x ⩾x +1 (当且仅当 x =0 时等号成立), 可得: e x+y+2⩾(x +y +2)+1=x +y +3 (1), 结合不等式 ln x ⩽x −1 (当且仅当 x =1 时等号成立),则 ln (y −2x +1)⩽(y −2x +1)−1, 所以 −ln (y −2x +1)⩾2x −y(1) (2) 两式相加, 即得: e x+y+2−ln (y −2x +1)⩾(x +y +3)+(2x −y)=3x +3 又已知 e x+y+2−3⩽ln (y −2x +1)+3x,所以 e x+y+2−3=ln (y −2x +1)+3x, 于是(1)与 (2) 中的等号同时成立, 所以 {x +y +2=0,y −2x +1=1, 解得 {x =−23,y =−43,所以 2x +y =−83. 故答案为: −83.【点睛】本题利用了夹逼法. 根据切线不等式 e x ⩾x +1 与 ln x ⩽x −1, 并结合已知条件,通过夹逼由不等式得到了方程, 最后点睛意到两个不等式中等号成立的条件, 解方程组即 可得到答案.【例2】已知函数 f(x)=ax +ln x +1, 若对任意的 x >0,f(x)⩽xe 2x 恒成立, 则求实数 a 的 取值范围是 . 【答案】 (−∞,2]【解析】解法 1: :切线放缩, 利用 e x ⩾x +1 对任意的 x >0,f(x)⩽xe 2x 恒成立, 等价于 a ⩽xe 2x −(ln x+1)x在 (0,+∞) 上恒成立.因为 xe 2x −(ln x +1)=e 2x+ln x −(ln x +1)⩾(2x +ln x +1)−(ln x +1)=2x, 所以 xe 2x −(ln x+1)x⩾2x x=2. 当且仅当 2x +ln x =0 时等号成立 (方程显然有解),即 (xe 2x −(ln x+1)x)min=2, 所以 a ⩽2.故答案为: (−∞,2]. 解法 2: 隐零点因为 f(x)=ax +ln x +1, 所以对任意的 x >0,f(x)⩽xe 2x 恒成立, 等价于 a ⩽e 2x −ln x+1x在 (0,+∞) 上恒成立.令 m(x)=e 2x −ln x+1x(x >0), 则只需 a ⩽m(x)min 即可, 则 m ′(x)=2x 2e 2x +ln xx 2,再令 g(x)=2x 2e 2x +ln x(x >0) , 则 g ′(x)=4(x 2+x )e 2x +1x>0 , 所以 g(x) 在(0,+∞)上单调递增, 因为 g (14)=√e 8−2ln 2<0,g(1)=2e 2>0,所以 g(x) 有唯一的零点 x 0, 且 14<x 0<1,所以当 0<x <x 0 时, m ′(x)<0, 当 x >x 0 时, m ′(x)>0, 所以 m(x) 在 (0,x 0) 上单调递减, 在 (x 0,+∞) 上单调递增,因为 2x 02e 2x 0+ln x 0=0, 所以 ln 2+2ln x 0+2x 0=ln(−ln x 0), 即 ln(2x 0)+2x 0=ln (−ln x 0)+(−ln x 0) , 设 s(x)=ln x +x(x >0), 则 s ′(x)=1x +1>0, 所以函数 s(x) 在 (0,+∞) 上单调递 增,因为 s (2x 0)=s (−ln x 0), 所以 2x 0=−ln x 0, 即 e 2x 0=1x 0,2=−ln x 0x 0,所以 m(x)⩾m (x 0)=e 2x 0−ln x 0+1x 0=1x 0−ln x 0x 0−1x 0=2, 则有 a ⩽2,所以实数 a 的取值范围为 (−∞,2]. 故答案为: (−∞,2].【例3】已知 a 1,a 2,a 3,a 4 成等比数列, 且 a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3), 若 a 1>1, 则()A. a 1<a 3,a 2<a 4B. a 1>a 3,a 2<a 4C. a 1<a 3,a 2>a 4D. a 1>a 3,a 2>a 4 【答案】 B【解析】(利用 ln x ⩽x −1) 由 a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3), 可得 a 1+a 2+a 3+a 4= ln(a 1+a 2+a 3)⩽a 1+a 2+a 3−1 , 所以 a 4⩽−1 , 故公比 q <0 . 若 q ⩽−1 , 则 a 1+a 2+a 3 +a 4=a 1(1+q)(1+q 2)⩽0 , 而 a 1+a 2+a 3=a 1(1+q +q 2)⩾a 1>1 ,即 ln(a 1+a 2+a 3)>0 , 矛盾; 所以 −1<q <0 , 所以 a 1−a 3=a 1(1−q 2)>0,a 2−a 4= a 1q (1−q 2)<0, 所以 a 1>a 3,a 2<a 4, 故选 B.多变量轮换式的切线放缩【例4】f(x)=3+x1+x 2,x ∈[0,3], 已知数列 {a n } 满足 0<a n ⩽3,n ∈N ∗, 且满足 a 1+a 2+⋯ +a 2010=670, 则 f (a 1)+f (a 2)+⋯+f (a 2010)= A. 有最大值 6030 B. 有最大值 6027 C. 有最小值 6027 D. 有最小值 6030 【答案】A【解析】由 f(x)=3+x1+x 2(0⩽x ⩽3) , 得 f ′(x)=−x 2−6x+1(1+x 2)2, 所以 f ′(13)=−910,f(x) 在x =13 处的切线方程为 y =−910x +3310 , 下证 f(x)=3+x 1+x 2⩽310(11−3x) . 而 f(x)=3+x 1+x 2⩽310(11−3x)⇔(x −3)(x −13)2⩽0.因为 x ∈[0,3], 所以 (x −3)(x −13)2⩽0 成立, 故 f(x)=3+x1+x 2⩽310(11−3x).所以当 0<a n ⩽3,n ∈N ∗ 时, 有 f (a n )⩽310(11−3a n ),f (a 1)+f (a 2)+⋯+f (a 2010)⩽310[11×2010−3(a 1+a 2+⋯+a 2010)]=6030.故 f (a 1)+f (a 2)+⋯+f (a 2010) 最大值 6030 . 【点睛】本题利用函数 f(x)=3+x 1+x 2在 x =13处的切线进行放缩, 思路如下: 点睛意到a 1+ a 2+⋯+a 2010=670 , 当 a 1=a 2=⋯=a 2010 时, 有 a 1=a 2=⋯=a 2010=13 , 即 13是各元相 等时候的平衡点, 于是求出函数在平衡点的切线方程 y =−910x +3310, 可得 f(x)⩽310(11−3x).双参数最值的切线放缩【例5】已知不等式ln (x+1)−1⩽a(x+ba ) 对一切正数x 恒成立, 则ba的最小值为【解析】ln (x+1)−1⩽a(x+ba ) 恒成立,直线y=a(x+ba) 在函数y=ln (x+1)−1图象的上方,直线y=a(x+ba ) 在x 轴上的截距为−ba,函数y=ln (x+1)−1 在(e−1,0) 处的切线为y=1e[x−(e−1)],则−ba ⩽e−1⇒ba⩾1−e, 故(ba)min=1−e【点睛】本题利用两函数的零点比较大小, 其实就是切线放缩.强化训练1.已知函数f(x)=e x−1,g(x)=ln (x+1), 直线l 与y=f(x) 的图象相切, 与y= g(x) 的图象也相切, 则直线的l 方程是.【答案】y=x【解析】f(x)=e x−1 与g(x)=ln (x+1) 互为反函数, 其图象如图,其公共点为O(0,0),由f(x)=e x−1, 得f′(x)=e x, 所以f′(0)=1,曲线f(x)=e x−1 在O(0,0) 处的切线方程为y=x,由g(x)=ln (x+1), 得g′(x)=1x+1, 所以g′(0)=1,曲线g(x)=ln (x+1) 在O(0,0) 处的切线方程为y=x,所以曲线f(x)=e x−1 与曲线g(x)=ln (x+1) 的公切线为y=x.故答案为: y=x.2.已知实数a,b,c 满足e a+c+e2b−c−1⩽a+2b+1 (e 为自然对数的底数), 则a2+b2的最小值是.【答案】15【解析】设u(x)=e x−(x+1), 则u′(x)=e x−1, 可知u(x)⩾u(0)=0, 即e x⩾x+1;由不等式性质可知e a+c+e2b−c−1⩾a+c+1+2b−c=a+2b+1 ,当且仅当a+c= 2b−c−1=0 时取等号;又因为e a+c+e2b−c−1⩽a+2b+1,即有: e a+c+e2b−c−1=a+c+1,所以a+c=2b−c−1=0; 即a=−c,b=c+12;所以a2+b2=c2+(c+1)24=54c2+c2+14=54(c+15)2+15⩾15当且仅当c=−15时取等号, 故a2+b2的最小值是15, 答案为:15.3.函数f(x)=e x−a+x,g(x)=ln (x+2)−4e a−x, 若∃x0使得f(x0)−g(x0)=3, 则a= .【答案】-1- ln 2【解析】令f(x)−g(x)=x+e x−a−1n(x+2)+4e a−x,令y=x−ln (x+2),y′=1−1x+2=x+1x+2,故y=x−ln (x+2) 在(−2,−1) 上是减函数(−1,+∞) 上是增函数,故当x=−1 时, y 有最小值−1−0=−1,而e x−a+4e a−x⩾4. ( 当且仅当e x−a=4e a−x, 即x=ln 2+a 时, 等号成立);。
2020新高考数学二轮教师用书:指导二 高考客观题“六招秒杀”

-2-0 -2-2 当三点共线时,距离之和最小,由斜率公式,得 0-x = 0-2 , ∴x=1, 即 P(1,-1), 由△PAF 的顶点坐标 P(1,-1),A(2,1),F(0,1),易知其三边长
即 m2-n2=2>0,∴m2>n2,则 m>n,排除 C,D
则 c2=m2-1<m2,c2=n2+1>n2,
则 c<m.c<n,
c
c
e1=m,e2=n,
c c c2
则 e1·e2=m·n=mn,
( ) ( ) c c
则(e1·e2)2= m 2· n 2 c2 c2
=m2·n2
m2-1n2+1
1 解析:曲线 y=x-1的对称中心为(1,0),设过对称中心的直线与曲线交于 A,B 两点,则
A,B 的中点为对称中心(1,0),所以过 D,E,F 三点的圆一定经过定点(1,0),故答案为
(1,0). 答案:(1,0)
数形结合法 在处理数学问题时,将抽象的数学语言与直观的几何图形有机结合起来,通过对图形或 示意图形的观察分析,将数的问题(如解方程、解不等式、判断单调性、求取值范围等)与某 些图形结合起来,利用图象的直观性解决问题,这种方法称为数形结合法. [例 3] (1)(2019·山东烟台三模)设拋物线 x2=4y 的焦点为 F,A 为拋物线上第一象限内 一点,满足|AF|=2,已知 P 为拋物线准线上任一点,当|PA|+|PF|取得最小值时,△PAF 的 外接圆半径为________. [解析] 如图,x2=4y 的焦点为 F(0,1),准线为 y=-1.
高考函数与导数类压轴题的6大模型与23种考法总结!压轴题不只学霸才能解~

高考函数与导数类压轴题的6大模型与23种考法总结!压轴
题不只学霸才能解~
只有学霸才会解'压轴题'嘛?
在高考数学里,这个问题的答案一定是否定的,数学压轴题十之有九是对函数与导数问题的考查,此类题型确实不简单,但极具规律性,属于难,但是容易备考的题型。
今天车车帮你整理好了压轴题的所有题型和命题角度,无论你的数学成绩如何,请务必试试攻克它。
文末查看电子版领取方式。
\
本文目录
题型一切线型
1.求在某处的切线方程
2.求过某点的切线方程
3.已知切线方程求参数
题型二单调型
1.主导函数需“二次求导”型
2.主导函数为“一次函数”型
3.主导函数为“二次函数”型
4.已知函数单调性,求参数范围
题型三极值最值型
1.求函数的极值
2.求函数的最值
3.已知极值求参数
4.已知最值求参数
题型四零点型
1.零点(交点,根)的个数问题
2.零点存在性定理的应用
3.极值点偏移问题
题型五恒成立与存在性问题
1.单变量型恒成立问题
2.单变量型存在性问题
3.双变量型的恒成立与存在性问题
4.等式型恒成立与存在性问题
题型六与不等式有关的证明问题
1.单变量型不等式证明
2.含有e x与lnx的不等式证明技巧
3.多元函数不等式的证明
4.数列型不等式证明的构造方法。
近十年高考数学压轴题高频考点及解题策略分析

近十年高考数学压轴题高频考点及解题策略分析近11年全国I卷,11道理科压轴题中全部考查函数与导数。
“函数与导数”以其极强的综合性强,灵活多变的解法,屡屡承载压轴使命.也因此成为了高考数学是否可以达到140+的关键因素。
压轴题为什么难?难在题设条件多而杂,你能在第一遍审题的过程中就找到全部的条件?又能不能在看到条件的那一刻就反映出可能的做法?本文通过对近年来高考数学压轴题考情分析,及典型例题,归纳了解题策略,一起来看。
一、近十年全国卷压轴题考点(一)方法角度(1)函数的零点,极值点的问题:2015(I卷),2017(I、II卷), 2018( II卷,III卷)(如何选取函数,如何取点)(2)恒成立求参数范围问题:2010,2011,2013(I卷)(含参求导、分离参数、化两个函数(一直一曲))(3)函数不等式(证明和利用解决问题):2013(II卷),2014(I卷), 2017(III卷)(函数不等式的等价变形、数列求和问题的函数不等式寻找)(4)函数的值域问题(包含任意存在、派生函数值域):2015(II卷), 2015(II卷)(隐零点问题的整体代换(虚设零点))(5)双变量问题:2016(I卷), 2018( I卷)(极值点偏移问题,双变量问题的函数构造)(6)数值估计:2014(II卷)(极值点附近的x值的选择)(7)高等数学背景下的压轴题处理:(定积分法求和,极限思想的应用(罗必达法则),双变量中的拉格朗日中值定理)(二)核心函数角度(以二次函数为主)二、解题策略一熟悉掌握以下六种基本函数及其图象在遇到涉及指数函数式与对数函数式的综合题目时,可考虑将指数函数式和对数函数式分离成上述六种基本函数分析解答.二函数极值点存在不可求问题利用函数最值解不等式问题时,遇到函数的最值在极值点处,函数极值存在却不可求,这时可以考虑设出极值点,利用整体代换的思路求解.三利用超越不等式放缩牢记常用的超越不等式常见变式在需要确定函数取值范围时可以利用上述不等式将指数、对数、三角函数等超越函数放缩成非常熟悉的一次函数或反比例函数来分析求解.四方程根(函数零点)的个数问题考虑函数零点个数问题时,应根据函数的导数确定原函数的单调性和极值,可结合函数图象和参数的取值范围确定零点个数,或根据零点个数确定参数取值范围.五以高等数学为背景的试题(洛必达法则、拉格朗日中值定理等的应用)遇到含参不等式的证明时常用的两种方式:对参数分类讨论和参变量分离法. 对于参变量分离的求解策略关键在于分离后构造的函数要存在最值.如遇最值不存在的问题,可以考虑用洛必达法则求出函数的极限,再由极限值构造函数.从以上对全国卷导数压轴题的分析,可以看出全国卷导数题目的特点,看似平淡却富有神奇,注重通法又不乏技巧,要求我们在平时的学习中注重积累,重视数学思想方法的锻炼,在平时的思维训练中注重广度与深度,提升灵活运用知识解决问题的能力.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全国卷双参数压轴题的四种改编方法及 6 个精彩变式96. 2012年新课标理科第 21题——双参数问题96.(2012年新课标理科第21题)已知()f x 满足121()(1)(0)2x f x f e f x x -'=-+;(1)求()f x 的解析式及单调区间;(2)若21()2f x x ax b ≥++,求(1)a b +的最大值。
【解析】:(1)21()2x f x e x x =-+略;(2)21()(1)02x f x x ax b e a x b ≥++⇔-+-≥法一:令()()b x a e x g x-+-=1,则()()1'+-=a e x g x①若10a +<,则()0'>x g ,则()()b x a e x g x-+-=1在R 上单增,当-∞→x 时,()-∞→x f ,与()0≥x g 矛盾,舍去。
②若10a +>,由()0'=x g 得()1ln +=a x ,所以()x g 在()()1ln ,+∞-a 单减,在()()+∞+,1ln a 单增,则()()()()()()01ln 111ln min ≥-++-+=+=b a a a a g x g ,即()()()1ln 11++-+≤a a a b ,则()()()()1ln 11122++-+≤+a a a a b 令()0,ln 22>-=t t t t t h ,则()()t t t t t t h ln 21ln 2'-=-=所以()t h 在()e ,0单增,()+∞,e 单减,所以()()2max e e h t h ==,③当01=+a 时,(1)0a b +=,综上:(1)a b +最大值为2e 。
法二:即(1)x b e a x≤-+①若10a +<,则2(1)(1)(1)x a b a e a x +≥+-+,令()2(1)(1)x h x a e a x =+-+,()2'(1)(1)(1)(1)0x x h x a e a a e a ⎡⎤=+-+=+-+<⎣⎦所以当-∞→x 时,()+∞→x f ,则2(1)(1)(1)x a b a e a x +≥+-+不成立②若10a +>,则2(1)(1)(1)x a b a e a x +≤+-+(恒成立转化为求右边函数的最小值)令h (x = )(a +1)e x −(a +1)2x (首先把x 看成变量)由h ' (x = )0 得x =ln (a +1),则h (x )在(0,ln (a +1))单减,(ln (a +1)∞+,)单增,所以()22min (1)(1)ln(1)(10)h x a a a a =+-+++>(再把a 看成变量)令()0,ln 22>-=t t t t t g ,则()()t t t t t t g ln 21ln 2'-=-=所以()t g 在()e ,0单增,()+∞,e 单减,所以()()2max ee g t g ==③当01=+a 时,(1)0a b +=,综上:(1)a b +最大值为2e 。
【点评】法一转化为函数的最值,得到b a ,的不等关系,把(1)a b +视为二元函数,利用b a ,的不等关系进行消元;法二根据所求目标,在b a ,都在变的情况下,求(1)a b +的最大值,把b 移到一边,同乘以(1)a +,构造出(1)a b +,在等式的右边成功地消灭了变量b【改编1】对参数作一些变化,强化变式1:已知()()()20'211++=-x f e f x f x (1)求()x f 的解析式;(2)若()b ax x f +≥恒成立,求25+-a b 的最大值【解析】(1)由()()()20'211++=f f f 得()10'-=f 因为()()()0'21'1f ef x f x +=-,所以()()()0'210'1f e f f +=-,即()e f =1从而()22+-=x e x f x (2)令()()()b x a e b ax x f x g x-++-=--=22,当02<+a 时,()()b x a x g -++-<22,取220+->a b x ,则()00<x g ,不合题意。
当02>+a 时,则()()2'+-=a e x g x ,由()0'=x g 得()2ln +=a x ,所以()x g 在()()2ln ,+∞-a 单减,在()()+∞+,2ln a 单增,故()()()()()022ln 222ln min ≥-+++-+=+=b a a a a g x g ,即()()22ln 22+++-+≤a a a b ,所以25+-a b ()()232ln 22+-++-+≤a a a a 令2+=a t ,0>t ,()t t t t t t t h 3ln 12ln --=+-=,()22331't t t t t h -=+-=从而()t h 在()3,0单增,在()+∞,3单减,()()3ln 3max -==h t h 【改编2】改变函数的形式,以对数函数形式给出变式2:已知函数()x x xae x f x-+=ln (1)若函数()x f 的极值点只有一个,求实数a 的取值范围;(2)当0=a 时,若()m kx x f +≤()0>m 恒成立,求()m k 1+的最小值()m h 的最大值。
【答案】(1)0a ≤或1a e ≥;(2)21e【改编3】与高考热点隐极值点结合在一起变式3:已知函数()b x ax x x f +-+=1ln (1)若函数()()xx f x g 2+=为减函数,求a 的范围;(2)若()0≤x f ,求b a +的最大值【解析】(1)41-≤a (略);(2)()222111'x x ax x a x x f ++=++=,①当0>a 时,()0'>x f ,则()x f 在()+∞,0单增,取be x ->0且a x 10>时,()01ln 02000>-++=x ax b x xf (舍)②当0=a 时,()b x x x f +-=1ln ,取10>x 且b e x ->10,则()01ln 1ln 0000>+->+-=b x b x x x f (舍)③当0<a 时,012=++x ax 的041>-=∆a ,所以两根为024111>---=aa x ,024112<-+-=aa x (舍),所以()x f 在()1,0x 上单增,在()+∞,1x 单减,所以()()01ln 1111max ≤+-+==b x ax x x f x f ,即111ln 1x ax x b --≤,由01121=++x ax 得2111x x a +-=,所以111ln 1x ax x b a --≤+2111x x +-111ln 2111+-+-=x x x 令0,11>=t x t ,()1ln 2+-+=t t t t h ,()()()t t t t t t h 112211'-+=-+=所以()t h 在()1,0单减,在()+∞,1单增,则()()11=≤h t h ,所以b a +的最大值为1.【改编4】改编参数的位置变式4:设函数x b ax x f -+=)ln()(,()0,,≠∈ab R b a (1)讨论()x f 的单调性(2)若0)(≤x f 恒成立,求()1+⋅b e a的最大值【解析】:(1)①当0>a 时,则()x f 的定义域为⎪⎭⎫ ⎝⎛+∞-,ab ()b ax ax b a b ax a x f +--=-+=1',由()0'=x f 得ab a b x ->-=1所以()x f 在⎪⎭⎫ ⎝⎛--a b a b 1,单增,在⎪⎭⎫ ⎝⎛+∞-,1ab 单减②当0<a 时,则()x f 的定义域为⎪⎭⎫ ⎝⎛-∞-a b ,由()0'=x f 得a b a b x ->-=1,所以()x f 在⎪⎭⎫ ⎝⎛-∞-a b ,单减(也可以由复合函数单调性得出)(2)由(1)知:当0<a 时,取a b x -<10且00<x 时,()01ln 00>-⎪⎭⎫ ⎝⎛+-⨯>x b a b a x f ,与题意不合。
当0>a 时,()01ln 1max ≤+-=⎪⎭⎫ ⎝⎛-=a b a a b f x f ,即1ln 1+-≤+a a a b 所以()()a a e a a a b e 1ln 1+-≤+⋅,令()()x e x x x x h 1ln +-=,则()()xe x x x x x h 1ln ln '+--=令()1ln ln +--=x x x x x u ,则()x x x u 1ln '--=,()21''xx x u -=,所以()x u '在()1,0单增,在()+∞,1单减,则()()01''max <=u x u 从而()x u 在()+∞,0单减,又因为()0=e u ,所以当()e x ,0∈时,()0>x u ,即()0'>x h ;当()+∞∈,e x 时,()0<x u ,即()0'<x h ;则()x h 在()e ,0单增,在()+∞,e 单减,所以()()eee h x h ==max 变式5:设函数x b ax xf -+=)ln()(,()0,,≠∈ab R b a (1)讨论()x f 的单调性(2)若0)(≤x f 恒成立,求()1-⋅b e a 的最大值【解析】:(1)同上(2)由(1)知:当0<a 时,取a b x -<10且00<x 时,()01ln 00>-⎪⎭⎫ ⎝⎛+-⨯>x b a b a x f ,与题意不合。
当0>a 时,()01ln 1max ≤+-=⎪⎭⎫ ⎝⎛-=a b a a b f x f ,即1ln 1--≤-a a a b 所以()()a a e a a a b e 1ln 1--≤-⋅,令()()x e x x x x h 1ln --=,则()()xe x x x x x h 1ln ln '---=令()1ln ln ---=x x x x x u ,则()x x x u 1ln '--=,()21''xx x u -=,所以()x u '在()1,0单增,在()+∞,1单减,则()()01''max <=u x u 从而()x u 在()+∞,0单减,又因为()01=u ,所以当()1,0∈x 时,()0>x u ,即()0'>x h ;当()+∞∈,1x 时,()0<x u ,即()0'<x h ;则()x h 在()1,0单增,在()+∞,1单减,所以()()01max ==h x h 变式6:已知函数21()(1)e (R,e 2x f x x x ax a =+--∈是自然对数的底数)在(0,(0))f 处的切线与x 轴平行.(I )求函数()f x 的单调递增区间;(II )设21()(e 2)2x g x m x x n =+--+.若x ∀∈R ,不等式()()f x g x ≥恒成立,求2m n +的最大值.【答案】(1)略;(2)2e。