2001-数二真题、标准答案及解析
湖南省_2001年_高考数学真题(理科数学)(附答案)_历年历届试题

2001年普通高等学校招生全国统一考试数学(理工农医类)-同湖南卷本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页.第Ⅱ卷3至8页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)注意事项:1. 答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目用铅笔涂写在答题卡上. 2. 每小题选出答案后,用铅笔把答题卡上对应答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案,不能答在试题卷上.3. 考试结束,监考人将本试卷和答题卡一并收回. 参考公式:三角函数的积化和差公式()()[]βαβαβ-++=sin sin 21cos sin a ()()[]βαβαβ--+=sin sin 21sin cos a()()[]βαβαβ-++=cos cos 21cos cos a()()[]βαβαβ--+-=cos cos 21sin sin a正棱台、圆台的侧面积公式 S 台侧l c c )(21+'=其中c ′、c 分别表示上、下底面周长, l 表示斜高或母线长 台体的体积公式 V 台体h S S S S )(31+'+'=一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.若sini θcos θ>0,则θ在 ( )A .第一、二象限B .第一、三象限C .第一、四象限D .第二、四象限2.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2 = 0上的圆的方程是( )A .(x -3) 2+(y +1) 2= 4 B .(x +3) 2+(y -1) 2= 4 C .(x -1) 2+(y -1) 2 = 4D .(x +1) 2+(y +1) 2 = 43.设{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是 ( ) A .1B .2C .4D .64.若定义在区间(-1,0)的函数2()log (1)a f x x =+满足()0f x >,则a 的取值范围是 ( ) A .(210,)B .⎥⎦⎤ ⎝⎛210,C .(21,+∞) D .(0,+∞)5.极坐标方程)4sin(2πθρ+=的图形是( )6.函数y = cos x +1(-π≤x ≤0)的反函数是 ( )A .y =-arc cos (x -1)(0≤x ≤2)B .y = π-arc cos (x -1)(0≤x ≤2)C .y = arc cos (x -1)(0≤x ≤2)D .y = π+arc cos (x -1)(0≤x ≤2)7. 若椭圆经过原点,且焦点为F 1 (1,0), F 2 (3,0),则其离心率为 ( ) A .43 B .32 C .21 D .41 8. 若0<α<β<4π,sin α+cos α = α,sin β+cos β= b ,则 ( ) A .a <bB .a >bC .ab <1D .ab >29. 在正三棱柱ABC -A 1B 1C 1中,若12BB AB =,则AB 1 与C 1B 所成的角的大小为( ) A .60°B .90°C .105°D .75°10.设f (x )、g (x )都是单调函数,有如下四个命题:① 若f (x )单调递增,g (x )单调递增,则f (x )-g (x )单调递增; ② 若f (x )单调递增,g (x )单调递减,则f (x )-g (x )单调递增; ③ 若f (x )单调递减,g (x )单调递增,则f (x )-g (x )单调递减;④ 若f (x )单调递减,g (x )单调递减,则f (x )-g (x )单调递减. 其中,正确的命题是 ( ) A .①③B .①④C .②③D .②④11. 一间民房的屋顶有如图三种不同的盖法:①单向倾斜;②双向倾斜;③四向倾斜.记三种盖法屋顶面积分别为P 1、P 2、P 3.若屋顶斜面与水平面所成的角都是α,则 ( ) A .P 3>P 2>P 1B .P 3>P 2 = P 1C .P 3 = P 2>P 1D .P 3 = P 2 = P 112. 如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A 向结点B 传递信息,信息可以分开沿不同的路线同时传递.则单位时间内传递的最大信息量为 ( ) A .26 B .24C .20D .19第Ⅱ卷(非选择题共90分)注意事项:1.第Ⅱ卷共6页,用钢笔或圆珠笔直接答在试题卷中. 2.答卷前将密封线内的项目填写清楚.二.填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线上. 13.若一个圆锥的轴截面是等边三角形,其面积为3,则这个圆锥的侧面积是 14.双曲线116922=-y x 的两个焦点为F 1、F 2,点P 在双曲线上.若PF 1⊥PF 2,则点P 到x 轴的距离为15.设{a n }是公比为q 的等比数列,S n 是它的前n 项和.若{S n }是等差数列,则q =16.圆周上有2n 个等分点(n >1),以其中三个点为顶点的直角三角形的个数为三.解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17. (本小题满分12分)如图,在底面是直角梯形的四棱锥S —ABCD 中,∠ABC = 90°,SA ⊥面ABCD ,SA = AB = BC = 1,21=AD . (Ⅰ)求四棱锥S —ABCD 的体积;(Ⅱ)求面SCD 与面SBA 所成的二面角的正切值. 18. (本小题满分12分)已知复数z 1 = i (1-i ) 3.(Ⅰ)求arg z 1及1z ;(Ⅱ)当复数z 满足1z =1,求1z z -的最大值. 19. (本小题满分12分)设抛物线y 2=2px (p >0)的焦点为F ,经过点F 的直线交抛物线于A 、B 两点,点C 在抛物线的准线上,且BC ∥x 轴.证明直线AC 经过原点O . 20. (本小题满分12分)已知i ,m ,n 是正整数,且1<i ≤m <n .(Ⅰ)证明i n i i m i P m P n <;(Ⅱ)证明(1+m ) n > (1+n ) m . 21. (本小题满分12分)从社会效益和经济效益出发,某地投入资金进行生态环境建设,并以此发展旅游产业.根据规划,本年度投入800万元,以后每年投入将比上年减少51.本年度当地旅游业收入估计为400万元,由于该项建设对旅游业的促进作用,预计今后的旅游业收入每年会比上年增加41. (Ⅰ)设n 年内(本年度为第一年)总投入为a n 万元,旅游业总收入为b n 万元.写出a n ,b n 的表达式;(Ⅱ)至少经过几年旅游业的总收入才能超过总投入?22. (本小题满分14分)设f (x ) 是定义在R 上的偶函数,其图像关于直线x = 1对称.对任意x 1,x 2∈[0,21]都有f (x 1+x 2) = f (x 1) · f (x 2).且f (1) = a >0. (Ⅰ)求f (21) 及f (41); (Ⅱ)证明f (x ) 是周期函数; (Ⅲ)记a n = f (2n +n21),求()n n a ln lim ∞→.2001年普通高等学校招生全国统一考试数学试题(理工农医类)参考解答及评分标准说明:一. 本解答指出了每题要考查的主要知识和能力,并给出了一种或几种解法供参考,如果考生物解法与本解答不同,可根据试题的主要考查内容比照评分标准制订相应的评分细则.二. 对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定部分的给分,但不得超过该部分正确解答得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.三. 解答右端所注分数,表示考生正确做到这一步应得的累加分数. 四. 只给整数分数.选择题和填空题不给中间分.一.选择题:本题考查基本知识和基本运算.每小题5分,满分60分.(1)B (2)C (3)B (4)A (5)C (6)A (7)C (8)A (9)B (10)C (11)D (12)D二.填空题:本题考查基本知识和基本运算.每小题4分,满分16分.(13)2π (14)516(15)1 (16)2n (n -1)三.解答题:(17)本小题考查线面关系和棱锥体积计算,以及空间想象能力和逻辑推理能力.满分12分.解:(Ⅰ)直角梯形ABCD 的面积是 M底面()43125.0121=⨯+=⋅+=AB AD BC , ……2分 ∴ 四棱锥S —ABCD 的体积是⨯⨯=SA V 31M 底面43131⨯⨯=41=. ……4分 (Ⅱ)延长BA 、CD 相交于点E ,连结SE 则SE 是所求二面角的棱. ……6分 ∵ AD ∥BC ,BC = 2AD ,∴ EA = AB = SA ,∴ SE ⊥SB ,∵ SA ⊥面ABCD ,得SEB ⊥面EBC ,EB 是交线, 又BC ⊥EB ,∴ BC ⊥面SEB , 故SB 是CS 在面SEB 上的射影, ∴ CS ⊥SE ,所以∠BSC 是所求二面角的平面角. ……10分 ∵ 22AB SA SB +=2=,BC =1,BC ⊥SB ,∴ tan ∠BSC =22=SB BC .即所求二面角的正切值为22. ……12分 (18)本小题考查复数基本性质和基本运算,以及分析问题和解决问题的能力.满分12分.解:(Ⅰ)z 1 = i (1-i ) 3 = 2-2i , 将z 1化为三角形式,得⎪⎭⎫ ⎝⎛+=47sin 47cos 221ππi z ,∴ 47arg 1π=z ,221=z . ……6分 (Ⅱ)设z = cos α+i sin α,则z -z 1 = ( cos α-2)+(sin α+2) i , ()()22212sin 2cos ++-=-ααz zsin 249+=(4πα-), ……9分当sin(4πα-) = 1时,21z z -取得最大值249+.从而得到1z z -的最大值为122+. ……12分 (19)本小题考查抛物线的概念和性质,直线的方程和性质,运算能力和逻辑推理能力.满分12分.证明一:因为抛物线y 2 =2px (p >0)的焦点为F (2p,0),所以经过点F 的直线的方程可设为2pmy x +=; ……4分 代入抛物线方程得y 2-2pmy -p 2= 0,若记A (x 1,y 1),B (x 2,y 2),则y 1,y 2是该方程的两个根,所以y 1y 2 = -p 2. ……8分因为BC ∥x 轴,且点c 在准线x = -2p 上,所以点c 的坐标为(-2p,y 2),故直线CO 的斜率为111222x y y p p y k ==-=. 即k 也是直线OA 的斜率,所以直线AC 经过原点O . ……12分证明二:如图,记x 轴与抛物线准线l 的交点为E ,过A 作AD ⊥l ,D 是垂足.则 AD ∥FE ∥BC . ……2分连结AC ,与EF 相交于点N ,则ABBF ACCN ADEN ==,,ABAF BCNF =……6分 根据抛物线的几何性质,AD AF =,BC BF =, ……8分∴ NF ABBC AF ABBF AD EN =⋅=⋅=,即点N 是EF 的中点,与抛物线的顶点O 重合,所以直线AC 经过原点O . ……12分 (20)本小题考查排列、组合、二项式定理、不等式的基本知识和逻辑推理能力.满分12分.(Ⅰ)证明: 对于1<i ≤m 有im p = m ·…·(m -i +1),⋅-⋅=m m m m mp iim 1…m i m 1+-⋅, 同理 ⋅-⋅=n n n n np i in 1…n i n 1+-⋅, ……4分由于 m <n ,对整数k = 1,2…,i -1,有mkm n k n ->-, 所以 i im i i n mp n p >,即im i i n i p n p m >. ……6分(Ⅱ)证明由二项式定理有()inni i nC m m ∑==+01, ()i mmi i mCn n ∑==+01, ……8分由 (Ⅰ)知i n i p m >im i p n (1<i ≤m <n =,而 !i p C i m im=,!i p C in in =, ……10分所以, imi i n i C n C m >(1<i ≤m <n =. 因此,∑∑==>mi imi mi iniC n Cm 22. 又 10000==m n C n C m ,mn nC mC m n ==11,()n i m C m in i ≤<>0.∴∑∑==>mi imi ni iniC n Cm 0. 即 (1+m )n >(1+n )m . ……12分 (21)本小题主要考查建立函数关系式、数列求和、不等式等基础知识;考查综合运用数学知识解决实际问题的能力.满分12分.解:(Ⅰ)第1年投入为800万元,第2年投入为800×(1-51)万元,……,第n 年投入为800×(1-51)n -1万元. 所以,n 年内的总投入为a n = 800+800×(1-51)+…+800×(1-51)n -1∑=--⨯=nk k 11)511(800= 4000×[1-(54)n]; ……3分 第1年旅游业收入为400万元,第2年旅游业收入为400×(1+41)万元,……,第n年旅游业收入为400×(1+41)n -1万元.所以,n 年内的旅游业总收入为b n = 400+400×(1+41)+…+400×(1+41)n -1∑=-⨯=nk k 11)45(400= 1600×[ (54)n-1]. ……6分 (Ⅱ)设至少经过n 年旅游业的总收入才能超过总投入,由此b n -a n >0,即 1600×[(45)n -1]-4000×[1-(54)n ]>0. 化简得 5×(54)n +2×(54)n -7>0, ……9分设=x (54)n ,代入上式得5x 2-7x +2>0,解此不等式,得52<x ,x >1(舍去). 即 (54)n <52,由此得 n ≥5.答:至少经过5年旅游业的总收入才能超过总投入. ……12分 (22)本小题主要考查函数的概念、图像,函数的奇偶性和周期性以及数列极限等基础知识;考查运算能力和逻辑思维能力.满分14分.(Ⅰ)解:因为对x 1,x 2∈[0,21],都有f (x 1+x 2) = f (x 1) · f (x 2),所以=)(x f f (2x ) · f (2x )≥0,x ∈[0,1]. ∵ =)1(f f (2121+) = f (21) · f (21) = [f (21)]2,f (21)=f (4141+) = f (41) · f (41) = [f (41)]2. ……3分0)1(>=a f ,∴ f (21)21a =,f (41)41a =. ……6分(Ⅱ)证明:依题设y = f (x )关于直线x = 1对称, 故 f (x ) = f (1+1-x ),11 / 11 即f (x ) = f (2-x ),x ∈R . ……8分 又由f (x )是偶函数知f (-x ) = f (x ) ,x ∈R ,∴ f (-x ) = f (2-x ) ,x ∈R ,将上式中-x 以x 代换,得f (x ) = f (x +2),x ∈R .这表明f (x )是R 上的周期函数,且2是它的一个周期. ……10分 (Ⅲ)解:由(Ⅰ)知f (x )≥0,x ∈[0,1].∵ f (21)= f (n ·n 21) = f (n 21+(n -1)·n 21)= f (n 21) · f ((n -1)·n 21)= f (n 21) · f (n 21) · … ·f (n 21)= [ f (n 21)]n ,f (21) = 21a ,∴ f (n 21) = n a 21.∵ f (x )的一个周期是2,∴ f (2n +n 21) = f (n 21),因此a n = n a 21,……12分 ∴ ()∞→∞→=n n n a lim ln lim (a n ln 21) = 0.……14分。
数据结构考研真题及其答案

一、选择题1. 算法的计算量的大小称为计算的( B )。
【北京邮电大学2000 二、3 (20/8分)】A.效率 B. 复杂性 C. 现实性 D. 难度2. 算法的时间复杂度取决于(C )【中科院计算所 1998 二、1 (2分)】A.问题的规模 B. 待处理数据的初态 C. A和B3.计算机算法指的是(C),它必须具备(B)这三个特性。
(1) A.计算方法 B. 排序方法 C. 解决问题的步骤序列D. 调度方法(2) A.可执行性、可移植性、可扩充性 B. 可执行性、确定性、有穷性C. 确定性、有穷性、稳定性D. 易读性、稳定性、安全性【南京理工大学 1999 一、1(2分)【武汉交通科技大学 1996 一、1( 4分)】4.一个算法应该是( B )。
【中山大学 1998 二、1(2分)】A.程序 B.问题求解步骤的描述 C.要满足五个基本特性D.A和C.5. 下面关于算法说法错误的是( D )【南京理工大学 2000 一、1(1.5分)】A.算法最终必须由计算机程序实现B.为解决某问题的算法同为该问题编写的程序含义是相同的C. 算法的可行性是指指令不能有二义性D. 以上几个都是错误的6. 下面说法错误的是( C )【南京理工大学 2000 一、2 (1.5分)】 (1)算法原地工作的含义是指不需要任何额外的辅助空间(2)在相同的规模n下,复杂度O(n)的算法在时间上总是优于复杂度O(2n)的算法(3)所谓时间复杂度是指最坏情况下,估算算法执行时间的一个上界(4)同一个算法,实现语言的级别越高,执行效率就越低4A.(1) B.(1),(2) C.(1),(4) D.(3)【武汉交通科技大学 1996 7.从逻辑上可以把数据结构分为( C )两大类。
一、4(2分)】A.动态结构、静态结构 B.顺序结构、链式结构C.线性结构、非线性结构 D.初等结构、构造型结构8.以下与数据的存储结构无关的术语是( D )。
2001年考研数学二试题答案与解析

考生还有更方便的解法,事实上,等式的左端等于 ( y arcsin x)' , 关系式变成
( y arcsin x)' =1,两边积分得
y arcsin x = x + C,
再以
y
⎛⎜⎜⎜⎝ 12 ⎞⎠⎟⎟⎟
=
0代入得C
=
−
1 2
.
(5)设方程 ⎛⎜⎜⎜⎜⎜⎜⎜⎝11a
1 a 1
11a⎞⎠⎟⎟⎟⎟⎟⎟⎟⎟⎛⎝⎜⎜⎜⎜⎜⎜⎜
x t−sin
x
,
记此极限为
f
(x) ,求函数
f
(x) 的间断点并指出其类型。
( ) 解 因 f x = e , lim t→x
sin
x t−sin
x
ln
sin sin
t x
cos t
而由洛必达法则得, lim t→x
x sin t −sin
x
ln
sin t sin x
= lim t→x
x⋅
sin t cos t
π
∫ ( ) (3)
2 −π
x3 + sin2 x cos2 xdx =
2
答 应填 π 8
分析 这是对称区间上的定积分,一般都可利用积分性质而化简计算,所以
π
π
∫ ( ) ∫ 2 −π
x3 + sin2 x cos2 xdx = 2
2 sin2 x cos2 xdx
0
2
π
= 2∫ (2 sin2 x −sin4 x)dx
e2
x− y
⎛⎜⎜⎜⎝2
+
dy dx
⎞⎠⎟⎟⎟
+
2001考研数学二真题及答案解析

x→1
(2)【答案】 x−2y+2=0.
【详解】在等式 e2x+ y − cos(xy) = e −1 两边对x求导, 其中 y 视为 x 的函数,得
e2x+y (2x + y)′ + sin(xy) ( xy)′ = 0 ,即 e2x+y ⋅ (2 + y ') + sin(xy) ⋅ ( y + xy ') =0
= f (1) f= '(1) 1, 则
()
(A)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f (x) < x .
❤
(B)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f (x) > x .
(C)在 (1− δ ,1) 内, f (x) < x .在 (1,1+ δ ) 内, f (x) > x .
又由 y(1) = 0, 解得 C = − 1 . 故曲线方程为: y arcsin x= x − 1 .
2
2
2
(5)【答案】 -2 【详解】方法1:利用初等行变换化增广矩阵为阶梯形,有
a 1 1 1
1 1 a −2
A = 1 a 1 1
1 a
1
−2
1, 3行 互换
1 a
a 1
1 1
1
1
1 1 a −2
求 f (x) .
七、(本题满分 7 分)
❤
设函数 f (x), g(x) 满足 f ′(= x) g(x), g′(= x) 2ex − f (x) ,且= f (0) 0= , g(0) 2 ,
∫ 求
(整理)2001—年江苏专转本高等数学真题(附答案) (2).

江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
2001-数一真题、标准答案及解析

形在 y 轴一定有两个零点,进一步可排除(B).
故正确答案为(D).
(2)设函数
f
( x,
y)
在点 (0, 0)
附近有定义,且
f
' x
( 0, 0)
=
3,
f
' y
( 0, 0 )
= 1,则
| (A) dz = 3dx + dy. (0,0)
(B)曲面 z = f ( x, y) 在点 (0, 0, f (0, 0)) 的法向量为{3,1,1}
(5)将一枚硬币重复掷 n 次,以 X 和 Y 分别表示正面向上和反面向上的次数,则 X 和 Y 的相
关系数等于
(A)-1
(B)0
(C) 1 2
(D)1 【】
-5-
【答】 应选(A)
【详解】 设 X 和Y 分别表示正面向上和反面向上的次数,则有Y = n − X ,因此 X 和Y 的 相关系数为 r = −1
∫ ∫ (3)交换二次积分的积分次序:
0
dy
1−y f ( x, y)dx =
−1 2
.
∫ ∫ 【答】
2
dx
1− x
f
( x, y)dy .
1
0
【详解】 因为
∫ ∫ ∫ ∫ 0 dy
1−y f ( x, y)dx = −
0
dy
2
f ( x, y)dx,
−1 2
−1 1− y
积分区域为
D = {( x, y) | −1 ≤ y ≤ 0,1− y ≤ x ≤ 2},
ex cos x 线性无关,故 b (c1 − c2 ) + cc1 = 2c2 , b (c1 + c2 ) + cc2 = −2c1 ,解得 b = −2, c = 2
2001-2013年河南专升本高数真题及答案

2005年河南省普通高等学校选拔优秀专科生进入本科阶段学习考试一、单项选择题(每小题2分,共计60分) 在每小题的四个备选答案中选出一个正确答案,并将其代码写在题 干后面的括号内。
不选、错选或多选者,该题无分.1.函数xx y --=5)1ln(的定义域为为 ( )A. 1>xB.5<xC.51<<xD. 51≤<x解:C x x x ⇒<<⇒⎩⎨⎧>->-510501.2.下列函数中,图形关于y 轴对称的是 ( )A .x x y cos = B. 13++=x x yC. 222x x y --= D. 222x x y -+=解:图形关于y 轴对称,就是考察函数是否为偶函数,显然函数222xx y -+=为偶函数,应选D.3. 当0→x 时,与12-x e 等价的无穷小量是 ( )A. xB.2xC. x 2D. 22x 解: ⇒-x e x ~12~12x e x -,应选B.4.=⎪⎭⎫⎝⎛++∞→121lim n n n ( ) A. e B. 2e C. 3e D. 4e解:2)1(2lim2)1(22121lim 21lim 21lim e n n n n n n n nn n n n n n =⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛++∞→+⋅∞→+∞→∞→,应选B.5.设⎪⎩⎪⎨⎧=≠--=0,0,11)(x a x xxx f 在0=x 处连续,则 常数=a ( ) A. 1 B. -1 C. 21 D. 21-解:21)11(1lim )11(lim 11lim)(lim 0000=-+=-+=--=→→→→x x x x x x x f x x x x ,应选C. 6.设函数)(x f 在点1=x 处可导,且21)1()21(lim0=--→h f h f h ,则=')1(f ( )A. 1B. 21-C. 41D. 41-解:41)1(21)1(22)1()21(lim 2)1()21(lim020-='⇒='-=----=--→-→f f h f h f h f h f h h ,应选D.7.由方程yx e xy +=确定的隐函数)(y x 的导数dydx为( )A.)1()1(x y y x --B.)1()1(y x x y --C.)1()1(-+y x x yD.)1()1(-+x y y x解:对方程y x e xy +=两边微分得)(dy dx e ydx xdy y x +=++,即dy x e dx e y y x y x )()(-=-++, dy x xy dx xy y )()(-=-,所以dy dx )1()1(x y y x --=,应选A. 8.设函数)(x f 具有任意阶导数,且2)]([)(x f x f =',则=)()(x f n ( ) A. 1)]([+n x f n B. 1)]([!+n x f n C. 1)]()[1(++n x f n D. 1)]([)!1(++n x f n 解:423)]([3)()(32)()]([2)()(2)(x f x f x f x f x f x f x f x f !='⋅='''⇒='='', ⇒ΛΛ=)()(x f n 1)]([!+n x f n ,应选B.9.下列函数在给定的区间上满足罗尔定理的条件是 ( ) A.]1,1[,1)(2--=x x f B.]1,1[,)(-=-x xe x fC.]1,1[,11)(2--=xx f D .]1,1[|,|)(-=x x f 解:由罗尔中值定理条件:连续、可导及端点的函数值相等来确定,只有]1,1[,1)(2--=x x f 满足,应选A.10.设),(),12)(1()(+∞-∞∈+-='x x x x f ,则在)1,21(内,)(x f 单调 ( )A.增加,曲线)(x f y =为凹的B.减少,曲线)(x f y =为凹的C.增加,曲线)(x f y =为凸的D.减少,曲线)(x f y =为凸的解: 在)1,21(内,显然有0)12)(1()(<+-='x x x f ,而014)(>-=''x x f ,故函数)(x f 在)1,21(内单调减少,且曲线)(x f y =为凹的,应选B.11.曲线xe y 1-=( )A. 只有垂直渐近线B. 只有水平渐近线C. 既有垂直渐近线,又有水平渐近线,D. 无水平、垂直渐近线 解:0lim ;11lim 0=⇒∞==⇒=-→±∞→x y y y x x ,应选C.12.设参数方程为⎩⎨⎧==t b y t a x sin cos ,则二阶导数=22dx yd ( )A.t a b 2sinB.t a b 32sin - C.t a b 2cos D.tt a b22cos sin -解:dxdt t a t b t a t b dx y d t a t b x y dx dy t x t t ⨯'⎪⎭⎫ ⎝⎛-='⎪⎭⎫ ⎝⎛-=⇒-=''=sin cos sin cos sin cos 22 ta bt a t a b 322sin sin 1sin -=-⨯=,应选B. 13.若⎰+=C e dx e x f xx 11)(,则=)(x f ( )A. x 1-B. 21x- C. x 1 D. 21x解:两边对x 求导 22111)()1()(xx f x e e x f x x -=⇒-⨯=,应选B.14. 若⎰+=C x F dx x f )()( ,则⎰=dx x xf )(sin cos ( )A.C x F +)(sinB.C x F +-)(sinC.C x F +)(cosD.C x F +-)(cos 解:⎰⎰+==C x F x d x f dx x xf )(sin )(sin )(sin )(sin cos ,应选A.15.下列广义积分发散的是 ( )A.⎰+∞+0211dx x B.⎰-10211dx x C.⎰+∞e dx x x ln D.⎰+∞-0dx e x解:2arctan 11002π==+∞++∞⎰x dx x ;2arcsin 1110102π==-⎰x dx x; ∞==+∞∞+⎰eex dx x x 2)(ln 21ln ;10=-=+∞-+∞-⎰xx e dx e ,应选C.16.=⎰-11||dx x x ( )A.0B.32 C.34 D.32- 解:被积函数||x x 在积分区间[-1,1]上是奇函数,应选A. 17.设)(x f 在],[a a -上连续,则定积分⎰-=-aa dx x f )( ( )A.0B.⎰a dx x f 0)(2 C.⎰--a a dx x f )( D.⎰-aadx x f )(解:⎰⎰⎰⎰-----===-===-aaaaa aaaut dx x f du u f u d u f dx x f )()()()()(,应选D.18.设)(x f 的一个原函数是x sin ,则='⎰xdx x f sin )( ( )A.C x x +-2sin 2121B.C x x ++-2sin 4121 C.x 2sin 21 D.C x +-2sin 21解: x x f x x f x f x sin )(cos )()()(sin -='⇒=⇒='C x x dx x xdx xdx x f ++-=--=-='⎰⎰⎰2sin 412122cos 1sin sin )(2,应选B.19.设函数)(x f 在区间],[b a 上连续,则不正确的是 ( )A.⎰ba dx x f )(是)(x f 的一个原函数 B.⎰xadt t f )(是)(x f 的一个原函数C.⎰axdt t f )(是)(x f -的一个原函数 D.)(x f 在],[b a 上可积解: ⎰b adx x f )(是常数,它的导数为零,而不是)(x f ,即⎰badx x f )(不是)(x f 的原函数 ,应选A.20.直线22113+=-=-z y x 与平面01=+--z y x 的关系是 ( ) A. 垂直 B.相交但不垂直 C. 直线在平面上 D. 平行 解:n s n s ρρρρ⊥⇒--=-=)1,1,1{},2,1,1{ ,另一方面点)2,0,3(-不在平面内,所以应为平行关系,应选D..21.函数),(y x f z =在点),(00y x 处的两个偏导数x z ∂∂和yz∂∂存在是它在该点处可微的 ( )A.充分条件B.必要条件C.充要条件D.无关条件 解:两个偏导数存在,不一定可微,但可微一定有偏导数存在,因此为必要条件,应选B.22.设yxz 2ln = ,则=)2,1(dz ( )A.dx x y 2B.dy dx 2121- C.dy dx 21- D.dy dx 21+解:dy ydx x dz y x y x z 11ln 2ln 2ln -=⇒-==dy dx dz 21)2,1(-=⇒,应选C.23.函数1),(22+-+++=y x y xy x y x f 的极小值点是 ( ) A.)1,1(- B.)1,1(- C. )1,1(-- D. )1,1(解:)1,1(),(012012-=⇒⎪⎪⎩⎪⎪⎨⎧=-+=∂∂=++=∂∂y x y x yz y x xz,应选B.24.二次积分⎰⎰202),(x dy y x f dx 写成另一种次序的积分是 ( )A. ⎰⎰402),(ydx y x f dy B. ⎰⎰400),(ydx y x f dy C. ⎰⎰4022),(xdx y x f dy D. ⎰⎰402),(ydx y x f dy解:积分区域}2,40|),{(}0,20|),{(2≤≤≤≤=≤≤≤≤=x y y y x x y x y x D ,应选A.25.设D 是由上半圆周22x ax y -=和x 轴所围成的闭区域,则⎰⎰=σDd y x f ),(()A.⎰⎰πθθθ2020)sin ,cos (a rdr r r f d B.⎰⎰πθθθ2020)sin ,cos (adr r r f d C.⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d D.⎰⎰πθθθθ20cos 20)sin ,cos (a dr r r f d解:积分区域在极坐标下可表示为:}θcos 20,2πθ0|)θ,{(a r r D ≤≤≤≤=,从而⎰⎰=σDd y x f ),(⎰⎰πθθθθ20cos 20)sin ,cos (a rdr r r f d ,应选C.26.设L 为抛物线2x y =上从)0,0(O 到)1,1(B 的一段弧,=+⎰Ldy x xydx 22( )A. -1B.1C. 2D. -1解:L :,2⎩⎨⎧==xy xx x 从0变到1 , 142221041031332===+=+⎰⎰⎰x dx x dx x dx x dy x xydx L,应选B.27.下列级数中,条件收敛的是 ( )A .∑∞=+-11)1(n nn n B .∑∞=-1321)1(n n nC .∑∞=-121)1(n nn D .∑∞=+-1)1()1(n n n n解:∑∞=+-11)1(n n n n 发散, ∑∞=-121)1(n n n 和∑∞=+-1)1()1(n n n n 绝对收敛,∑∞=-1321)1(n n n是收敛的,但∑∞=1321n n 是32=p 的级数发散的,从而级数∑∞=-1321)1(n n n条件收敛,应选B.28. 下列命题正确的是 ( ) A .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛B .若级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数)(212n n n v u +∑∞=收敛C .若正项级数∑∞=1n n u 与∑∞=1n n v 收敛,则级数21)(n n n v u +∑∞=收敛D .若级数∑∞=1n n n v u 收敛,则级数∑∞=1n n u 与∑∞=1n n v 都收敛解:正项级数∑∞=1n n u 与∑∞=1n n v 收敛⇒ ∑∞=12n nu 与∑∞=12n n v 收敛,而)(2)(222n nn n v u v u +≤+,所以级数21)(n n n v u +∑∞=收敛 ,应选C 。
数学二解析2001

2001年数学(二)真题解析一、填空题(1)【答案】72T【解】方法一i . 丿3 —工—%/ ] + g lim X-*l x 2 x 一 21. %/3 — x — V 1 ~F lim —----——--------x->i (jc + 2) (jc 一1)lim --------------- ]------ ----Li (x + 2)(丿3 — 工 + 丿1 + 工)2(1 ―工)x 一 1方法二lim = lim -4-7工~* 1 x + 工一2工一1 + 111x 2 x 一 2 a /3 — x 2 丿]+ 匚(2)【答案】夕=*工+1.【解】e 2x+y — cos xy = e — 1两边对x 求导得严•+ sin xy •夕+熄) = 0,将X =0,y = 1代入得字I = — 2 ,ckr 丨 z=o则法线方程为夕一1 = *(久一0),即夕=*広+ 1-(3)【答案】 v-O【解】方法一sin 2 x cos 2 x dx — 2 sin 2 x cos 2 x dr4 J 。
,三=2 I 2 sin 2 j; • (1 一 sin 2 jc )dz = 2(12 — I 4 )2” (z 3 + sin 2 jc )cosx dx =方法二(x 3 + sin 2 )cos 2jc dj?=2 sin 2 x cos 2 jc dj? J 0丄72 sin 2 d(2工)=*sin 2x djro2 J 0 o(4)【答案】j/arcsin x = x【解】方法一丄由 j/arcsin x H — …一 =19得(jyarcsin x Y = 19解得 j/arcsin x = x + C 9J \ — 2因为曲线经过点(j,0),所以C=-y,故所求曲线为jarcsin x =x ----.方法二jy'arcsin x ~\-------------= 1 化为 y' ~\—,… ------------y =-----\-----,71-x 2 Jl —/arcsin z arcsln 工f d~r _ f 1 丄解得夕=([——?——e +C )e =(工 +c )・ ———\J arcsin x / arcsin x 因为曲线经过点(y,o ),所以C=-y,1x 2故所求曲线为—丄arcsin x因为r (A ) y^r (A ),所以方程组无解;(5)【答案】—2.a11【解】由题意得1a 1=(a + 2) (a 一 1 )2=0,解得 a = — 2 ,或 a = 1,11a /I 111 \I 1111 \当a =1时,才=b11100—3 ,\i11—2丿'o0 '当 a = — 2 时,A =_2111 \1-2111-2—2)因为r (A )=r (A )=2 V 3,所以a = —2时方程组有无数个解.二、选择题(6)【答案】(E ).【解】y[y (z )] = ]'9丨心)丨€1,丨心)丨>1,而 I /(J7 ) | ^ 1 (一°°<工 <+ °°),故 /[/(J : )] = 1 ,从而 f)]} =1,应选(E ).(7)【答案】(E ).1 2【解】(1 — cos x )ln ( 1 + z 2)〜—x 4 , x sin 工”〜x n+i , e" — 1 ~ j ?2 , 由题意得2 < n+l<4,解得n =2,应选(E ).(8)【答案】(C ).【解】<‘ = C ; • 2(工一3)2+© • 2(工一1) • 2(工一 3) +C ; • 2(工一I )?,令夕"=4 (3工 $ — 12_z + 11) = 0,得工 16+V336 — 4^3工2当工<C X 1时当久1 •< X X 2时j/'<0,当鼻 > 工2时j/‘>0,故曲线有两个拐 点,应选(C ).(9) 【答案】(A ).【解】 由拉格朗日中值定理得/(工)一/(1)= /'(£)(工一1),其中e 介于1与工之间,当工 6 (1-^,1)时 HVWV 1,再由 f'(x )单调递减得 > /(I ) =1,于是 y z ($)(— 1)<工一1,即 y (x )•— 1<久一1,或 f (兀)<工;当工e (1,1十厂 时1 vw <工,再由单调递减得1 =y'(i )>/"(£),于是 — 1) <工一1,即/•(#) — 1 V# — 1,或/(工)<工,应选(A ).(10) 【答案】(D ).【解】 从题设图形可见,在夕轴的左侧,曲线夕=/■&)是严格单调增加的,因此当工<0时,一定有于'(工)〉0,对应夕=于'(工)的图形必在工轴的上方,由此可排除(A ),(C ); 又的图形在y 轴右侧有三个零点,因此由罗尔中值定理可知,其导函数y=f\x )的图形在y 轴右侧一定有两个零点,进一步可排除(E ).应选(D ).三、解答题(11)【解】djr(2jc 12 + 1)丿兴 + ]1(]___\ 2 3_(1 + j//2 ) 2 ' 4工丿 (4jc + 1) 2Z )= 肿一 I = ~~2'sec 21(2tan 2i + 1 )sec tdtr cos tJ 2sinS + cosL弓豐將=arctan(sin/)+C=arctan .- + C.Jx 2 + 1(12) 【解】f(x ) =Sin "B ,nr = lim [(1 + $1叮一 sm ”)t-~x 'sin x / L 、 sin x /fCx)的间断点为工=kit (k e z),由lim/(j?) = e 得工=0为/(j :)的可去间断点;•z —*0由f (n — Q) — + °°,/(7r + 0) = 0得工=7T 为第二类间断点,同理工=kn(k 6 Z 且怡H0)为第二类间断点.(13) 【解】“=士,『=—— ,2 V j c 4工』工4«zdp _ dp / dj? ds ds / dr131••4( 4 工 +1)2--------------- ---------=6 J~x , 丿4无+ ]2 J~x6d 2 p d ( 6 \/~t ) /dj?2 \[x 6& $ ds/dx g + 1+ 12则^兽-伴)(4h +l)72一;… 一 — 36 无=9.J 4 无 + ](14)【解】gCt)dt x 2e 两边求导,得g[_f (j? )]/,(jc ) = (jc 2 +2工)『9 即) = (e + 2)e° 9积分得 /(^) = (h +1)『+ C9由 /(O) = 0 得 C = — 1,故/'(z ) = («z + 1)『一1.(15)【解】 由 g"Q ) = 2e J 一厂(2 )得 g 〃(H ) + g(z ) = 2e J ,解得 g (工)=C] cos x + C 2 sin x + e r ・ 由 g (0)=2 得 Ci = 1 ;由 g'(0) = 2 — /(0) = 2 得 C 2 = 19从而 g (jc ) = cos x + sin jr + e * 9 于是 fCx)= sin jc — cos 无 + e° ,rg(H )1 + zg (工)/(j ?)_1+乂 (1 + )2dj : +/(j : )d土)J 0g&) 1, fCx )i+7d " +TT7lo _Jg (#)1 +Ax_/(7T )_e n + 1= i + tt = 7t + r(16)r 解】(i )丨 op |=好 +$2,切线方程为Y —y =j/(X —乂),令X = 0,则切线在y 轴上的截距为Y = y — xy',由题意得y — xy' = Jx 2 + j^2,整理得字=2 — /1 + (―),dr jc \ \戈丿令u =—,则"+ z 学 =u — \/1 + z/2,变量分离得 d ----=——工 山 丿1 + / 工______ ______ 「积分得 ln(“ + \/m 2 + 1 ) = In C — In x ,即"+ a /m 2 + 1 = 一,x 再由 -“ + vV +1 =咅得“=*岸-咅),或$=*9 -青),因为曲线经过点(*,0),所以C=y,故所求曲线为夕=土一工2.(H)曲线汁* —在第一象限与两坐标轴所围成的面积为设切点为P1X 22) 9切线为y —=一 2a (jc 一 a ) 9令夕=0得z =二 + #;令工=0得,=++/oa z 4切线与L 及两个坐标轴围成的位于第一象限的面积为4a112 5Sa • 4a令s'++斜4a 2T + fl24a 24)=°得「古所求的切线方程为丿—(土―召),整理得(17)[解】 设/时刻雪堆的半径为r(Z ),r(0) =r 0,v 2 3 Q 9 2 dV 2 "V = —nr , o = Z7tr 9 -7— = Z7ir • —3 dt dtdV" d 厂由题意得不=TS,整理得不=T,解得")=f+c°,由厂(0)=厂 ° 得 C =r Q= —kt +r 09再由 r (3) = #•得怡=¥•,故 r ⑺=----t + r 0 ,Z令r (?) =0得t =6,故雪堆全部融化需要6小时.(18) ( I )【解】/(^)的带拉格朗日余项的一阶麦克劳林公式为/(J?) = /(0) + /''(0)工 + I ;£)乂2= /,(0)jf + [『力2,其中£介于0与工之间.(II )【证明】/(j : ) =/,(0)j' +食,)工2两边在[—a ,a ]上积分得[/(jc)dj- = _1_[ /7,($)2d:r ,J —au J —a因为f'\x )在[—a ,a ]上连续,所以f'\x )在[—a ,a ]上取到最小值m 和最大值M,由W */"(£)広2 C yMjr 2 得扌a 3 C yj 厂(£)工'dr < y-a 3 ,m ra m 3 f a即百^3 W /(工)clr W —a 3 9或 Tzz — /(j : )djc M ,3 J —a 3 a J —a由介值定理,存在少E [—a,a],使得/'"(可)=弓[/'(工)山,a J —a故 a "/■"(”)=3〕/ ( jc ) d j ?.(19)【解】 由 AXA +BXB =AXB + BXA + E 得(A -B)XCA -B) =E,解得 X = [(A -B)2]"1 ,/I — 1 — 1而A - B = 0 1 一 1'o 0 1/!-1一1\J 1(AB)2=01-11 0'001丿'0I 1_ 2-110°\I 1由01-2010 -* 0'0100J'0-1-1I 1-2一1\1-1=01-201/'o 01 100125\10012|得0100/]25\X =-012 •、00J(20)【解】0] ,p 2,“3,04为AX =0的基础解系的充分必要条件是01 ,庆,/h ,力线性无关,1t0100t '而(01 902 9 03,04)=(。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(B)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f ( x) > x.
(C)在 (1− δ ,1) 内, f ( x) < x, 在 (1,1+ δ ) 内, f ( x) > x.
(D)在 (1− δ ,1) 内, f ( x) > x, 在 (1,1+ δ ) 内, f ( x) < x.
解得 y = e
−∫ e
⎡
∫ = 1−
x2
1 arcsin
x
dx
⎢⎢c ⎢⎣
+
1
∫
e
arcsin x
1
dx ⎤
1−x2 arcsin x dx⎥⎥
⎥⎦
1
(c+ x),
arcsin x
y
⎛ ⎜⎝
1 2
⎞ ⎟⎠
=
0
⇒
c
=
−
1 2
.
-2-
故曲线方程为:
y arcsin x = x − 1 . 2
⎡a 1 1⎤ ⎡ x1 ⎤ ⎡ 1 ⎤
( ) ∫ 三、求
dx
.
2x2 +1 x2 +1
【详解】设 x = tan t, 则 dx = sec2 t.
( ) ∫ ∫ ∫ 原式 =
sec2 tdt
=
cos tdt = d sin t
sec t ⋅ 2 tan2 t +1 2sin2 t + cos2 t 1+ sin2 t
= arctan (sin t ) + C
M
3
⎥ ⎥
→
⎢⎣1 1 a M −2⎥⎦ ⎢⎣0 1− a 1− a2 M 1+ 2a⎥⎦
⎡1 1
a
M −2 ⎤
⎢⎢0 a −1
(a −1)
M
3
⎥ ⎥
,
⎢⎣0 0 (a −1)(a + 2) M 2(a + 2)⎥⎦
( ) 可见,只有当 a = −2 时才有秩 r A = r ( A) = 2 < 3, 对应方程组有无穷多个解.
(A)1.
(B)2.
(C)3.
(D)4. 【】
【答】 应选(B).
【详解] 由题设,知
( ) (1− cos x) ln 1+ x2
lim
x→0
x sin xn
= lim x→0
1 x2 ⋅ x2 2
x ⋅ xn
=
1 lim
2 x→0
1 xn−3
=
1 lim x3−n 2 x→0
= 0.
n应满足 n ≤ 2;
-4-
(D)3. 【】
y' = 4( x −1)( x − 2)( x − 3)
( ) y'' = 4 3x2 −12x +11 ,
y''' = 24 ( x − 2).
令 y'' = 0, 即 3x2 −12x +11 = 0, 因为 ∆ = 122 − 4 ⋅ 3⋅11 = 12 > 0, 所以 yn = 0 有两个根,且不
( y arcsin x)' = 1,
两边直接积分,得
y arcsin x = x + c.
又由
y
⎛ ⎜⎝
1 2
⎞ ⎟⎠
=
0,
解得
c
=
−
1 2
.
故所求曲线方程为:
方法二:
y arcsin x = x − 1 . 2
将原方程写成一阶线性方程的标准形式
y' +
1
y= 1 .
1− x2 arcsin x arcsin x
为 2 ,因在此两点处,三阶导数 y''' ≠ 0, 因此曲线有两个拐点.
故正确选项为(C).
(4) 已 知 函 数 f ( x) 在 区 间 (1− δ ,1+ δ ) 内 具 有 二 阶 导 数 , f ' ( x) 严 格 单 调 减 少 , 且
f (1) = f ' (1) = 1, 则 (A)在 (1− δ ,1) 和 (1,1+ δ ) 内均有 f ( x) < x.
可见 F ( x) 在 x = 1 处取极大值,即在 (1− δ ,1) 和 (1,1+ δ ) 内均有 F ( x) < F (1) = 0,
也即 f ( x) < x.
故正确选项为(A). 方法二:
因为 f ' ( x) 严格单调减少,且 f ' (1) = 1,
-5-
则在 (1− δ ,1) 内, f ' ( x) > f ' (1) = 1
x
x
而 lim f ( x) = lim esin x 与 lim f ( x) = lim esin x 均不存在,
x→(kπ )−
x→(kπ )−
x→(kπ )+
x→(kπ )+
故 x = kπ (k = ±1, ±2,L) 是函数 f ( x) 的第二类(或无穷)间断点.
-7-
方法二:
= lim e = e = 原式
x
⋅x sin
x
sin x ⎥⎦
x
= esin x ,
x
即
f ( x) = esin x ,
显然 f ( x) 的间断点为:
x = 0, x = kπ (k = ±1, ±2,L)
x
由于 lim f ( x) = lim esin x = e,
x→0
x→0
所以 x = 0 是函数 f ( x) 的第一类(或可去)间断点;
1 4
sin 2
2xdx
∫ = 1 8
π
2 −π
(1
−
cos
4
x
)dx
2
=π. 8
(4)过点
⎛ ⎜⎝
1 2
,
0
⎞ ⎟⎠
且满足关系式
y'
arcsin
x
+
y = 1的曲线方程为 1− x2
.
【答】 y arcsin x = x − 1 . 2
【详解】 方法一:
原方程 y' arcsin x + y = 1可改写为 1− x2
(5)设方程 ⎢⎢1
a
1
⎥ ⎥
⎢ ⎢
x2
⎥ ⎥
=
⎢ ⎢
1
⎥ ⎥
有无穷多个解,则
a
=
.
⎢⎣1 1 a⎥⎦ ⎢⎣ x3 ⎥⎦ ⎢⎣−2⎥⎦
【答】 -2
【详解】 方法一:
利用初等行变换化增广矩阵为阶梯形,有
⎡a 1 1 M 1 ⎤ ⎡1 1 a M −2 ⎤
A = ⎢⎢1
a
1M
1
⎥ ⎥
→
⎢⎢0
a −1
1− a
抛物线上介于点
A(1,1) 与
M
之间的弧长,计算 3ρ
d2ρ ds2
−
⎛ ⎜⎝
dρ ds
⎞2 ⎟⎠
的值.(在直角坐标系下曲
y ''
率公式为 K =
)
3
( ) 1+ y'2 2
【详解】 y' = 1 , y'' = − 1 ,
2x
4 x3
抛物线在点 M ( x, y)( x ≥ 1) 处三维曲率半径
3
求 f (x).
【详解】 等式两边对 x 求导得
g ⎡⎣ f ( x)⎤⎦ f ' ( x) = 2xex + x2ex
而
g ⎡⎣ f ( x)⎤⎦ = x,
故
xf ' ( x) = 2xex + x2ex .
当 x ≠ 0 时,有
f ' ( x) = 2ex + xex
积分得
f ( x) = ( x +1) ex + C
【答】 应选(A). 【详解】 方法一:
令 F ( x) = f ( x) − x,
【】
则 F ' ( x) = f ' ( x) −1 = f ' ( x) − f ' (1),
由于 f ' ( x) 严格单调减少,
因此当 x ∈ (1− δ ,1) 时, F ' ( x) < 0, 且在 x = 1 处, F ' (1) = 0.
又由 lim x→0
x sin xn ex2 −1
=
lim
x→0
x n +1 x2
= lim xn−1 x→0
= 0,
知 n ≥ 2. 故 n = 2.
因此正确选项为(B).
(3)曲线 y = ( x −1)2 ( x − 3)2 的拐点个数为
(A)0.
(B)1.
(C)2.
【答】 应选(C). 【详解】 因为
-6-
时,一定有 f ' ( x) > 0 对应 y = f ' ( x) 图形必在 x 轴的上方,由此可排除(A),(C); 又 y = f ( x) 的图形在 y 轴右侧有三个零点,因此由罗尔中值定理知,其导函数 y = f ' ( x) 图
形在 y 轴一定有两个零点,进一步可排除(B).
故正确答案为(D).
⎛ = arctan ⎜
x
⎞ ⎟ + C.