粉末冶金原理及模具计算要求

合集下载

粉末冶金模具设计

粉末冶金模具设计
压制时,成形主体的下模冲向上推移粉末,或者 成形台阶的上模冲将粉末和成形台阶的浮动下模 冲向下推移,或者利用组合上模冲将粉末和带内 台阶浮动阴模或芯杆向下推移,把台阶部分的粉 末推到所要求的位置。
2020/11/29
粉末冶金模具设计
•带斜面的第五类压坯
当压坯斜面与垂直方向的夹角超过25°~30°,或 者具有多个斜面和平面时,一般按照斜面和平面的 分界线设计组合下模冲。斜面的装粉高度等于斜面 的压坯平均高度乘以粉末填装系数。
x=(d2-d1)h/d1
或者 y=x/l=100(d2-d1)/d1(k-1)
其中:d2为要求的压坯平均密度;d1为单向压 制的平均密度;h为压坯高度;k为压缩比;l 为装粉高度与压坯高度之差。
2020/11/29
粉末冶金模具设计
非同时双向压制原理为压模结构设计提供了 压坯密度均匀分布的理论基础;也为粉末压 机的设计提供了重要基础,使得多凸轮和凸 轮曲柄粉末压机更好地满足粉末压坯密度均 匀分布的要求。
2020/11/29
粉末冶金模具设计
摩擦压制
在压制过程中,让阴模或芯杆与样品侧面产 生同向相对移动,即运动得更快,借助粉末 与模壁之间的摩擦,带动与阴模或芯杆接触 的粉末层移动,从而可改善沿压坯高度方向 的密度分布均匀性。
2020/11/29
粉末冶金模具设计
2020/11/29
粉末冶金模具设计
2020/11/29
距离,用先压缩高区粉末再同时压缩高低区粉末的
方法,使压坯各横截面上的粉末受到相同的压缩程
度。
2020/11/29
粉末冶金模具设计
2020/11/29
粉末冶金模具设计
如果压坯中间带内、外台阶,除不同横截面需要 设计组合下模冲外,还有根据粉末移动成形法的 要求设计组合上模冲。

粉末冶金:钢压模具设计

粉末冶金:钢压模具设计
➢ 形状复杂材料用易加工和热处理变形小的材料 ➢ 软金属粉末用廉价材料,硬金属粉末用耐磨性
好的材料 ➢ 高密度、高精度件用耐磨性好的材料 ➢ 整形模用耐磨性好的材料
绘制模具装配图和零件图
➢ 绘制模具装配图和零件图 ➢ 标注尺寸偏差和形位公差 ➢ 标注其他加工要求
绘制模具装配图和零件图
模具示例
模具示例
设计模具结构
根据制品图纸设计坯件,选择压机和压制方式,设计 模具结构草图 ➢ 从生产工艺、压制成形和经济成本方面分析制品图纸 及技术要求,看是否适于用粉末冶金方法生产 ➢ 根据制品图纸及技术要求和粉末冶金生产工艺的特点, 设计坯件的几何形状、精度和密度 ➢ 为了使制品适于压制成形,或为了简化模具结构,常 对制品形状进行修改,设计出适合于压制的压坯 ➢ 在设计坯件形状的同时要确定压制方向,然后根据压 坯的形状、高径比、生产批量和压机来选择压制方式、 压模结构类型
粉末成形模具分类
➢ 压模、精整模、复压模、锻模、挤压模、 热压模、等静压模、粉浆浇注模、松装 烧结模
➢ 钢模、硬质合金模、石墨模、塑料橡皮 模和石膏模
钢压模具结构
钢压模具一般由 阴模、模冲、芯棒 组成
钢压模具结构
1—模柄 2,9—法兰圈 3—上模冲 4—模套 5—阴模 6—模座 7—弹簧 8—下模冲 10—下模冲座 11—压垫 12—下模板 13—顶杆 14—顶板
➢ 制品生产工艺流程及工艺参数:粉末混合料成分、杜 装密度、流动性、压制性、单位压制压力、压坯密度、 压缩比、弹性后效、烧结收缩率、精整余量、机加工 余量、复压装模间隙和压下率等
➢ 压机类型及主要技术参数:公称压力、脱模压力、压 机行程、每分钟压制次数、工作台面积、压机自动化 程度和安全保险装置等

粉末冶金整形模具设计步骤

粉末冶金整形模具设计步骤

粉末冶金整形模具设计步骤一、了解产品要求。

咱得先知道这个粉末冶金件整形成啥样呀。

就像给人做衣服,得知道尺寸、款式那些要求。

要清楚产品的形状、尺寸精度、表面粗糙度这些关键的东西。

这是基础中的基础呢,要是这个都搞不清楚,后面就全乱套啦。

比如说产品是个小齿轮,那齿的形状、大小、间距这些都得明明白白的。

二、选择合适的模具材料。

模具材料可重要啦。

这就像盖房子选砖头一样,要选结实耐用的。

要考虑到粉末冶金的压力呀、摩擦呀这些情况。

一般来说,得选硬度高、耐磨性好、韧性也不错的材料。

要是选错了,模具可能很快就坏掉了,那可就亏大了。

像一些合金钢就常常被选来做粉末冶金整形模具的材料呢。

三、确定模具结构。

这一步就像是给房子设计架构。

是选单工位的模具还是多工位的呢?如果产品形状简单,单工位可能就够了;要是复杂些,多工位可能更合适。

还要考虑脱模的方式,得让整形后的产品能顺利地从模具里出来,总不能让它卡在里面吧。

比如说用顶出装置或者侧向抽芯之类的。

四、计算模具的尺寸。

这就需要咱们动动脑筋啦。

要根据产品的尺寸、收缩率这些来计算模具型腔的尺寸。

就像做蛋糕,要根据蛋糕最终的大小来确定模具的大小。

而且还要考虑到模具的加工余量,不然加工出来尺寸不对就麻烦喽。

五、设计模具的细节部分。

这里面包括像排气槽的设计呀,冷却系统的设计。

排气槽就像是给模具喘气的通道,如果没有排气槽,空气排不出去,可能会影响产品的质量呢。

冷却系统也很关键,要是模具温度太高,也会影响整形的效果和模具的寿命。

六、校对审核。

这就像是检查作业一样。

自己先检查一遍,看看有没有哪里设计得不合理。

也可以找同事或者经验丰富的人帮忙看看,多一双眼睛就多一份保障嘛。

可不能让有问题的设计进入生产环节,不然到时候出了问题就不好收拾啦。

粉末冶金整形模具设计虽然有点复杂,但只要一步一步来,把每个环节都考虑周到,就一定能设计出好用的模具啦。

粉末冶金模具设计说明书样板

粉末冶金模具设计说明书样板

粉末冶金模具设计说明书样板粉末冶金模具设计说明书1、引言本文档旨在提供粉末冶金模具设计的详细说明,包括设计目的、设计原则、设计流程以及设计结果等内容。

2、设计目的本次设计旨在开发一种可用于粉末冶金工艺的模具,以满足客户对于产品质量、生产效率和成本控制等方面的要求。

3、设计原则在模具设计过程中,应遵循以下原则:3.1 精确度和稳定性原则:模具应具备高度的精确度和稳定性,以确保产品的质量和尺寸的一致性。

3.2 工艺可行性原则:模具设计应基于现有的粉末冶金工艺和设备,确保设计方案的可行性和实施的可行性。

3.3 成本效益原则:模具设计应考虑材料成本、制造成本和维护成本,以降低总体生产成本。

4、设计流程4.1 产品需求分析:了解客户对于产品性能、尺寸和表面质量等方面的要求,获得设计的基础数据。

4.2 材料选择:根据产品需求和工艺要求,选择适合的材料,包括模具材料和涂层材料等。

4.3 模具结构设计:设计模具的整体结构和零部件结构,考虑模具的可装卸性、易维护性和生产效率等。

4.4 模具零部件设计:设计模具的各个零部件,包括模具芯和模具腔等,确保其几何形状和尺寸的准确性。

4.5 涂层选择和设计:根据模具的使用环境和工艺要求,选择合适的涂层材料,并设计涂层的厚度和结构等。

4.6 模具制造和调试:根据设计图纸和规范,制造和组装模具,并进行调试和试产,以确保模具的正常使用。

4.7 模具维护和管理:建立模具维护和管理体系,包括清洗、保养和修复等工作,延长模具的使用寿命。

5、设计结果基于以上设计流程和原则,我们提供了粉末冶金模具的设计方案。

设计方案包括模具结构图纸、材料选择和涂层设计等内容,请参阅附件1:附件:1、粉末冶金模具设计图纸本文涉及的法律名词及注释:1、粉末冶金:一种通过将金属粉末压制成形并经过烧结过程得到制品的金属加工工艺。

2、模具:用于塑料、金属等物质加工中的一种工具,用于赋予材料所需的形状和尺寸。

粉末冶金模具设计说明书

粉末冶金模具设计说明书

粉末冶金模具设计说明书粉末冶金模具设计说明书一、设计任务生产一批两个台阶面的钢制模坯,如图所示,数据要求:A=10mm,B=30mm,C=20mm,D=20mm,E=10 mm,F=10mm。

二、压坯设计1.产品零件分析该产品采用Fe-0.05C(50钢),属于铁基制品,其制品密度依靠其较高的压坯密度来达到,因此在压制成型时需要采用较高的单位压力(一般在300~800MPa)。

由于该产品零件形状比较简单,采用简单的上下模冲压制成型。

2.松装密度和压坯密度的确定采用水雾化铁粉压制,松装密度范围2.5~3.2,取常用值2.8,即松装密度:ρ松=2.8g/cm3压坯密度:γ压=6.6g/cm3压缩比:C=γ/ρ=2.36三、压制成形与压力机确定1.压制压力的选择采用500MPa 的单位压力,由已知可得压坯截面积22222S=(B (3010)62844mm ππ-=-A )= 则其压制力F=p×S=500MPa×628mm 2=314kN脱模压力F 脱=ƒ´p 侧余S 侧=0.2×100×1570=31.4kNƒ´——粉末对阴模壁的静摩擦系数,此处ƒ´=0.2p 侧余——残余侧压力,此处p 侧余=0.2p=0.2×500MPa=100MPa S 侧——侧面积, S 侧=πEB+πFC=3.14(10×30+10×20)=1570mm 2侧压力p 侧 =ξp=p ν/(1-ν)=0.38×500MPa=190MPa2.装粉高度确定带台阶面压坯成形模具的设计原则 1)粉末充填系数相同或相近 2)压缩比相同或相近 压缩比 C=γ/ρ=2.36装粉台阶高度 E 0=CE=2.36×10mm=23.6mm装粉总高度D 0=C(E+F)=2.36×20mm=47.2mm2.1压坯高度验算 max max 2.8(10)(18510)74.26.6H F mm ργ=-=⨯-= ——F max =185mm (设计手册表4-20TPA50/2压力机的最大装料高度)H=D 0=47.2mm<H max 可行 3.压制方式的选择c31406286628S S K S++===侧f 侧S 侧f =πD(B+C)=3140mm 2 S 侧c =πDA =628mm 2 K>单向K max =5(ƒ=0.1,表3-5),压坯有台阶面,选择双向压制。

金属粉末冶金在模具制造中的应用研究

金属粉末冶金在模具制造中的应用研究

金属粉末冶金在模具制造中的应用研究现代制造业的发展离不开高精度模具的应用,而金属粉末冶金技术作为一种先进的制造工艺,已经在模具制造领域发挥了重要作用。

本文将探讨金属粉末冶金在模具制造中的应用研究,包括其原理、优势以及面临的挑战。

一、金属粉末冶金的原理金属粉末冶金是利用金属粉末通过成型、烧结等工艺制备零件的技术。

其基本原理是将金属粉末与其他添加剂按一定比例混合,然后通过压制成型和烧结工艺,使金属粉末颗粒之间发生冶金结合,形成致密的金属零件。

金属粉末冶金技术具有灵活性强、材料利用率高、生产过程环保等优势。

通过调节金属粉末成分和粒度,可以实现不同材料性能的调控和优化。

因此,在模具制造中应用金属粉末冶金技术,可以有效提高模具的材料性能和使用寿命。

二、金属粉末冶金在模具制造中的应用1. 陶瓷模具制造金属粉末冶金技术在陶瓷模具制造中有广泛应用。

传统的陶瓷模具制造过程需要使用粘土等材料,且成本高、制作周期长。

而采用金属粉末冶金技术制造陶瓷模具,不仅可以提高模具的耐磨性和耐腐蚀性,还能够减少生产周期和成本。

2. 超硬模具制造超硬材料如金刚石、立方氮化硼等具有极高的硬度和耐磨性,常用于制造需要高度精密加工的工具。

金属粉末冶金技术可以制备具有高硬度的超硬合金材料,用于制造高效的模具。

这些模具不仅可以提高工具的寿命和加工效率,还可以降低加工过程中的能耗和废料产生。

3. 复合材料模具制造复合材料在航天航空、汽车、电子等行业得到了广泛应用。

而金属粉末冶金技术可以制备具有优良综合性能的复合材料模具,用于制造复杂的复合材料产品。

这些模具可以提供更高的加工精度和复杂度,满足现代工业对产品的多样化需求。

三、金属粉末冶金在模具制造中面临的挑战虽然金属粉末冶金技术在模具制造中具有广泛应用前景,但目前仍面临一些挑战。

首先,金属粉末的成本较高,制造成本较传统工艺高。

随着技术的进步和规模效应的发挥,相信金属粉末冶金技术的成本将会逐渐降低。

粉末压制成形模具设计

压制坯的计算,其实质就是根据所加工的粉 末零件,决定压制坯的体积、质量和相关尺寸, 以确定压制凹模型腔的尺寸和检验压制坯的尺寸 精度。
表1金属粉末压制成形坯料计算
计算内容
定义或计算公式
有关说明
压制坯在垂直于压制
压制坯面积Fp(cm2) 方向的平面的投影面
-

压制坯体积Vp(cm3)
Vp=(1+ξ/100)Ve
芯棒磨损余 量
Δd=dn′-dn-δa δa—芯棒尺寸实际偏差量
后续精压芯
=dmax±lrp
棒直径(孔 “+”—精压后回弹使孔径减小时
件) “-”—精压后回弹使孔径增大时
烧结坯内尺 寸
压制坯内尺 寸
ds=drp±ηrp “+”—为负偏差精压时
“-”—为正偏差精压时
dp=ds±ε “+”—烧结后内尺寸减小时 “-”—烧结后内尺寸增大时
2.凹模预应力圈尺寸
为了提高压制成形模具的寿命,并
保证压制件的尺寸精度,凹模常采用预
应力圈结构,如图2所示。其尺寸取决于
压制时凹模内壁所承受的侧压力大小。
对于铁粉末压制,其侧压力可按经验公
式估算:
pc=Ccρmp
(9)
式中Cc=0.00725,m=6.8
而预应力圈的尺寸,必须保证凹模具有最大刚度,设凹模筒内半径为r1, 则有:
其他参数
而在进行压制成形模具设计时,还需知道以下 参数:
(1)预先给定的粉末压制坯的密度ρp; (2)压制(和后续塑性加工)后制件线回弹量,用相 对值αp(αrp)或绝对量lp(lrp)表示; (3)制件烧结后的线收缩量,用相对值β或绝对量 ε表示; (4)烧结氧化或其他原因引起的质量损耗量,用 相对值ζ表示; (5)后续塑性加工引起的制件密度增加量,用相 对值τ表示。

粉末冶金成型技术

粉末冶金成型技术Ⅰ、粉末冶金成型技术1、粉末冶金成型技术(Powder Metallurgy)是一种较新的金属制造工艺,它通过将金属粉末或粉体团结成模具内所需形状,从而生产出广泛应用的金属零件。

其原理是金属粉末经高压热压成型而形成零件。

2、粉末冶金成型技术能够制造出具有较高精度、更小体积的零件,是传统金属制造技术无法达到的高精度和大精度的紧凑零件。

同时,由于具有良好的耐磨性,它还可以制造可耐高速摩擦的零件。

3、粉末冶金成型技术使用金属粉末来制造零件,因此可以制造出大规模和复杂零件。

它制造出的产品可以达到更高的均匀度、更高的精度和更强的密度,这些特点比其他技术都有优势。

II、工艺流程1、把金属粉末混合成易流动的糊状物:在粉末冶金成型过程中,首先将金属粉末混合成易流动的糊状物,然后将其成型成所需的各类结构。

2、金属流成型:将调制好的金属流放入到模具中,然后将其投射成型,采用精确的高压成型,以形成模具内期望的形状。

3、表面处理:一些金属零件可能需要再进行表面处理,比如镀铬、电镀和热处理,以满足零件性能的需求,增强其耐蚀性、耐磨性等。

4、热处理:热处理是利用复杂的热处理技术,通过改变零件的温度来改变其组织和性能,以获得期望的性能和表面光洁度。

III、优点1、体积小:由于采用精密模具来进行流体压力成型,可以制造出具有较小体积和精确尺寸的部件;2、准确精度:粉末冶金成型可以根据模具进行长宽比、曲率与折弯处理,以达到较高的精度,组装时也相对容易;3、节能降耗:比传统金属加工手段更加节省能源耗费,而且粉末冶金可以减少冶炼及清理成本,从而降低成本;4、结构复杂:粉末冶金制造的零件可以根据设计形状进行复杂的结构设计,可在一个工件上制造气隙空间及护套,从而更加省时。

IV、缺点1、成本高:粉末冶金技术的设备耗费较高,使得生产成本比其他工艺高很多;2、尺寸大小限制:模具的设计尺寸受生产设备的尺寸限制,影响着大小尺寸和深度尺寸的生产;3、生产周期长:由于加工方法比其他工艺复杂,因此所需的生产周期也变得更长;4、表面光洁度差:因为运用压力成型,而非切削加工,因此物件的表面光洁度不是非常理想。

粉末冶金模具设计说明书

前言材料是中国四大产业之一,它包括有机高分子材料、复合材料、金属材料及无机非金属材料。

粉末冶金技术作为金属材料制造的一种,以其不可替代的独特优势与其它制造方法共同发展。

粉末冶金相对其它冶金技术来说具有:成本低;加工余量少;原料利用率高;能生产多孔材料等其它方法不能生产或着很难生产的材料等优势。

粉末冶金是制取金属粉末以及将金属粉末或金属粉末与非金属粉末混合料成型和烧结来制取粉末冶金材料或粉末冶金制品的技术。

粉体成形是粉体材料制备工艺的基本工序。

模具是实现粉体材料成形的关键工艺装备。

模具的设计要尽可能的接近产品的形状,机构设计合理表面光滑,减少应力集中,避免压坯分层、开裂。

模具本身要有一定的强度保证压制的次数,不易变形。

粉体模压成形模具主要零件包括:阴模、芯杆、模冲。

模具设计首先要厂家提供产品图,再确定成型的方式,收集压坯设计的基本参数(包括:松装密度、压坯密度、粉体的流动性、及烧结收缩系数等。

)来算得压坯的尺寸。

根据压坯形状尺寸以及服役条件和要求来设计出成型模具尺寸,校核模具强度。

最后在用模具试压,若压坯合格,则此模具复合要求。

本次课程设计之前,我们已经学习了《热处理原理与工艺》、《金属物理与力学性能》、《粉末冶金原理》、《硬质合金生产原理》等相关课程的知识。

这次在老师的指导下,和同学的相互讨论,自己查阅资料,基本上懂得了模具设计的步骤和方法。

相信经过这次设计后,对以后的工作会有很大的帮助。

1设计任务本课程设计的任务是生产一批有色金属扁材拉制模坯,其形状和尺寸如下图:1.1产品分析由产品图可知H/D<3,因此,该产品适合单向压制。

产品的斜边角度不大,因此,装粉比较容易,可用单从头压制。

产品内部的斜角可直接做在芯杆上。

菱角的倒角不长,可适合用上冲头压制。

1.2材质的选择该模具生产的产品用于拉制模坯,对产品的强度及耐磨性能要求很高,再根据客户所提供的要求,综合考虑选用硬质合金材料YG8作为材质。

粉末冶金材料模具设计

设计说明书1、工艺流程本产品属于亚共析钢合金(Fe-0.6C/60钢),其具体生产工艺流程如下:Fe矿石→还原熔化(去脉石、杂质和氧)→氧化精炼(脱C、Si、P等)→球磨→铁粉+C粉+适量硬脂酸锌2、压坯设计2.1产品零件分析该产品采用Fe-0.6C(60钢),属于铁基制品,其制品密度依靠较高的压坯密度来达到,因此,在压制成形时需要采用较高的单位压力(一般在400-500MPa)。

由于该产品零件形状比较简单,带一个外台阶,采用简单的单上双下模冲即可成形,并使其密度分布均匀。

有配合、定位、相对运动要求的零部件,产品尺寸精度和形位精度及表面粗糙度要求较高,因此,该产品的的尺寸精度定义为IT8、形位精度如图所示为7级,表面粗糙度精度要求为7级。

2.2压坯精度设计由模具设计任务书的零件成品图可得知该产品压坯同轴度需控制在0.08mm,相当于IT10级;压坯垂直度控制为0.1mm,相当于IT11级;压坯侧面平行度为0.15mm,相当于IT12级。

2.3压坯密度和单重的确定由于已知压坯密度ρ=6.6g/cm3,因此压坯单重W=ρ×V ,由成品图给数据计算其压坯体V=h×S,算的V=166.8cm3 ,所以求的压坯单重W=6.6×166.8=1100.8g。

3、压机与压制方式选择3.1压机压力选择铁基制品一般采用固相烧结,其制品密度除了依靠烧结温度、保温时间之外,在一定程度上还依靠较高的压坯密度来达到,因此该产品采用500MPa的单位压力。

根据任务书要求,截面积S=74.0cm2 ,所以F=P×S=5×74=370t脱模压力,根据实际生产经验,铁基压坯的脱模压力P脱模≈0.13P=0.13×500MPa=65MPa3.2压制类型的选择年生产量为50万件,假设每年的工作时间为300天,每天工作时间为8小时,则p=500000/300/8/60=3.47=4件/min,所以选择自动压制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.4 组合模具的设计原理
形状完整,具有一定强度
3.5 压制过程的图示
2020/12/16
粉末冶金原理及模具计算要求
2
•压制压力的计算
模压过程的总压制力等于净压力与外摩擦力 之和
单位压制压力与压坯密度定量关系的研究, 是近60年来粉末成形理论研究的主要内容
•脱模力的计算
压制压力去掉后,侧压力因为高度方向的弹 性后效,侧压力会下降35~77%
单向压制
S侧max/S=[1-(ρ下/ρ上)m]/μξ=K
当柱状压坯S侧/S<K或者圆柱体压坯高径比
H/D<K/4时,采用单向压制可以满足压坯密度
分布均匀性的要求
2020/12/16
粉末冶金原理及模
粉末冶金原理及模具计算要求
17
双向压制
S侧max/S=[1-(ρ中/ρ上)m]/μξ=2K
压力相等时双向压制与非同时双向压制的效 果相同
非同时双向压制中第二次压制的模冲移动距 离:
x=(d2-d1)h/d1
或者 y=x/l=100(d2-d1)/d1(k-1)
其中:d2为要求的压坯平均密度;d1为单向压 制的平均密度;h为压坯高度;k为压缩比;l 为装粉高度与压坯高度之差。
2020/12/16
•压制时粉体产生柱式流动,几乎不产生明显
的横向流动 2020/12/16
粉末冶金原理及模具计算要求
8
压坯中中立层的位置可以表示压坯密度分布
的均匀程度。通过压制方式和压模结构合理
选择使中立层2边受相同压缩,提高密度分布
均匀性 2020/12/16
粉末冶金原理及模具计算要求
9
2020/12/16
d粉—粉末松装密度; d1—第一次压制后压坯平均密度; 第一次压制后:d粉H粉=d1h1 x=h1-h d粉H粉=d1(h+x) ∴x=(d粉H粉-d1h)/d1 第二次压制后:d粉H粉=dh d粉=d ·h/H粉 x=(d-d1)h/d1; k=H粉/h=(l+h)/h 粉末冶金原理及∴模x具=计(算d要-d求1)l/d1(k-1); y=x/l ·11000%
当柱状压坯K<S侧/S<2K,或者圆柱体 K/4<H/D<K/2时,采用双向压制、非同时双 向压制、浮动阴模双向压制或者下拉式压制 可以满足压坯密度分布均匀性要求
2020/12/16
粉末冶金原理及模具计算要求
18
2020/12/16
粉末冶金原理及模具计算要求
19
摩擦芯杆压制 上模冲强迫芯杆一起向下移动,且芯杆下 移的速度大于粉末下移的速度,因而靠芯 杆与粉末之间的摩擦力带动粉末向下移动。
2020/12/16
粉末冶金原理及模具计算要求
5
•精整压力的计算
外箍内的精整: 精整压力Fc=F1+F2+F3
其中:F1为实现轴套纯变形所需要的力;
F2为克服整形区外摩擦所需的力;
F3克服内摩擦所需的力。
精整压力计算公式Fc=Pc (S+μQ)+0.58σαS2
其中:Pc 为精整区的平均单位压力;Q为阴模精
粉末冶金原理及模具计算要求
2020/12/16
粉末冶金原理及模具计算要求
1
第3章 粉末冶金模具设计原理
3.1 压制过程和精整过程中力的计算
3.2 压坯密度分布与压制方式的关系
3.3 不等高压坯压模的设计原理
➢ 粉末装填系数相同或相近 ➢ 压制时压缩比相同或相近 ➢ 压制速率相同或相近
目的
压坯:相对均匀的压实密度
2020/12/16
粉末冶金原理及模具计算要求
3
在低速高单位压制压力条件下,塑性金属粉 末易发生“模瘤”;模具表面质量差、润滑不良 和模温过高,加重模瘤现象。
严重时脱模压力超过压制压力,使得模具拉 伤。
无润滑塑性金属粉末应当避免高压压制
F脱=μ静P侧剩S侧 P侧剩=E∑R剩(m2-1)/2R
P侧剩=jξ0ρP
2020/12/16
粉末冶金原理及模具计算要求
13
2020/12/16
粉末冶金原理及模具计算要求
14
2020/12/16
粉末冶金原理及模具计算要求
15
•压制方式的选择依据
压制方式和方法不同,上、下模冲、芯杆和阴 模相对于粉末压坯的相对运动方向及速度也不 同,从而使外摩擦对压坯密度的均匀分布产生 有害或者有利的影响。
整区的工作面积;σ为精整件的塑性变形抗力
(三向压力);α为阴模入口端的角度;S2为精整
区轴套的横截面积
2020/12/16
粉末冶金原理及模具计算要求
6
内胀外精整
精整压力计算与外箍内时相同;
整形区的单位精整压力为
Pc=σ/[1+(S+μQ)/2S2]
在此: σ为单向压缩条件下材料塑性变形的抗 力
通常内胀外精整方式的精整压力几乎只有外箍 内精整方式的十分之一
粉末冶金原理及模具计算要求
11
非同时双向压制原理为压模结构设计提供了 压坯密度均匀分布的理论基础;也为粉末压 机的设计提供了重要基础,使得多凸轮和凸 轮曲柄粉末压机更好地满足粉末压坯密度均 匀分布的要求。
2020/12/16
粉末冶金原理及模具计算要求
12
摩擦压制
在压制过程中,让阴模或芯杆与样品侧面产 生同向相对移动,即运动得更快,借助粉末 与模壁之间的摩擦,带动与阴模或芯杆接触 的粉末层移动,从而可改善沿压坯高度方向 的密度分布均匀性。
2020/12/16
粉末冶金原理及模具计算要求
4
其中: ∑R剩:卸压后阴模半径上剩余的变形量; j: 剩余侧压强与侧压强之比,决定于模具的刚度; m:阴模外径与内径之比; ρ:压坯的相对密度 当相对密度为:0.80~0.85时,m=2~4,可粗略 估算: 对于铁基:P侧剩=0.18~0.20P 对于铜基: P侧剩=0.20~0.22P
材料塑性变形抗力与材质、组织和孔隙率密切
关连2020/12/16
粉末冶金原理及模具计算要求
7
•压坯密度分布与压制方式的关系
压坯密度分布不均匀的地方,常常是压坯截 面积发生变化的分界处;脱模时这种部位也 容易产生裂纹,烧结时易引起变形。
影响压坯密度分布均匀性的因素:
•粉末成分和性能
•模具表面质量
•摩擦力
[(S侧阴-S侧芯)/S]max=[1-(ρ下/ρ上)m]/μξ=K 对于圆筒形压坯的高与壁厚之比:
h/T=K(1+D内/T)/2 摩擦芯杆压制特别适合于大孔薄壁压坯
2020/12/16
粉末冶金原理及模具计算要求
20
选择原则
•(S侧阴+S侧芯)/S<K或者圆筒形压坯h/T<K/2时,可 采用单向压制;
相关文档
最新文档