七年级数学下册重点知识复习PPT课件
合集下载
北师大版七年级数学下册第3章变量之间的关系PPT课件

为13.5 cm
知3-练
4 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是 下表的数据:
鸭的质量/kg 0.5 1 1.5 2 2.5 3 3.5 4 烤制时间/min 40 60 80 100 120 140 160 180
设烤鸭的质量为 x kg,烤制时间为 t min,估计当 x=3.2时,t 的值为( C ) A.140 B.138 C.148 D.160
总结
知2-讲
运用定义法来解答.区别自变量和因变量有以下 三种方法: (1)看变化的先后顺序,自变量是先发生变化的量,因
变量是后发生变化的量; (2)看变化的方式,自变量是一个主动变化的量,因变
量是一个被动变化的量; (3)看因果关系,自变量是起因,因变量是结果.
知2-练
1 王老师开车去加油站加油, 数量 2.45 (升)
知识点 3 用表格表示两个变量间的关系
议一议
我国从1949年到2009年的人口统计数据如下(精确到
0.01亿):
时间/年 1949 1959 1969 1979 1989 1999 2009
人口 /亿 5.42 6.72 8.07 9.75 11.07 12.59 13.35
(1)如果用x表示时间,y表示我国人口总数,那么随着x的
知3-讲
例2 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)
之间的关系如下表,从表中可知音速y随气温x的升高而 __加__快__.在气温为20℃的一天举行运动会,某人看到发令
枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发
令地点__6_8_.6__米.
气温x/℃
0
5 10 15 20
(3)当底边长从 12 cm变化到 3 cm时,三角形的面积从 ______cm2变化到 ______cm2. y=3x表示了右图中三角形底边
知3-练
4 某烤鸭店在确定烤鸭的烤制时间时,主要依据的是 下表的数据:
鸭的质量/kg 0.5 1 1.5 2 2.5 3 3.5 4 烤制时间/min 40 60 80 100 120 140 160 180
设烤鸭的质量为 x kg,烤制时间为 t min,估计当 x=3.2时,t 的值为( C ) A.140 B.138 C.148 D.160
总结
知2-讲
运用定义法来解答.区别自变量和因变量有以下 三种方法: (1)看变化的先后顺序,自变量是先发生变化的量,因
变量是后发生变化的量; (2)看变化的方式,自变量是一个主动变化的量,因变
量是一个被动变化的量; (3)看因果关系,自变量是起因,因变量是结果.
知2-练
1 王老师开车去加油站加油, 数量 2.45 (升)
知识点 3 用表格表示两个变量间的关系
议一议
我国从1949年到2009年的人口统计数据如下(精确到
0.01亿):
时间/年 1949 1959 1969 1979 1989 1999 2009
人口 /亿 5.42 6.72 8.07 9.75 11.07 12.59 13.35
(1)如果用x表示时间,y表示我国人口总数,那么随着x的
知3-讲
例2 声音在空气中传播的速度y(米/秒)(简称音速)与气温x(℃)
之间的关系如下表,从表中可知音速y随气温x的升高而 __加__快__.在气温为20℃的一天举行运动会,某人看到发令
枪的烟0.2秒后,听到了枪声,则由此可知,这个人距发
令地点__6_8_.6__米.
气温x/℃
0
5 10 15 20
(3)当底边长从 12 cm变化到 3 cm时,三角形的面积从 ______cm2变化到 ______cm2. y=3x表示了右图中三角形底边
七年级下册数学ppt课件第一单元

am ·an = am+n (m,n都是正整数).
注意:条件:①乘法
②底数相同
结果:①底数不变 ②指数相加
例1 计算:
3
(1)(–3)7×(–3)6 ;
(3)
–x3·
x5;
1
1
(2)
;
111 111
(4)
b2m·
b2m+1 .
解:(1)(3)7 (3)6 (3)76 (3)13 ;
(5)
(3)-a4·(-a)2 =-a4·a2
=-a6
(6) a·a2+a3 =a3+a3=2a3
m
n
1
1
1
10
10
10
m +n
注意:公式中的底数和指数可以是一个数,字母或者一个式子.
am·
an=am+n (m,n都是正整数)
法 则
上面各式括号中都是
4 4 4
12
4 3
4
4
4
a
(a然后再
) a乘方
a .你能给这种运算
a a
(a m 起个名字吗?
) 5 a m a m a m a m a m a m m m m m a 5m
3 2
1 2
4 2
(a b c) (3a b) a bc
3
2
2
2
方法2:利用类似分数约分的方法
5
x y
5
2
3
(1)
(x y) x 2 x y
x 2 2
8m n
人教版七年级数学下册第七章平面直角坐标系PPT课件全套

有序数对在生活中的应用
知 识 点 二
如图是某学校的平面示意图.如果用 (5,1)表示学校大门的位置,那么运动场表 宿舍楼 (6,8) ,(8,5)表示的场所是_____. 示为_____
有序数对在生活中的应用
知 识 点 二
如图3,甲处表示2街与5巷的十字路口,乙处表 示5街与2巷的十字路口,如果用(2,5)表示甲处的位 置,那么“(2,5)→(3,5) →(4,5) →(5,5) →(5,4) →(5,3) →(5,2)”表示从甲处到乙处的一种路线,请 你用 这种形式写出两种从甲处到乙处的最短路线.
这就是我们接下来要学习的相关概念的内容。
2、在平面内画两条互相____、原点____的数轴, 垂直 重合 横轴 组成平面直角坐标系.水平的数轴称为____或____, x轴 y轴 习惯上取向_____为正方向;竖直的数轴称为___ 右 _或____,取向____为正方向;两个坐标轴的_ 上 纵轴 ___为平面直角坐标系的原点 . 交点 y轴
D
-4 -3 -2 -1 -1 4 3 2 1
y A
O1
2 3
4
x
C
-2 -3
B
4、如图所示,在第三象限的点是(C ) A.点A B.点B C.点C D.点D
(1)
学习目标
1
会根据实际情况建立适当的坐 标系;
2
通过点的位置关系探索坐标之间 的关系及根据坐标之间的关系探 索点的位置关系.
讲授新课
认真阅读课本第67至68页的内容,
分别为:A( 0,0 ),B(6,0),C(6,6 ),D(0,6). y 2、若以线段DC所在的直线为x轴,纵轴(y 轴)位置不变,则四个顶点的坐标分别为: 6,0 ), A( 0,-6),B( 6,-6 ),C( D( 0,0 ).
北师大版数学七年级下册第四章:1、认识三角形 课件(共65张PPT)

1.三角形内角和定理:三角形三个内角的和等于180°.
2.三角形内角和定理的应用:①在三角形中,已知任意两个内角的度数可以 求出第三个内角的度数;②已知三角形三个内角的关系,可以求出各个内角 的度数;③求一个三角形中各角之间的关系.
3.三角形按角分类:
直角三角形:有一个角是直角的三角形 锐角三角形:三个角都是锐角的三角形 钝角三角形:有一个角是钝角的三角形
∠A、∠C的公共边是
.
,∠A的对边是
栏目索引
,
图4-1-3 答案 ∠B;BC;AC 解析 △ABC中,AB与BC的夹角是∠B,∠A的对边是BC,∠A、∠C的公共 边是AC.
1 认识三角形
知识点二 三角形三个内角之间的关系
栏目索引
4.(2017广西南宁中考)如图4-1-4,△ABC中,∠A=60°,∠B=40°,则∠C等于
其所在直 直角三角形
线)的交
点位置 钝角三角形
交点在三角形内 交点在直角顶点处 交点在三角形外
三条中线交于三 角形内一点(这一 点称为三角形的 重心)
交点在三角形内
共同点
每个三角形都有三条高、三条中线、三条角平分线,它们(或它们所在的直线) 都分别交于一个点,它们都是线段
1 认识三角形
栏目索引
知识拓展
(1)得到线段垂直;(2)得到角相等 (1)得到线段相等; (2)得到面积相等
得到角相等
1 认识三角形
栏目索引
线段 的位置
锐角三角形 直角三角形
钝角三角形
三条高全在三角形内
三条中线全在三
角形内 一条高在三角形内,另外两条
与两直角边重合
三条角平分线全 在三角形内
三角形内一条,三角形外两条
北师大版七年级下册数学《整式的乘法》整式的乘除说课教学复习课件拔高

项数与原多项式项 数一致;
(3)单项式系数为负时,改变多项式每项的符号。
综合训练 2x ( 1 x2 1) 3x(1 x2 2 )
2
33
解
:
原式
2
x
1 2
x21
2x
3x
1 3
x2
3x
2 3
x3 2x x3 2x
4x
计算:
-2a2·(ab+b2)-5a(a2b-ab2)
解:原式=-2a3b-2a2b2-5a3b+5a2b2
方法总结:化简求值的题型,一定要注意先化简, 再求值,不能先代值,再计算.
一、选择题。 1.下列计算正确的是 ( C ) A.(x+1)(x+2)=x2+2 B.(x+y)(x2+y2)=x3+y3 C.(x-2)(x+1)=x2-x-2 D.(x-2)(x-1)=x2-2x+2
2.计算(x-2)(x-3)的结果是 ( A )
北师大版七年级下册第一章『整式的乘除』
1.4.整式的乘法
第3课时
课件
学习目标
1.理解并掌握多项式与多项式的乘法运算法则.(重点) 2.能够用多项式与多项式的乘法运算法则进行计算. (难点)
以下不同形状的长方形卡片各有若干张,请你选取其中的两张, 用它们拼成更大的长方形,尽可能采用多种拼法。
n m
范例 例2.计算:
(1)(2x)3(5xy2 )
(2)(3x2 y)3 (x2 )3
幂的乘方 (1)先算乘方
积的乘方 (2)再算乘法 单项式乘以单项式
巩固 3.计算:
(1)(2x)3 (3x)2 (2)( 1 x2 y)3 (3xy2 )2
(3)单项式系数为负时,改变多项式每项的符号。
综合训练 2x ( 1 x2 1) 3x(1 x2 2 )
2
33
解
:
原式
2
x
1 2
x21
2x
3x
1 3
x2
3x
2 3
x3 2x x3 2x
4x
计算:
-2a2·(ab+b2)-5a(a2b-ab2)
解:原式=-2a3b-2a2b2-5a3b+5a2b2
方法总结:化简求值的题型,一定要注意先化简, 再求值,不能先代值,再计算.
一、选择题。 1.下列计算正确的是 ( C ) A.(x+1)(x+2)=x2+2 B.(x+y)(x2+y2)=x3+y3 C.(x-2)(x+1)=x2-x-2 D.(x-2)(x-1)=x2-2x+2
2.计算(x-2)(x-3)的结果是 ( A )
北师大版七年级下册第一章『整式的乘除』
1.4.整式的乘法
第3课时
课件
学习目标
1.理解并掌握多项式与多项式的乘法运算法则.(重点) 2.能够用多项式与多项式的乘法运算法则进行计算. (难点)
以下不同形状的长方形卡片各有若干张,请你选取其中的两张, 用它们拼成更大的长方形,尽可能采用多种拼法。
n m
范例 例2.计算:
(1)(2x)3(5xy2 )
(2)(3x2 y)3 (x2 )3
幂的乘方 (1)先算乘方
积的乘方 (2)再算乘法 单项式乘以单项式
巩固 3.计算:
(1)(2x)3 (3x)2 (2)( 1 x2 y)3 (3xy2 )2
七年级 下册 数学 PPT课件 精品课 第4章三角形 三角形的中线、角平分线

归纳
知2-导
铅笔支起三角形卡片的点就是三 角形的重心!
(来自《教材》)
知2-讲
位置图例:任何三角形的三条中线都交于一点,且该 点在三角形的内部,如图,这个点叫三角形的重心.
(来自《点拨》)
角的平分线
C
如右图,如果∠AOB=∠BOC,
那么射线OB叫做∠AOC的角
B
平分线。
O
A
从角的顶点出发,把这个角分成相等的两个角的射
(2) 在每个三角形中,这三条角平分线之间有怎样的 位置关系?
三角形的三条角平分线线交于一点
A
∵BE是△ABC的角平分线
∴∠__A_B_E=_∠__C_B_E= 1 ∠__AB_C__
F
E
O
2
∵CF是△ABC的角平分线
∴∠ACB=2_∠__A_C_F_=2_∠__B_C_F_
B
D
C
练一练
• 1、AD是ΔABC的角平分线(如图),
【解析】(1)因为∠1+∠BCD=90°,∠1=∠B,所以
∠B+∠BCD=90°,所以∠CDB=90°,
所以△BDC是直角三角形,即CD⊥AB,故CD是△ABC的高.
(2)因为∠ACB=∠CDB=90°,
所以S△ABC
= 1 AC·BC=1
2
2
AB·CD.
又因为AC=8,BC=6,AB=10,
所以CD= AC BC 68 24 .
(2)易错警示:求三角形的边时,要注意隐含条件:三角形
的三边关系.
(来自《点拨》)
知1-练
3 如图,△ABC的面积为3,BD:DC=2:1,E 是AC的中点,AD与BE相交于点P,那么四边 形PDCE的面积为( B )
七年级 下册 数学 PPT课件 精品课 第5章生活中的轴对称 角平分线的性质

(来自《点拨》)
知2-练
1 【中考·怀化】如图,OP为∠AOB的平分线, PC⊥OA,PD⊥OB,垂足分别是C,D,则下列 结论错误的是( B ) A.PC=PD B.∠CPO=∠DOP C.∠CPO=∠DPO D.OC=OD
(来自《典中点》)
知2-练
2 如图,在△ABC中,∠C=90°,AC=BC, AD平分∠CAB交BC于D,DE⊥AB于E,若 AB=6 cm,则△DBE的周长是( A ) A.6 cm B.7 cm C.8 cm D.9 cm
7.如图所示,D是∠ACG的平分线上的一点. DE⊥AC, DF⊥CG,垂足分别为E,F.试说明:CE=CF.
解:∵CD是∠ACG的平分线, DE⊥AC,DF⊥CG,
∴DE=DF. 在Rt△CDE和Rt△CDF中,
CD DE
CD, DF,
∴Rt△CDE≌Rt△CDF(HL),
∴CE=CF.
总结
因为∠AEB=∠AOB=90°, 所以∠OAF+∠AFO=90°,∠OBD+∠AFO=90°. 所以∠OAF=∠OBD. 又因为OA=OB,∠AOF=∠BOD=90°, 所以△AOF≌△BOD(ASA). 所以AF=BD. 所以BD=2AE.
返回
方 法 4 截取作对称图形法
4.如图,在△ABC中,AD平分∠BAC,∠C= 2∠B.
即为所求.
(来自《点拨》)
知识点 2 角的平分线的性质
做一做
(1)在一张纸上任意画∠AOB,沿角的
两边将角剪下,将这个角对折,使 角的两边重合,折痕就是∠AOB的 平分线. (2)在∠AOB的角平分线上任意取一点C,分别折出过点C 且与∠AOB的两边垂直的直线,垂足分别为D,E,将 ∠AOB再次对折, 线段CD与CE能重合吗? 改变点C的位置,线段CD和CE还相等吗?
人教版数学七年级下册8.1 二元一次方程组 课件(共26张PPT)

第八章 二元一次方程组
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
8.1 二元一次方程组
1.经历根据实际问题列二元一次方程(组)的过程,让学生体 会方程组是刻画现实世界中含有多个未知数的数学模型. 2.通过复习类比一元一次方程,探究掌握二元一次方程(组) 及其解的概念. 3.培养学生的数学类比思想,感受方程组的实际应用价值.
学习重点:二元一次方程(组)以及解的概念. 学习难点:二元一次方程组的解的概念.
写出二元一次方程3x+2y=19的正整数解. 解:ቊyx==81;, ቊyx==53;, ቊxy==25.,
例3 二元一次方程组ቊxx−+yy==180, 的解是( C )
A.ቊxy==35,
B.ቊxy==111,
C.ቊyx==−91,
D.ቊxy==16..55,
下列各组值中是二元一次方程组ቊxx−+yy==35,的解的 是( C )
我们已经学习了一元一次方程,并学会了用它解 决实际问题。 一元一次方程中只含有一个未知数,下面我们来 看下这些问题含有几个未知数?
篮球比赛不仅出现在奥运赛场上,在生活中也随处可见,请 同学们看下面这个问题:在某次篮球联赛中,每场比赛都要分 出胜负,每队胜1场得2分,负1场得1分.某队在10场比赛中得到 16分,那么这个队胜负场数分别是多少呢?
思考:这个问题中包含了 哪些必须同时满足的条件?
分析:胜的场数+负的场数=总场数,胜场积分+负场积分=
总积分.
胜
负
合计
场数
x
y
10
积分
2x
y
16
解:设这个队胜的场数为x场,负的场数为y场. 依据题意,得x+y=10,2x+y=16.
学生活动一【一起探究】
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a为任何数
3 a3 a a为任何数
3 a 3 a a为任何数
已知a o,求
a2
3
a3的值
已知m n,求(m n)2 3(n m)3的值
32 2 2 3 2 3
化里 简面 绝的 对数 值的 要符 看号 它
是负数 等于它的相反数
32 2
2 2 3
是正数
是负数
等于本身
2 3 2 3
7、如果两条直线都与第三条直线平行,那么这两条直
线( )
8、垂直于同一条直线的两条直线(
)
(三)命题 10、什么是命题? 11、命题由哪两部分组成? 12、命题可以分为哪两种? (四)平移 13、平移时,新图形与原图形的( )和( ) 完全相同;连接各对应点的线段( )且( )
二、典型例题
1、下列图形中, ∠1和∠2是对顶角的是( )
不
1. 9(3 y)2 4
解: (3 y)2 4 9
3 y 4 9
2
2. 2(7 x 2)3 125 0
解:
3
27( x
2)3
125
3
(x 2)3 125
3
27
x 2 3 125
要
y 3 3
遗
y 2 1 或y 3 2
漏
3
3
3
27
x 25
33
x 1
当方程中出现平方时,若有解,一般都有
3 2
原式 2 2 3 2 3 ( 3 2)
2 2 3 2 3 3 2
2 2 2 2 3 3 3
4 2 3
三.解答题 1.计算
(1) 3 0.125 (2)2 3 5 10 0.04(精确到0.01)
2 (3)3 8 0 1
4 (4)( 5 1)( 5 1)
2、解下列方程:
三次方根.记作 3 .a
其中a是被开方数,3是根指数,符号 “3 ”读做“三次根号”.
4.立方根的性质:
一个正数有一个正的立方根;
一个负数有一个负的立方根, 零的立方根是零。
5、区分
你知道算术平方根、平方根、立方根联 系和区别吗?
算术平方根
平方根
立方根
表示方法
a 的取值
正数
性
0
质
负数
开 方 是本身
A.0个 B.1 个 C.2个
D.3个
4、已知 a 5,b2 7,且 a+b a b,则a b的值为(D )
A.2或12 B.2或-12 C.-2或12 D.-2或-12
5、已知5 7的小数部分是a?5 7的小数
部分是b?求a b的值 1
变式:已知9 13和9 13的小数部分分别为a和b
一般地,如果一个数的平方等于a ,那么这个 数就叫做a 的平方根(或二次方根).
这就是说,如果x 2 = a ,那么 x 就叫
做 a 的平方根.a的平方根记为±
a
3.平方根的性质:
正数有2个平方根,它们互为相反数; 0的平方根是0; 负数没有平方根。
3.立方根的定义:
一般地,如果一个数的立方等于a,那 么这个数就叫做a的立方根,也叫做a的
求a b的相反数的立方根 1
6、设a和b互为相反数,c和d互为负倒数,x的绝对值为 5,
6、把“等角的补角相等”改为“如果…,那么Байду номын сангаас” 的形式为( )
7、如图,AB∥EF∥DC, EG∥BD,则图中与∠1 相等的角有( )个 8、下列命题是真命题的是 () A、两个锐角的和是锐角;B、同旁内角互补 C、互补的角是邻补角;D、两个负数的和为负数 9、如右图,AB∥DE,则 ∠ 1+ ∠2+ ∠3=( )°
a ≠ a
a≥ 0
a≥ 0
3a a 是任何数
正数(一个) 互为相反数(两个) 正数(一个)
0
0
0
没有
没有
负数(一个)
求一个数的平方根 求一个数的立方根 的运算叫开平方 的运算叫开立方
0,1
0
0,1,-1
式、 基
本
公
6
a a 0
a2 a = 0
a 0
a (a 0)
a 2 a a 0 3 a 3 a
10、如图,△ABC经过平移后,点A移到了A’,画出 平移后的△A’B’C’
11、如图1,AB∥CD,EG平分∠BEF, 若∠1=76°,求∠2的度数 12、如图2,EB∥DC, ∠C= ∠E, 证明: ∠A= ∠ADE 13、如图3,CD⊥AB, EF⊥AB,∠1= ∠2, 求证: ∠AGD= ∠ACB
2、如右图,若∠AOC=30°, 则∠BOD=( )°,
∠BOC=( )°
3、如图,OH⊥AB,OA=OB=5cm, OH=3cm,P在AB上,则OP的取值范围是( ) 4、经过两次转弯后, 行走的方向相同,则可能是( ) A、第一次左转100°,第二次左转100° B、第一次左转100°,第二次左转80° C、第一次左转100°,第二次右转100° D、第一次左转100°,第二次右转80° 5、下列能判断AB∥CD的是 A、 ∠1= ∠2 B、 ∠4= ∠3 C、 ∠1+ ∠2=180° D、 ∠ADC+ ∠BCD=180°
两个解
当方程中出现立方时,一般都有一个解
选择题
1、代数式 a a 1 a 2的最小值是( B )
1 2
A.0
B.
C.0
D.不存在
2、若
2
m
m,则实数m在数轴上的对应点一定在(
C
)
A.原点左侧 B.原点右侧 C.原点或原点左侧 D.原点或原点右侧
3、若式子 ( 4-a)2是一个实数,则满足这个条件的a的值有(B)
方
方
开平方 开立方
算术平方根
平方根 立方根 负的平方根
有理数 无理数
实数
1.算术平方根的定义:
一般地,如果一个正数x的平方等于
a,即 x2 =a,那么这个正数x叫做a的
算术平方根。a的算术平方根记为 a , 读作“根号a”,a叫做被开方数。
特殊:0的算术平 方根是0。
记作:0 0
2. 平方根的定义:
14、 如图4,∠1= ∠2, ∠C= ∠D, 求证: ∠A= ∠F 15、 如图5,∠D= ∠E, ∠ABE= ∠D+ ∠E, BC是∠ABE的平分线, 求证:BC∥DE
16、如图,已知AB∥CD,请猜想各个图中∠AMC 与∠MAB、 ∠MCD的关系
第六章实数的复习
?
本章知识结 构图
乘 互为逆运算 开
七年级数学下册重点知识复习
期末复习课件
第五章 相交线与平行线复习
一、知识要点回顾
(一)相交线
1、邻补角的和为(
)°;2、对顶角(
)
3、过一点(
)条直线与已知直线垂直
4、连接直线外一点与直线上各点的所有线段中,
( )最短,简单说成:( )
(二)平行线
5、经过直线外一点,( )条直线与这条直线平行
6、平行线的判定、性质