高一数学初高中衔接教学案:2乘法公式、因式分解(1)
高中数学因式分解教案

高中数学因式分解教案教学内容:因式分解教学目标:1. 了解因式分解的概念和基本规则。
2. 能够独立完成简单的因式分解计算。
3. 能够灵活运用因式分解方法解决实际问题。
教学重点:1. 因式分解的概念和基本规则。
2. 利用因式分解简化复杂的代数式。
教学难点:1. 理解因式分解的思想和方法。
2. 灵活应用因式分解解决实际问题。
教学过程:一、导入1. 老师向学生介绍因式分解的概念,并通过一个简单的例子引出因式分解的重要性和应用价值。
2. 老师引导学生思考什么是因式分解,以及为什么要进行因式分解。
二、讲解1. 老师讲解因式分解的基本规则和方法,包括提取公因式、分解整数、分解二次三角形式等。
2. 老师通过几个简单的例题演示因式分解的过程和步骤。
三、练习1. 学生完成一些基础的因式分解练习,巩固所学的知识和技能。
2. 学生在小组合作中解决一些实际问题,灵活运用因式分解方法解决复杂的代数式。
四、作业1. 布置一些因式分解的作业,让学生在家继续练习和巩固所学的知识。
2. 提醒学生将因式分解与实际问题相结合,在实际生活中灵活运用所学的方法和技能。
五、总结1. 教师总结本节课的内容,并强调因式分解在解决实际问题中的重要性和应用价值。
2. 学生可以提出问题或建议,以便教师更好地指导学生掌握因式分解的方法和技巧。
教学反思:1. 本节课采用了什么样的教学方法和手段?2. 学生对因式分解的理解和掌握情况如何?3. 学生在课后作业和实际问题解决中表现如何?4. 下节课如何更好地引导学生掌握因式分解的方法和技巧?教学反馈:1. 教师对学生在课堂上的表现进行评价和反馈。
2. 学生可以提出问题或建议,帮助教师改进教学方法和内容。
3. 教师可以对学生的学习情况进行跟踪和评估,及时调整教学策略。
初中与高中数学衔接教案

初中与高中数学衔接中的因式分解高中数学中,式子的恒等变形是非常重要的数学变换,其中因式分解尤为重要。
根据需要,在对一些式子整体分解或局部分解是高中数学学习中作为学生必须具备的基本技能,但由于初中阶段新的课程标准中对因式分解,较以往的标准降低了要求,所以刚上高中的学生来说,在学习数学中遇到或多或少的困难。
为此,本文根据高中阶段所需要的有关因式分解的要求,将初中阶段所学的因式分解的基础上加以补充和拓宽。
现行的初中教材中,因式分解只介绍两种方法,即“提取公因式法”和“运用公式法”。
实际因式分解还有两种方法需要掌握,即“十字相乘法”和“分组分解法”,而这两种方法在高中数学中都有用途,所以本文对因式分解的本质介绍的前提下,重点介绍后两种方法。
一、因式分解的概念在现行初中教材中的因式分解的概念:把一个多项式化为几个整式的乘积形式。
由概念不难看出,因式分解的本质就是经过恒等变形,将一个多项式化成几个整式的“乘积”的形式。
所以过程是恒等变形,结果是化成“乘积”的形式,所以关键是如何进行恒等变形的问题。
“提取公因式法”需要的过程是:将多项式每个项中所含的相同“结构”,即公因式提出来;“运用公式法”是从多项式的特殊“结构”,即逆向运用乘法公式的形式,运用公式分解因式。
这里还需要补充高中阶段能用到的适合分解因式的公式还有:33223322()()()()a b a b a ab b a b a b a ab b +=+-+-=-++二、十字相乘法我们来观察 22256(23)232323x x x x x x x ++=+++⨯=+++⨯ )3)(2()2(3)2(++=+++=x x x x x又有在我们学习乘法运算时有:ab x b a x b x a x +++=++)())((2 因此在分解因式中有))(()(2b x a x ab x b a x ++=+++注意观察上式的系数。
对于一个关于某个字母的二次项系数是1的二次三项式q px x ++2,它的常数项可看作两个数,a 与b 的积,而一次项系数恰是a 与b 的和,它就可以分解为(x+a)(x+b),也就是令p=a+b ,q=ab 时,))(()(22b x a x ab x b a x q px x ++=+++=++,用此方法分解因式关键在于a 与b 的值的确定。
【初高一衔接】专题02 乘法公式-走进新高一之2020年暑假初升高数学完美衔接课(解析版)

乘法公式主要讲解几个常见公式的证明,并补充一些常用的公式公式一、平方差公式公式二、完全平方公式在实际应用中,需要将公式进行变形,常见的变形如下:1.2.3.4.5.公式三、立方和公式公式四、立方差公式例1、计算例2、计算例3、已知a、b是方程(1);(2);(3);(4)【解答】(1)77;(2(3)112;(4)24【解析】∵a、b是方程a+b=7,ab=11.(1);(2;(3);乘法公式巩固练习一. 选择题1.下列式子计算正确的是()A.m3•m2=m6B.(﹣m)﹣2=C.m2+m2=2m2D.(m+n)2=m2+n2【解答】C【解析】A、m3•m2=m5,故A错误;B、(﹣m)﹣2=,故B错误;C、按照合并同类项的运算法则,该运算正确.D、(m+n)2=m2+2mn+n2,故D错误.2.如图(1),边长为m的正方形剪去边长为n的正方形得到①、②两部分,再把①、②两部分拼接成图(2)所示的长方形,根据阴影部分面积不变,你能验证以下哪个结论()A.(m﹣n)2=m2﹣2mn+n2B.(m+n)2=m2+2mn+n2C.(m﹣n)2=m2+n2D.m2﹣n2=(m+n)(m﹣n)【解答】D【解析】图(1)中,①、②两部分的面积和为:m2﹣n2,图(2)中,①、②两部分拼成长为(m+n),宽为(m﹣n)的矩形面积为:(m+n)(m﹣n),因此有m2﹣n2=(m+n)(m﹣n),3.将图甲中阴影部分的小长方形变换到图乙位置,能根据图形的面积关系得到的关系式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣b2C.b(a﹣b)=ab﹣b2D.ab﹣b2=b(a﹣b)【解答】A【解析】(a+b)(a﹣b)=a2﹣b2.4.如图1的8张长为a,宽为b(a<b)的小长方形纸片,按如图2的方式不重叠地放在长方形ABCD 内,未被覆盖的部分(两个长方形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.b=5a B.b=4a C.b=3a D.b=a【解答】A【解析】设左上角阴影部分的面积为S1,右下角的阴影部分的面积为S2,S=S1﹣S2=AD•AB﹣5a•AD﹣3a•AB+15a2﹣[BC•AB﹣b(BC+AB)+b2]=BC•AB﹣5a•BC﹣3a•AB+15a2﹣BC•AB+b(BC+AB)﹣b2=(5a﹣b)BC+(b﹣3a)AB+15a2﹣b2.∵AB为定值,当BC的长度变化时,按照同样的放置方式,S始终保持不变,∴5a﹣b=0,∴b=5a.5.已知实数x、y、z满足x2+y2+z2=4,则(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是()A.12 B.20 C.28 D.36【解答】C【解析】∵实数x、y、z满足x2+y2+z2=4,∴(2x﹣y)2+(2y﹣z)2+(2z﹣x)2=5(x2+y2+z2)﹣4(xy+yz+xz)=20﹣2[(x+y+z)2﹣(x2+y2+z2)]=28﹣2(x+y+z)2≤28∴当x+y+z=0时(2x﹣y)2+(2y﹣z)2+(2z﹣x)2的最大值是28.二.填空题6.已知(a+b)2=7,a2+b2=5,则ab的值为.【解答】﹣1【解析】∵(a+b)2=7,∴a2+2ab+b2=7,∵a2+b2=5,∴7+2ab=5,∴ab=﹣1.7.,例如=3×6﹣4×5=﹣2.按照这种运算规定,当x=时,=0.【解答】8【解析】由题意得(x+2)(x﹣2)﹣(x+4)(x﹣3)=0,x2﹣4﹣(x2+x﹣12)=0,解得x=8.8.如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,……,以此类推,当BC=n时,△BEG的面积记为S n,则S2020﹣S2019的值为.【解析】连接EC ,∵正方形ACDE 和正方形CBFG , ∴∠ACE =∠ABG =45°, ∴EC ∥BG ,∴△BCG 和△BEG 是同底(BG )等高的三角形, 即S △BCG =S △BEG , ∴当BC =n 时,Sn =2,∴S2020﹣S 2019=20202﹣20192=2020+2019)(2020﹣2019)=9. 如果,那么a+2b ﹣3c = .【解答】0【解析】原等式可变形为:a ﹣2+b+1+ ﹣5(a ﹣2)+(b+1)+ +5=0(a ﹣2+4+(b+1+1+=0(﹣2)2+(﹣1)2+ =0;即:﹣2=0,﹣1=0,﹣1=0,∴=2=1,=1,∴a ﹣2=4,b+1=1,c ﹣1=1, 解得:a =6,b =0,c =2; ∴a+2b ﹣3c =6+0﹣3×2=0.10.我国宋朝数学家杨辉在他的著作《详解九章算法》中提出“杨辉三角”(如下图),此图揭示了(a+b )n(n为非负整数)展开式的项数及各项系数的有关规律.例如:(a+b)0=1,它只有一项,系数为1;(a+b)1=a+b,它有两项,系数分别为1,1,系数和为2;(a+b)2=a2+2ab+b2,它有三项,系数分别为1,2,1,系数和为4;(a+b)3=a3+3a2b+3ab2+b3,它有四项,系数分别为1,3,3,1,系数和为8;…根据以上规律,解答下列问题:(1)(a+b)4展开式共有项,系数分别为;(2)(a+b)n展开式共有项,系数和为.【解答】(1)5;1,4,6,4,1;(2)n+1,2n【解析】(1)展开式共有5项,展开式的各项系数分别为1,4,6,4,1,(2)展开式共有n+1项,系数和为2n.三.解答题11.已知x+y=﹣6,xy=5,求下列代数式的值:(1)x+y(1﹣x);(2)x2+y2.【解答】(1)﹣11;(2)26【解析】(1)∵x+y=﹣6,xy=5,∴原式=x+y﹣xy=﹣6﹣5=﹣11;(2)∵x+y=﹣6,xy=5,∴x2+y2=(x+y)2﹣2xy=(﹣6)2﹣2×5=26.12.已知A=2x+3,B=x﹣2.化简A2﹣AB﹣2B2,并求当x=时该代数式的值.【解答】1【解析】∵A=2x+3,B=x﹣2,∴A2﹣AB﹣2B2=(2x+3)2﹣(2x+3)(x﹣2)﹣2(x﹣2)2=4x2+12x+9﹣(2x2﹣4x+3x﹣6)﹣2(x2﹣4x+4)=4x2+12x+9﹣2x2+4x﹣3x+6﹣2x2+8x﹣8=21x+7,当x=时,原式=21+7=1.13.先化简,再求值:[(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2]÷y,其中x=﹣1,y=﹣2.【解答】﹣2【解析】原式=(x2﹣4xy+4y2﹣x2+y2﹣2y2)÷y=(﹣4xy+3y2)÷y=﹣4x+3y,当x=﹣1,y=﹣2时,﹣4x+3y=4﹣6=﹣2.14. 已知,求的值.【解析】15. (1)若,,求的值;(2)若,求的值.【解答】(1)40;(2)27【解析】(1)将代入得.16. 已知三角形的三条边分别是a、b、c,且满足等式,试确定三角形的形状.【解答】等边三角形【解析】由已知得,∵a、b、c为三角形的三边长,∴,∴,即,,,,,,即三角形为等边三角形.17.前面学习中,一些乘法公式可以通过几何图形来验证,请结合下列两组图形回答问题:图①说明:左侧图形中阴影部分由右侧阴影部分分割后拼接而成;图②说明:边长为(a+b)的正方形的面积分割成如图所示的四部分.(1)请结合图①和图②分别写出学过的两个乘法公式:图①:;图②:.(2)请利用上面的乘法公式计算:①1002﹣99×101;②(60)2.【解答】(1)①(a+b)(a﹣b)=a2﹣b2,②(a+b)2=a2+2ab+b2;(2)①1,②【解析】(1)由图①可得,(a+b)(a﹣b)=a2﹣b2;由图②可得,(a+b)2=a2+2ab+b2;(2)①1002﹣99×101=1002﹣(100﹣1)×(100+1)=1002﹣(1002﹣1)=1002﹣1002+1=1;②(60)2=(60+2=3600+2+=3602.18.要说明(a+b+c)2=a2+b2+c2+2ab+2ac+2bc成立,三位同学分别提供了一种思路,请根据他们的思路写出推理过程.(1)小刚说:可以根据乘方的意义来说明等式成立;(2)小王说:可以将其转化为两数和的平方来说明等式成立;(3)小丽说:可以构造图形,通过计算面积来说明等式成立.【解答】见解析【解析】(1)小刚:(a+b+c)2=(a+b+c)(a+b+c)=a2+ab+ac+ab+b2+bc+ac+bc+c2=a2+b2+c2+2ab+2bc+2ac;(2)小王:(a+b+c)2=[(a+b)+c]2=(a+b)2+2(a+b)c+c2=a2+b2+2ab+2ac+2bc+c2;(3)小丽:如图所示:(a+b+c)2=a2+b2+c2+ab+ac+bc+ab+ac+bc,19.【阅读材料】我们知道,图形也是一种重要的数学语言,它直观形象,能有效地表现一些代数中的数量关系,而运用代数思想也能巧妙地解决一些图形问题.在一次数学活动课上,张老师准备了若干张如图1所示的甲、乙、丙三种纸片,其中甲种纸片是边长为x的正方形,乙种纸片是边长为y的正方形,丙种纸片是长为y,宽为x的长方形,并用甲种纸片一张,乙种纸片一张,丙种纸片两张拼成了如图2所示的一个大正方形.【理解应用】(1)观察图2,用两种不同方式表示阴影部分的面积可得到一个等式,请你直接写出这个等式;【拓展升华】(2)利用(1)中的等式解决下列问题.①已知a2+b2=10,a+b=6,求ab的值;②已知(2021﹣c)(c﹣2019)=2020,求(2021﹣c)2+(c﹣2019)2的值.【解答】(1)x2+y2=(x+y)2﹣2xy;(2)①13;(2)﹣4036【解析】(1)x2+y2=(x+y)2﹣2xy.(2)①由题意得:,把a2+b2=10,a+b=6代入上式得,.②由题意得:(2021﹣c)2+(c﹣2019)2=(2021﹣c+c﹣2019)2﹣2(2021﹣c)(c﹣2019)=22﹣2×2020=﹣4036.20.如图1,是一个长为2a,宽为2b的长方形,沿图中虚线剪开分成四块相同的小长方形,然后拼成一个正方形(如图2).(1)用两种不同的方法表示图2中阴影部分的面积:方法1:S阴影=.方法2:S阴影=.(2)写出(a+b)2,(a﹣b)2,ab这三个代数式之间的等量关系为.(3)①若(2m+n)2=14,(2m﹣n)=6,则mn的值为.②已知x+y=10,xy=16,求x﹣y的值.【解答】(1)4ab,(a+b)2﹣(a﹣b)2;(2)(a+b)2﹣(a﹣b)2=4ab;(3)①40,②x﹣y=6,或x﹣y=﹣6【解析】(1)方法1:图2的阴影部分面积等于图1的面积,即2a×2b=4ab,方法2:大正方形与小正方形的面积差,即(a+b)2﹣(a﹣b)2,(2)由(1)可得:(a+b)2﹣(a﹣b)2=4ab,(3)①由(2)得,4mn=(m+n)2﹣(m﹣n)2=142﹣62=(14+6)(14﹣6)=20×8=160,∴mn=160÷4=40,②由(x+y)2﹣(x﹣y)2=4xy,可得:(x﹣y)2=(x+y)2﹣4xy,把x+y=10,xy=16代入得,(x﹣y)2=102﹣4×16=36,∴x﹣y=6,或x﹣y=﹣6.21.请认真观察图形,解答下列问题:(1)根据图中条件,试用两种不同方法表示两个阴影图形的面积的和.方法1:;方法2:;(2)从中你能发现什么结论?请用等式表示出来:;(3)利用(2)中结论解决下面的问题:若ab=2,a+b=4,求a2+b2的值.【解答】(1)a2+b2,(a+b)2﹣2ab;(2)a2+b2=(a+b)2﹣2ab;(3)12【解析】(1)方法1,阴影部分的面积等于两个正方形的面积和,即,a2+b2,方法2,阴影部分的面积等于总面积减去两个长方形的面积,即,(a+b)2﹣2ab,(2)两种方法求得的结果相等,因此有,a2+b2=(a+b)2﹣2ab,(3)由(2)得,ab=2,a+b=4,求a2+b2=(a+b)2﹣2ab=16﹣4=12.22.如图是一个长为4a、宽为b的长方形,沿中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图2).(1)图2中的阴影部分面积为:(用a、b的代数式表示);(2)观察图2,请你写出(a+b)2、(a﹣b)2、ab之间的等量关系是;(3)利用(2)中的结论,若x+y=5,xy=,求(x﹣y)2的值;(4)实际上通过计算图形的面积可以探求相应的等式,如图3,请你写出这个等式;(5)如图,点C是线段AB上的一点,分别以AC、BC为边在AB的同侧作正方形ACDE和正方形CBFG,连接EG、BG、BE,当BC=1时,△BEG的面积记为S1,当BC=2时,△BEG的面积记为S2,…,以此类推,当BC=n时,△BEG的面积记为S n,则S2020﹣S2019的值为.【解答】(1)(a+b)2﹣4ab或(a﹣b)2;(2)(a+b)2﹣(a﹣b)2=4ab;(3)16;(4)(3a+b)(a+b)=3a2+b2+4ab;(5)2019.5【解析】(1)图2中,阴影部分的边长为(a﹣b)的正方形,因此面积为(a﹣b)2,也可以从边长为(a+b)的正方形面积减去图1的面积,即(a+b)2﹣4ab=a2+b2﹣2ab,(2)通过(1)的计算可知,(a+b)2﹣(a﹣b)2=4ab,(3)(x﹣y)2=(x+y)2﹣4xy=26﹣9=16,(4)整体长方形的面积为(3a+b)(a+b),图中八个四边形的面积和为3a2+b2+4ab,因此有:(3a+b)(a+b)=3a2+b2+4ab,(5)如图,连接EC,则EC∥BG,如图所示:∴S△BEG=S△CBG2,∴S2020﹣S2019=20202﹣20192,=2020+2019)(2020﹣2019),=2019.5,。
乘法公式教学设计-2024年初升高数学衔接教材

1. 针对乘法公式的适用范围和条件,需要进行更深入的讲解和练习,让学生们能够熟练掌握和运用。
2. 加强对学生的个别辅导,关注那些在乘法公式理解和运用方面存在困难的学生,帮助他们提高。
4. 乘法公式的推导过程:通过观察和推理,我们可以发现平方差公式和完全平方公式的规律,并给出公式的表达式。
5. 乘法公式的运用步骤和注意事项:在运用乘法公式进行计算时,我们需要注意公式的适用范围和条件,以及公式的正确运用步骤。
6. 乘法公式解决实际问题:乘法公式不仅可以用于计算题目,还可以用于解决实际问题。我们可以运用乘法公式计算几何图形的面积、物理量的计算等问题,培养运用数学知识解决实际问题的能力。
(2)引导学生总结解决实际问题的方法和步骤。
5. 课堂小结(5分钟):引导学生回顾本节课的学习内容,巩固对乘法公式的理解和运用。
6. 作业布置(5分钟):布置一些相关的练习题目,让学生课后巩固所学知识。
7. 课后反思(5分钟):教师进行课后反思,总结课堂教学的优点和不足,为下一步的教学做好准备。
六、知识点梳理
三、学情分析
在教学乘法公式之前,我们对学生的层次、知识、能力、素质等方面进行了全面的了解和分析,以便更好地制定教学策略和目标。
1. 学生层次:本节课面向的是初升高阶段的学生,他们在初中阶段已经接触过一些基本的数学知识,包括代数、几何等。学生的数学基础层次参差不齐,部分学生对代数知识有一定的掌握,而部分学生可能在这方面存在不足。
(2)完全平方公式:同样引导学生通过观察和推理,发现完全平方公式的规律,并给出公式的表达式。
高中的数学因式分解教案

高中的数学因式分解教案
教学目标:
1. 学生能够理解因式分解的概念及意义。
2. 学生能够通过列举和分解的方法将一个多项式化简成最简形式。
3. 学生能够应用因式分解来解决实际问题。
教学准备:
1. 教师准备黑板、彩色粉笔或投影仪。
2. 教师准备因式分解的例题和练习题。
3. 学生准备笔和笔记本。
教学步骤:
一、导入 (5分钟)
1. 教师向学生介绍因式分解的概念及重要性。
2. 教师通过一个示例让学生了解因式分解的作用。
二、讲解 (15分钟)
1. 教师向学生介绍因式分解的基本方法和步骤。
2. 教师通过例题演示如何进行因式分解。
3. 教师解释因式分解的意义和应用。
三、练习 (20分钟)
1. 学生在教师发放的练习题上尝试进行因式分解。
2. 教师巡视课堂,辅导学生解决问题。
四、讲评 (10分钟)
1. 教师找学生上台解答因式分解的题目。
2. 教师对学生的解答进行评价和讲解。
3. 学生互相讨论,共同找出解题的巧妙方法。
五、作业布置 (5分钟)
1. 教师布置相关的因式分解作业。
2. 提醒学生认真完成作业,认真复习今天所学知识。
教学反思:
通过本节课的教学,学生对因式分解有了更深入的理解,掌握了相关的方法和技巧。
在今后的学习和实践中,学生能够灵活运用因式分解来解决各种数学问题。
《 初、高中衔接:因式分解》教案

分 解 因 式因式分解的主要方法有:提取公因式法、公式法、分组分解法、十字相乘法,另外还应了解求根法。
我们在初中已经学习过了下列一些乘法公式:(1)平方差公式 22()()a b a b a b +-=-;(2)完全平方公式 222()2a b a a b b ±=±+. 我们还可以通过证明得到下列一些乘法公式:(1)立方和公式 2233()()a b a a b b a b+-+=+; (2)立方差公式 2233()()a b a a b b a b-++=-; (3)三数和平方公式 2222()2()a b c a b c a b b c a c++=+++++; (4)两数和立方公式 33223()33a b a a b a b b +=+++; (5)两数差立方公式 3322()33a b a a b a b b -=-+-. 对上面列出的五个公式,有兴趣的同学可以自己去证明. 说明:前面有*的供选用1.提取公因式法与分组分解法、公式法 例1 分解因式:(1)2(y -x )2+3(x -y )(2)mn (m -n )-m (n -m )222223223292442456()(1)x y xy a ab b a b x x y xy ya b a ab b --+++----++---(3)(4)()()2.十字相乘法例2 分解因式:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.解:(1)如图1.2-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).-1 -2 x x 图1.2-1-1 -2 1 1 图1.2-2-2 6 1 1 图1.2-3 -ay -by x x 图1.2-4说明:今后在分解与本例类似的二次三项式时,可以直接将图1.2-1中的两个x 用1来表示(如图1.2-2所示).(2)由图1.2-3,得x 2+4x -12=(x -2)(x +6). (3)由图1.2-4,得22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图1.2-5所示).*例3 因式分解:(双十字相乘法)22222(1)282143(2)534(3)2x xy y x y x y x y xy y x y +-++--+++++--3.关于x 的二次三项式ax 2+bx +c (a ≠0)的因式分解.(求根法)若关于x 的方程20(0)ax bx c a ++=≠的两个实数根是1x 、2x ,则二次三项式2(0)ax bx c a ++≠就可分解为12()()a x x x x --.例3 把下列关于x 的二次多项式分解因式:(1)221x x +-;(2)2244x xy y +-. 解: (1)令221x x +-=0,则解得11x =-21x =-,∴221x x +-=(1(1xx ⎡⎤⎡⎤-----⎣⎦⎣⎦=(11x x +-++.(2)令2244x xy y +-=0,则解得1(2xy =-+,1(2x y =--, ∴2244x xy y +-=[2(1][2(1]x y x y ++.-1 1x y图1.2-5练 习1.选择题:(1)多项式22215x xy y --的一个因式为 ( ) (A )25x y - (B )3x y - (C )3x y + (D )5x y -(2)若212x mx k ++是一个完全平方式,则k 等于 ( ) (A )2m (B )214m (C )213m (D )2116m(3)不论a ,b 为何实数,22248a b a b +--+的值 ( )(A )总是正数 (B )总是负数(C )可以是零 (D )可以是正数也可以是负数2.填空:(1)221111()9423a b b a -=+( ); (2)(4m + 22)164(m m =++ );(3 ) 2222(2)4(a b c a b c +-=+++ ).3.分解因式:(1)5(x -y )3+10(y -x )2()()22222c ab a b c +-+()·()()()422232x x y x x y xy y x ---+-() 44322a a -()(5)8a 3-b 3; (6)x 2+6x +8;(7)4(1)(2)x y y y x -++- (8)424139x x -+;()()422422292033710510596a ab b x x x x -+-+--()()*(11)2235294x xy y x y +-++-.*(12)222456x xy y x y +--+-.4.在实数范围内因式分解:(1)253x x -+ ; (2)23x --;(3)2234x xy y +-; (4)222(2)7(2)12x x x x ---+.5.分解因式:x 2+x -(a 2-a ).。
初升高衔接乘法公式与因式分解演示文稿

第五页,总共二十五页。
练习2 计算 : ( x 1)( x - 1)( x2 x 1)( x2 x 1)
解法一:原式=(x2 -1)( x2 1)2 -x2 =(x2 -1)( x4 x2 1) =x6 -1
初升高衔接乘法公式与因式分 解演示文稿
第一页,总共二十五页。
优选初升高衔接乘法
公式与因式分解Ppt
第二页,总共二十五页。
初中所学过的乘法公式:
1、平方差公式
(a b)(a b)=a2 b2
2、完全平方公式
(a b)2 a2 2ab b2
(a b)2 a2 2ab b2
第三页,总共二十五页。
因式分解的方法较多,除了初中课本涉及到的提取公
因式法和公式法(平方差公式和完全平方公式)外,还有公 式法(立方和、立方差公式)、十字相乘法、分组分解法 、配方法、拆(添)项法等等.
第十二页,总共二十五页。
一、公式法(立方和、立方差公式)
a3 b3 (a b)(a2 ab b2 ) a3 b3 (a b)(a2 ab b2 )
第十六页,总共二十五页。
因式分解: 2x2 4xy 2 y2 8z2 解 2x2 4xy 2 y2 8z2 2(x2 2xy y2 4z2 )
: 2[(x y)2 (2z)2 ]
2(x y 2z)(x y 2z)
第十七页,总共二十五页。
三、十字相乘法 1. x2 ( p q)x pq 型的因式分解
1 2
5 4
第二十二页,总共二十五页。
【初升高数学衔接教材讲义系列】第01章 乘法公式与因式分解(解析版)

第1章 乘法公式与因式分解【知识衔接】————初中知识回顾————1.乘法公式我们在初中已经学习过了下列一些乘法公式: (1)平方差公式 22()()a b a b a b +-=-; (2)完全平方公式 222()2a b a ab b ±=±+.2.因式分解因式分解是代数式的一种重要的恒等变形,初中课本涉及到的常用方法主要有:提取公因式法和公式法(平方差公式和完全平方公式),因式分解与整式乘法是相反方向的变形.在分式运算、解方程及各种恒等变形中起着重要的作用.是一种重要的基本技能.————高中知识链接————我们知道乘法公式可以使多项式的运算简便,进入高中后,我们会用到更多的乘法公式:(3)立方和公式 2233()()a b a ab b a b +-+=+; (4)立方差公式 2233()()a b a ab b a b -++=-;(5)三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++; (6)两数和立方公式 33223()33a b a a b ab b +=+++; (7)两数差立方公式 33223()33a b a a b ab b -=-+-. 我们用多项式展开证明式子(3),其余请自行证明:学-科网证明:3332222322))((b a b ab b a ab b a a b ab a b a +=+-++-=+-+因式分解的方法较多,除了初中课本涉及到的提取公因式法和公式法(平方差公式和完全平方公式)外,还有公式法(立方和、立方差公式)、十字相乘法和分组分解法等等.【经典题型】初中经典题型1.如果,那么代数式的值是()A.6 B.2 C.-2 D.-6【答案】A【点睛】本题考查了代数式求值,涉及到单项式乘多项式、平方差公式、合并同类项等,利用整体代入思想进行解题是关键.2.若n满足(n-2011)2+(2012-n)2=1,则(2012-n)(n-2011)等于()A.-1 B.0 C.D.1【答案】B【解析】分析:首先设a=n-2011,b=2012-n,然后根据完全平方公式得出ab的值,从而得出答案.详解:设a=n-2011,b=2012-n,∴a+b=1,,∴∴ab=1,即(n-2011)(2012-n)=1,故选B.【点睛】本题主要考查的是完全平方公式的应用,属于中等难度的题型.解决这个问题的关键就是得出两个代数式的和为1,这是一个隐含条件. 3.已知:,则代数式的值是______.【答案】8【解析】分析:先将所求式子化简,然后将a 2+a =4整体代入计算即可求答案. 详解:==,∵,∴原式=4+4=8. 故答案为:8.【点睛】本题考查了整式的加减运算、整体思想.正确进行计算,并利用整体思想将式子的值直接代入是解题的关键.4.已知x 2﹣2x ﹣1=0.求代数式(x ﹣1)2+x (x ﹣4)+(x ﹣2)(x+2)的值. 【答案】0【解析】分析:根据整式的运算法则即可求出答案. 详解:原式=x 2-2x-1+x 2-4x+x 2-4 =3x 2-6x-3 ∵x 2-2x-1=0∴原式=3(x 2-2x-1)=0【点睛】本题考查整式的运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型. 5.把下列各式分解因式:(1)224y x - (2)338y x -(2)22312123xy y x x +- (4)2232n mn m -+(5)b b a a 44222+-- (6)2222ab axy ay ax --+6.把下列各式因式分解:(1)x 2-3x +2; (2)x 2+4x -12; (3)22()x a b xy aby -++; (4)1xy x y -+-.【解析】(1)如图1.1-1,将二次项x 2分解成图中的两个x 的积,再将常数项2分解成-1与-2的乘积,而图中的对角线上的两个数乘积的和为-3x ,就是x 2-3x +2中的一次项,所以,有x 2-3x +2=(x -1)(x -2).说明:今后在分解与本例类似的二次三项式时,可以直接将图1中的两个x 用1来表示(如图2所示). (2)由图3,得x 2+4x -12=(x -2)(x +6).(3)由图4,得 22()x a b xy aby -++=()()x ay x by -- (4)1xy x y -+-=xy +(x -y )-1=(x -1) (y+1) (如图5).7.求证:四个连续正整数3,2,1,+++n n n n (其中n 表示正整数)的积与1的和是完全平方数. 证明:(方法一)由题意,1)]2)(1)][(3([1)3)(2)(1(++++=++++n n n n n n n n2222222)13(1)3(2)3(1]2)3)[((3(++=++++=++++=n n n n n n n n n n-1-2 x x 图1-1 -21 1图2-2 61 1图3-ay -byx x图4-1 1x y图5所以得证.说明:将n n 32+看成整体进行配方即可.(方法二)由题意得,161161)3)(2)(1(234++++=++++n n n n n n n n 要证明上式是完全平方数,只要证明上式等于一个式子的平方. 令上式22)1(++=an n ,从而求得3=a ,所以得证.高中经典题型1.计算:(1))416)(4(2m m m +-+(2))41101251)(2151(22n mn m n m ++-(3))164)(2)(2(24++-+a a a a (4)22222))(2(y xy x y xy x +-++说明:(1)在进行代数式的乘法、除法运算时,要观察代数式的结构是否满足乘法公式的结构.(2)为了更好地使用乘法公式,记住1、2、3、4、…、20的平方数和1、2、3、4、…、10的立方数,是非常有好处的.2.已知)3)(32(1437622c y x b y x a y x y xy x +++-=+++--,试确定c b a ,,的值. 解:由题设,得)3)(32(1437622c y x b y x a y x y xy x +++-=+++--bc y c b x c b y xy x +-+++--=)3()23(37622比较对应项系数,得⎪⎩⎪⎨⎧==-=+a bc c b c b 131423,所以⎪⎩⎪⎨⎧===144c b a .3.把2105ax ay by bx -+-分解因式.【解析】把多项式的四项按前两项与后两项分成两组,并使两组的项按x 的降幂排列,然后从两组分别提出公因式2a 与b -,这时另一个因式正好都是5x y -,这样可以继续提取公因式.21052(5)(5)(5)(2)ax ay by bx a x y b x y x y a b -+-=---=--说明:用分组分解法,一定要想想分组后能否继续完成因式分解,由此合理选择分组的方法.本题也可以将一、四项为一组,二、三项为一组,同学不妨一试. 4.把2222()()ab c d a b cd ---分解因式.【解析】按照原先分组方式,无公因式可提,需要把括号打开后重新分组,然后再分解因式.22222222()()ab c d a b cd abc abd a cd b cd---=--+2222()()abc a cd b cd abd =-+-()()()()ac bc ad bd bc ad bc ad ac bd =-+-=-+说明:由此例可以看出,分组时运用了加法结合律,而为了合理分组,先运用了加法交换律,分组后,为了提公因式,又运用了分配律.由此可以看出运算律在因式分解中所起的作用. 5.把22x y ax ay -++分解因式.【解析】把第一、二项为一组,这两项虽然没有公因式,但可以运用平方差公式分解因式,其中一个因式是x y +;把第三、四项作为另一组,在提出公因式a 后,另一个因式也是x y +.22()()()()()x y ax ay x y x y a x y x y x y a -++=+-++=+-+6.把2222428x xy y z ++-分解因式.【解析】先将系数2提出后,得到22224x xy y z ++-,其中前三项作为一组,它是一个完全平方式,再和第四项形成平方差形式,可继续分解因式.学科!网22222224282(24)x xy y z x xy y z ++-=++-222[()(2)]2(2)(2)x y z x y z x y z =+-=+++-说明:如果一个多项式的项分组后,各组都能直接运用公式或提取公因式进行分解,并且各组在分解后,它们之间又能运用公式或有公因式,那么这个多项式就可以分组分解法来分解因式.【实战演练】————先作初中题 —— 夯实基础————A 组1.如果多项式29x mx -+是一个完全平方式,则m 的值是2.如果多项式k x x ++82是一个完全平方式,则k 的值是 3.()()22_________a b a b +--= ()222__________a b a b +=+-4.已知17x y +=,60xy =,则22x y += 5.把下列各式因式分解(1) 276x x -+ (2) 21336x x ++ (3) 2524x x +- (4) 2215x x -- 6.把下列各式因式分解: (1) 226x xy y +-(2) 222()8()12x x x x +-++————再战高中题 —— 能力提升————B 组1.填空,使之符合立方和或立方差公式或完全立方公式:(1)3(3)()27x x -=-; (2)3(23)()827x x +=+ (3)26(2)()8x x +=+; (4)3(32)()278a a -=-(5)3(2)()x +=; (6)3(23)()x y -=2.运用立方和与立方差公式计算:(1)2(3)(39)y y y +-+ (2)224224()()x y x x y y -++ 3.计算: (1) 2(34)x y z --(2) 2(21)()(2)a b a b a b +---+(3) 222()()()a b a ab b a b +-+-+(4) 221(4)(4)4a b a b ab -++4.若112x y -=,则33x xy y x xy y+---的值为( ) A .35B .35-C .53-D .535.若2210x x +-=,则221x x +=____________;331x x -=____________. 6.已知2310x x -+=,求3313x x++的值.7.展开3(2)x -8.计算(1)(2)(3)x x x ---9.计算()()()()x y z x y z x y z x y z ++-++-++- 10.把下列各式分解因式:(1) 2222()()ab c d cd a b -+-(2) 22484x mx mn n -+-(3) 464x + (4) 32113121x x x -+-(5) 3223428x xy x y y --+11.已知2,23a b ab +==,求代数式22222a b a b ab ++的值. 12.证明:当n 为大于2的整数时,5354n n n -+能被120整除. 13.已知0a b c ++=,求证:32230a a c b c abc b ++-+=.第1章 乘法公式与因式分解答案1.乘法公式答案A 组1.6± 2.16 3.4ab ; 2ab 4.1695.(1)6(1)(6),(1)(6)7=-⨯--+-=-,∴ 276[(1)][(6)](1)(6)x x x x x x -+=+-+-=--.6.(1) 222266(3)(2)x xy y x yx x y x y +-=+-=+-.(2) 22222()8()12(6)(2)x x x x x x x x +-++=+-+-(3)(2)(2)(1)x x x x =+-+-.B 组1.(1)239x x ++ (2)2469x x -+ (3)4224x x -+(4)2964a a ++ (5)326128x x x +++ (6)32238365427x x y xy y -+-2.(1)327y - (2)66x y -3. (1) 2229166824x y z xy xz yz ++--+ (2) 22353421a ab b a b -++-+(3) 2233a b ab --(4)331164a b - 4. D5.解:2210x x +-=,0≠∴x ,212x x ∴-=-,12x x∴-=-. (1)222211()2(2)26x x x x +=-+=-+=; (2)331x x -2211()(1)2(61)14x x x x=-++=-⨯+=-.6.解:2310x x -+= 0≠∴x 31=+∴xx原式=22221111()(1)3()[()3]33(33)321x x x x x x x x+-++=++-+=-+=7.326116x x x -+-8.43210355024x x x x -+-+ 9.444222222222x y z x y x z y z ---+++10.22()(),(42)(2),(48)(48),bc ad ac bd x m n x n x x x x +--+--+++ 2(1)(3)(7),(2)(2)x x x x y x y ----+. 11.28312.5354(2)(1)(1)(2)n n n n n n n n -+=--++13. 322322()()a a c b c abc b a ab b a b c ++-+=-+++。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省泰兴中学高一数学教学案(2)
初高中衔接2:乘法公式、因式分解(1)
班级 姓名
一、基础知识
1、乘法公式
⑴平方差公式
22()()a b a b a b +-=-; ⑵完全平方公式
222()2a b a ab b ±=±+. ⑴立方和公式
2233()()a b a ab b a b +-+=+; ⑵立方差公式
2233()()a b a ab b a b -++=-; ⑶三数和平方公式 2222()2()a b c a b c ab bc ac ++=+++++;
⑷两数和完全立方公式 33223()33a b a a b ab b +=+++;
⑸两数差完全立方公式 33223
()33a b a a b ab b -=-+-
2.因式分解的方法
(1) 提取公因式法:把各项都含有的公因式提到括号外面;
(2) 运用公式法:逆用乘法公式;
(3) 分组分解法:利用分组分解法,关键是选择适当的、合理的分组方法; (4)十字相乘法:①二次项系数为1的二次三项式:
))(()(2
q x p x pq x q p x ++=+++进行分解。
特点:(1)二次项系数是1; (2)常数项是两个数的乘积;(3)一次项系数是常数项的两因数的和。
②二次项系数不为1的二次三项式 c bx ax ++2
条件:(1)21a a a = 1a 1c
(2)21c c c = 2a 2c
(3)1221c a c a b += 1221c a c a b +=
分解结果:c bx ax ++2=))((2211c x a c x a ++
二、例题精讲
例1:计算:
⑴、)749)(7(2x x x +-+
⑵、)93)(3(2
++-y y y
⑶、)1)(1)(1)(1(2
2+-+++-a a a a a a
例2:⑴、已知4)2()2(2-=---b a a a ,求代数式ab b a -+22
2的值。
⑵、已知4a b c ++=,4ab bc ac ++=,求222a b c ++的值。
例3:因式分解:
⑴、bn bm an am +++ (2) bx by ay ax -+-5102
(3) ay ax y x ++-2
2 (4) 2222c b ab a -+-
(5)m n mn n m -+-+222 (6) x yz z y x 2122
22-+---
例4:因式分解
(1)652++x x (2)101132
+-x x
(3)221288b ab a -- (4) 2322+-xy y x
江苏省泰兴中学高一数学作业(2)
班级 姓名 得分
1、221111()9423
a b b a -=+( ); 2、(4m + 22)164(m m =++ );
3、2222(2)4(a b c a b c +-=+++ ).
4、1819(2(2=_________________;
5、若212
x mx k ++是一个完全平方式,则k 关于m 的表达式是 6、不论a ,b 为何实数,总有22248a b a b +--+ 0(填“,=><或”)
7、若48
21-可以被60到70之间的两个数整除,则这两个数是
8、写出满足等式442214y x x y ++=的所有整数对(,)x y 是
9、⑴、已知1x y +=,求333x y xy ++的值。
⑵、在ABC ∆中,已知三边c b a ,,满足ca bc ab c b a ++=++222,试判断该三角形的形状。
10、已知014642222=+-+-++z y x z y x ,求z y x ++的值。
⑷、已知100,1033=+=+y x y x ,试求2
2y x +的值。
⑸、已知3=-b a ,求ab b a 933--的值。
11、因式分解:
⑴、c b ac ab -+-
⑵、c b ac ab 6834-+- ⑶、25912422-++b ab a
⑷、2234m mn n +- ⑸、22916y xy x -+ ⑹、y xy y x 862-+-
12、因式分解:
(1)、161024+-p p
(2)、40)(3)(2----y x y x
(3)、222(3)2(3)8x x x x ----
(4)、12)2(7)2(222+---x x x x
(5)、2)1(6)1(75+-++a a
(6)、2224210173y x xy ab b a +-。