微型机器人
微型机器人简介

微型机器人简介现如今,科技的快速发展使得人类生活发生了翻天覆地的变化。
微型机器人作为一种新兴的技术应用,正逐渐引起了人们的关注。
本文将对微型机器人进行简要介绍,并探讨其应用领域和潜在价值。
一、微型机器人的定义和特点微型机器人是一种尺寸小巧的机器人系统,其体积通常在几毫米到几厘米之间。
相比于传统机器人,微型机器人具有以下特点:1. 小型化:微型机器人体积小,可以轻松进入狭小的空间,具有更灵活的机动性。
2. 高度集成:微型机器人集成了各种传感器和执行器,能够完成一系列复杂任务。
3. 自主性:微型机器人具备一定的自主决策能力,可以根据环境变化做出相应的反应。
二、微型机器人的应用领域微型机器人的小巧尺寸使得它在多个领域都有广泛的应用。
1. 医疗领域:微型机器人可以被用于内窥镜手术,通过无创方式进入人体,进行病变组织的检查和治疗。
2. 环境监测:微型机器人可以被用来监测环境中的各项参数,如空气质量、水质等,为环境保护提供实时数据。
3. 救援任务:微型机器人可以在灾难现场进行搜救任务,进入无法到达的地方,寻找被困伤员的位置。
4. 工业生产:微型机器人在工业生产中具有广阔的前景,可以用于装配、检测等多个环节,提高生产效率和质量。
三、微型机器人的未来发展微型机器人技术仍处于不断发展的阶段,未来有望实现更多应用和突破。
1. 智能化:随着人工智能技术的进一步发展,微型机器人有望具备更高水平的智能化,能够更准确地反应环境变化。
2. 网络互连:微型机器人的互联网技术也将得到提升,它们可以相互协作,实现更复杂的任务。
3. 医学突破:微型机器人在医疗领域的应用潜力巨大,未来可能实现更精准的手术和药物传递,对医学做出重大贡献。
4. 环境保护:随着人们对环境的关注不断提高,微型机器人在环境监测和治理方面的应用将得到更多的重视和探索。
总结起来,微型机器人作为一种新兴的技术,具有广阔的应用前景和潜在价值。
随着技术的不断进步,微型机器人必将在医疗、环境保护、救援和工业等领域发挥重要的作用,为人类社会带来更多的便利和进步。
微型机器人的设计与制造

微型机器人的设计与制造
一、简介
微型机器人是技术进步后的产物,它的出现引起了技术革命。
微型机器人是系统集成/电子/机械等技术的综合应用,其功能是模拟人的行为,可以完成定义的任务。
微型机器人不仅可以用于家庭应用,而且可以用于各种行业,如农业,制造业,矿产,建筑等。
对于家居应用,它可以用于搅拌食物,打扫房间,服务,安全监护等。
而且,它还可以像玩具一样有趣。
二、设计
微型机器人的结构设计包括传感器,电机,控制电路,外壳等部分。
传感器的设计可以帮助机器人感知他人和环境。
然后,电机能够激活机器人的运动。
随后,控制电路可以控制机器人的动作并进行数据处理,它是机器人思维的核心。
最后,机器人的外壳设计要满足结构尺寸,散热,美观等要求。
三、制造
微型机器人的制造一般由三步构成:组装、测试和安装。
首先,在组装阶段,将电机、控制电路、传感器等部件按照设计接好,激活机器人,使它可以完成任务。
接着,在测试阶段,通过测试来确认机器人的行为是否符合预期,如是否能够在复杂的环境中正确定位,并进行多步操作等。
微型机器人的设计与应用

微型机器人的设计与应用近年来,微型机器人进入了人类的视野,在科技创新领域得到了广泛的应用和推广。
微型机器人是一种小型化的机器人,其体积和重量十分微小,可以执行各种任务和动作。
微型机器人的设计和应用,具有重要的意义和价值。
一、微型机器人的设计微型机器人的设计需要同步兼顾机械学、电子学、计算机学和材料学等方面的知识。
微型机器人的结构一般分为传感器、动力系统、执行器和控制系统四大部分。
1. 传感器:微型机器人需要配备各种传感器,以便感知周围环境,获取位置信息、姿态信息和环境信息等。
如机械臂可以使用红外传感器、超声波传感器、摄像头等,进行识别操作。
2. 动力系统:微型机器人需要配备适当的动力系统,以保证其运动和执行任务的能力。
可以使用微型电动机,燃料电池或者电池。
3. 执行器:微型机器人需要配备不同类型的执行器,以便可以完成各种任务。
如手臂遥控铲子等。
4. 控制系统:微型机器人需要配置合适的控制系统,控制其运动、姿态和高度等。
可以使用微型处理器、信号减弱器等,进行精细控制。
二、微型机器人的应用微型机器人的应用十分广泛,包括医疗、工业、探测和作战等领域。
以下是几个典型的应用领域。
1. 医疗领域:微型机器人可以在人体内进行手术操作,避免了传统手术中的切割、疼痛和创伤等。
如微型机器人可以用于神经外科、心外科和小部位手术等领域。
2. 工业领域:微型机器人可以在狭小空间内执行特殊机械操作。
如微型机器人可以用于汽车、飞机等复杂机器的维修。
3. 探测领域:微型机器人可以应用于各种环境探测,如化学污染物、地震监测、火灾探测、防疫等。
如微型机器人可以在受污染的环境下完成精确探测,找到污染源。
4. 军事领域:微型机器人可以进行隐蔽侦察、地雷拆除和训练等。
如微型机器人可以用于敌后侦察和情报获取等任务中。
三、微型机器人的发展趋势微型机器人在目前不断发展,未来也会有更多的应用和推广。
以下是几项未来发展趋势。
1. 更小更强的机器人:未来的微型机器人将变得更小、更敏捷、更强大。
微型机器人技术的研究现状和趋势

微型机器人技术的研究现状和趋势随着科技的发展和人们对机器人应用的需求增加,微型机器人技术逐渐引起了广泛关注。
本文将简要介绍微型机器人技术的研究现状,并展望未来的发展趋势。
一、微型机器人技术的定义和特点微型机器人是指尺寸小于一米的机器人系统。
与传统的机器人相比,微型机器人具有以下几个显著特点:1. 小巧灵活:由于尺寸的限制,微型机器人可以在狭小的空间内灵活操作,具备更广泛的应用场景。
2. 高度精准:微型机器人采用先进的传感器和控制系统,能够实现高精度的运动和操作。
3. 多功能性:微型机器人可以具备多种功能,如检测、监控、医疗等,实现多样化的任务。
二、微型机器人技术的研究现状1. 结构和材料:微型机器人的结构设计和材料选择是关键。
目前,研究者提出了多种创新的结构设计理念,例如仿生机器人、可展开式机器人等。
材料方面,研究者正在尝试使用纳米材料和生物材料,以提高机器人的性能和适应性。
2. 动力和驱动:微型机器人的动力和驱动系统是实现其运动和操作的关键。
电磁力、磁力、压力等多种驱动方式被用于微型机器人的驱动系统中。
此外,太阳能、燃料电池等新型能源也被研究者探索和应用。
3. 传感和控制:微型机器人的传感和控制系统是实现其高精度运动和操作的基础。
传感器技术的发展使得微型机器人能够获取更加准确的环境信息,而先进的控制算法则实现了机器人的自主决策与行动。
4. 应用领域:微型机器人技术在医疗、环境监测、无人探测等领域有着广阔的应用前景。
例如,在医疗领域,微型机器人可以用于内窥镜等医疗器械的操控和手术辅助;在环境监测领域,微型机器人可以用于检测和修复污染区域;在无人探测领域,微型机器人可以用于勘探灾难现场或危险环境。
三、微型机器人技术的发展趋势1. 多机器人协作:未来,微型机器人将更多地实现多机器人协作,形成机器人网络,实现复杂任务的分工合作。
2. 智能化:随着人工智能技术的进步,微型机器人将具备更高的自主决策能力和智能感知能力,能够更好地适应复杂环境和任务需求。
微型化自动化机器人的设计与制造

微型化自动化机器人的设计与制造随着科技的不断进步,机器人技术也得到了大幅提升。
机器人在生产制造、物流配送、医疗等领域中已经占据了重要的地位。
然而,传统机器人的尺寸和重量较大,很难在一些狭小的空间中完成任务。
因此,微型化自动化机器人应运而生。
微型化自动化机器人拥有小巧灵活、自主导航、高效精准的特点,可应用于实验室研究、医疗手术、家电维修等领域。
本文将结合实际案例,详细介绍微型化自动化机器人的设计和制造流程。
一、机器人运动控制模块设计机器人运动控制模块是微型化自动化机器人的核心组成部分。
其作用是对机器人工作状态进行控制和调节。
包括运动速度、动作精准度、灵活性等方面。
以下便是德国西门子公司的一个机器人运动控制模块的设计流程:1. 设计模型前对运动控制系统的特性进行分析,包括控制系统的性能、电气电子性能、制造及安装方面的要求和运动控制性能指标等。
2. 根据分析结果进行元器件电路设计,确定具体电路结构。
3. 电路设计完成后,进行原理图设计,绘制原理图电路图。
4. 电路原理图完成后,将其转化为PCB布局图,确定电路板的焊盘数量以及连接方式等。
5. 电路板制造和制程工艺设计,包括普通和高级工艺,每个环节的工作流程和操作。
6. 电路板焊接完成后,进行功能测试,确定元器件符合要求和电路运行稳定性。
以上就是机器人运动控制模块设计的详细流程,完成后便可以将其集成到机器人的硬件系统中。
二、机器人软件系统设计机器人控制软件是微型化自动化机器人的重要组成部分。
软件主要负责控制机器人的运动,实现自主导航、视觉识别、路径规划等功能。
以下是以复旦大学的自主导航拓扑地图为例,介绍机器人软件设计流程:1. 以微型化自动化机器人为基础,进行机器人控制软件设计。
2. 设计机器人运动控制算法,包括路径规划、动作编码等。
3. 采集环境信息,构建地图模型。
4. 地图模型与机器人控制算法进行融合,并进行功能测试。
5. 引入视觉识别和语音识别技术,优化机器人控制软件。
微型机器人的设计与控制

微型机器人的设计与控制随着科技的不断发展,人们对机器人的要求越来越高,从最初的大型工业机器人到现在的微型机器人。
微型机器人具有尺寸小、灵活性强的特点,使其在医疗、环境监测、救援等领域发挥着重要的作用。
本文将以微型机器人的设计与控制为主题,探讨其原理、技术和应用。
一、微型机器人的设计微型机器人的设计需要兼顾尺寸、功耗和功能等多个因素。
首先,需要选择适合的材料和加工工艺,以实现小尺寸和轻量化。
其次,机器人需要具备一定的电子和机械结构,以实现各种功能。
例如,需要配备传感器来感知环境,并能够通过控制电路和执行器实现对机器人的控制。
此外,还需要设计适合微型机器人的电源系统,以满足其低功耗的要求。
二、微型机器人的控制微型机器人的控制是实现其各种功能的关键。
常见的微型机器人控制方式包括遥控、自主导航和集群控制等。
遥控是最基础的控制方式,通过操控遥控器来控制机器人的移动和操作。
自主导航是指机器人通过搭载导航系统,自行决策并控制移动方向。
集群控制是指多个微型机器人间通过通信和协作,共同完成任务。
这些控制方式可以根据实际需求进行选择和组合。
三、微型机器人的技术微型机器人的设计与控制离不开多种技术的支持。
其中,最重要的技术之一是微纳加工技术。
微纳加工技术可以制造出微型机器人所需的各种微尺度结构和元件,并实现高度集成和小尺寸。
此外,还有传感技术、动力技术、导航技术等,它们共同构成了微型机器人的技术基础。
四、微型机器人的应用微型机器人在医疗、环境监测、救援等领域有广泛的应用前景。
在医疗方面,微型机器人可以被用于内窥镜检查、微创手术等,从而减少病人的痛苦和创伤。
在环境监测方面,微型机器人能够进入狭隘的空间进行检测,例如水箱内部、管道等,从而提高环境监测的精度和效率。
在救援方面,微型机器人可以用于搜索和救援被困人员,避免人力无法到达的地点。
五、微型机器人的发展前景微型机器人作为一种新型机器人,其发展前景十分广阔。
随着科技的进步,微型机器人的设计与控制技术将会更加成熟和精确,尺寸将进一步减小,功能将进一步增强。
微型机器人的应用场景

微型机器人的应用场景随着科技的发展,微型机器人已经成为现实。
微型机器人是指体积小、功能强大的机器人。
它们可以用于各种领域,如医疗、环境监测、制造业等。
下面我们将详细介绍微型机器人的应用场景。
一、医疗领域微型机器人在医疗领域的应用非常广泛,如手术、检测等。
它们可以进入人体内部进行检查和治疗。
比如,微型机器人可以通过血管进入心脏,对病变部位进行治疗。
此外,微型机器人还可以进行组织损伤修复和药物释放等操作。
这些操作具有精准性和微创性,可以减少手术风险和病人的痛苦。
二、环境监测微型机器人还可以用于环境监测。
它们可以进入人类无法到达的地方,如地下水管道、海洋深处等,进行环境监测。
微型机器人可以测量水质、空气质量、温度等环境参数。
这些数据可以帮助我们更好地了解环境状况,及时采取措施保护环境。
三、制造业微型机器人在制造业中的应用也很广泛。
它们可以用于制造、装配、检测等环节。
比如,微型机器人可以在电子制造中进行电路板的焊接和组装。
它们可以通过精准的控制和操作,提高生产效率和产品质量。
四、安全领域微型机器人还可以用于安全领域。
它们可以进入危险区域,如火灾、地震等灾害现场,进行搜索和救援。
微型机器人可以通过红外线、雷达等技术,探测到人类无法触及的区域。
它们可以提高救援效率和减少救援人员的风险。
五、航空航天领域微型机器人在航空航天领域的应用也很广泛。
它们可以用于太空探索、卫星维护等任务。
微型机器人可以在太空中进行各种操作,如维修卫星、搭建空间站等。
这些任务对人类来说十分危险,而微型机器人可以代替人类完成,保障人类的安全。
微型机器人的应用场景非常广泛。
它们可以用于医疗、环境监测、制造业、安全领域、航空航天等众多领域。
微型机器人的出现,将会为人类带来更多便利和安全。
微型机器人技术的研究现状与应用

微型机器人技术的研究现状与应用随着科技的不断发展,微型机器人技术也迅猛发展。
微型机器人是一种尺寸小于一厘米的机器人,能够模仿生物体在微小空间中运动、进行各种操作,具有广阔的应用前景。
本文将从微型机器人的研究现状、技术特点和应用等多个方面来探讨微型机器人技术的发展状况。
一、微型机器人的研究现状微型机器人技术已经成为目前机器人技术中的重要研究领域。
此前,这种技术开发主要聚焦在一些具有极高实用价值的领域,如医学、疾病诊断、制药等。
然而,现在它被广泛应用于人类的各个生活领域,如教育、娱乐、军事、工业等众多领域。
微型机器人的发展历程可追溯到上个世纪90年代。
当时的早期微型机器人还无法适应半导体行业中的制造要求,微型机器人技术主要是通过生物学和医学技术的起点开始的。
在这期间,科学家们着手研究用于手术的基础医疗设备,探索最小化及远程治疗技术。
微型机器人被用于生物体内部的注意力调节和药物传递。
此后,微型机器人技术也被用于各种工业领域中。
二、微型机器人技术的特点微型机器人技术的发展给我们带来了很多惊喜,其技术特点如下:1、尺寸极小微型机器人主要是指直径小于一厘米的机器人,体积小、重量轻,可以在极小的空间内活动。
由于其易于操作、控制和管理的特性,它们被广泛应用于需要精准控制的领域。
2、自主模式微型机器人在工作中主要依靠独立于人类干预的程序来完成任务,即一种自主模式,这为下一步的AI应用提供了非常有利的条件。
3、复杂操作微型机器人在小空间内具备广泛的自由度和高度的灵活性,其应用范围涵盖从射频电路板的生产到生物实验都是非常广泛的。
三、微型机器人技术的应用微型机器人技术的应用范围非常广泛,涉及到的领域包括:医疗、环境、军事和制造业等。
1、医疗应用领域微型机器人在医疗领域中的应用也比较广泛,主要是在现代外科学中,几乎所有的手术过程都可以通过微型机器人完成。
例如,目前市场上的“Da Vinci Robotic Surgical System”,已经被广泛应用于心脏、肺、喉、胃等多个领域的手术中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
职业教育机电一体化专业教学资源库新技术新工艺名称:微型机器人编制人:邮箱:电话:编制时间:2014.11编制单位:辽宁省交通高等专科学校微型机器人机器人技术是一门快速发展的高新技术,在许多领域得到了日益广泛的应用,并对人类社会产生着日益重大的影响。
微型机器人(Micro-Robotics)是指集成了微型作业工具、各种微小型传感器,具有通用编程能力的小型移动机构。
微机电系统(Micro Electromechanical System,MEMS)是指可批量制作的,将微型机构、微型传感器、微型执行器、信号处理和控制电路、以及接口通信和电源等集于一体的微型器件或系统。
20世纪80年代后期,随着大规模和超大规模集成电路的迅速发展,微电子技术与机械、光学等学科的交叉融合促进了MEMS技术的迅速发展。
MEMS 是目前正在飞跃发展的微米/纳米技术中的一项十分重要的技术,它的成熟和产业化,对经济建设、国防建设乃至社会发展都将产生深远影响。
微型机器人是利用IC(集成电路)微细加工技术,将驱动器和传动装置、传感器、控制器、电源等集成在一起的功能完备的MEMS系统。
MEMS技术可将机器人系统的尺寸缩小到几毫米甚至几百微米,这种微型化的趋势经逐渐成为机器人发展领域的一个重要方向。
微型机器人的研究方向可以归纳为三个方面:微操作机器人技术,微定位机器人技术和微型机器人技术。
微型机器人结构尺寸微小,器件精密,可进行微细操作,具有小惯性、快速响应、高谐振频率、高附加值等特点。
然而,微型机器人并不是简单意义上普通机器人的微小化,微型机器人一般集成有传感、控制、执行和能量单元,是机械、电子、材料、控制、计算机和生物医学等多学科技术的交叉融合。
微型机器人的研究,是一个新颖又具有重大实际意义和挑战性的课题。
该技术有利于实现真正意义上的微小系统,充分展示了微小系统的巨大魅力;而且建立微型机器人需要更为微小的驱动器、执行器、传感器、处理器等,由此展开的对微型机器人本体加工和微部件的研制,将有利于实现更高意义上的微系统集成,推动MEMS技术继续前进。
◎微型机器人的组成、关键技术及分类微型机器人系统一般由四部分组成:微执行器,微传感器,微能源,控制系统。
相应的微执行器技术、检测技术、能源供给和控制技术就是微型机器人的关键技术。
◆微执行器技术微执行器的研究,一直是微机械发展的关键,并在一定程度上标志着一个国家微机械的发展水平。
◆检测技术在微型机器人上配备传感器后可以检测微型机器人的运动参数及环境参数,并存储和传递检测到的信号。
作为机器人的感觉器官,传感器须具备拾取信息、传递信息的功能,同时还须满足尺寸小、分辨率高、稳定性和可靠性好、时间响应快等特点。
微型机器人常用的传感器有视频探测器、涡流传感器、激光干涉仪、加速度传感器等。
◆能源供给技术微型机器人的能量供应方式可分为有线和无线,无线供能是微型机器人发展的未来趋势。
其中无线又可分为内部供应型和外部供应型两种。
内部供应的能量大多是电能,一般采用电池和电容器供能。
电池输出功率的连续性好,但是很难小型化。
外部供应型大致有以下几种:光驱动方式、热转换方式、压驱动方式、变位转换方式、电磁供应方式等。
◆控制技术微型机器人控制技术关键的是在微小尺寸水平上的集成机载控制器。
目前这个技术还没有很好地解决,有待计算机和部分外设集成技术的突破。
微型机器人种类很多,也有很多分类标准:1)按所应用的领域,可以分为医疗用和工业用两类;2)按工作环境,可分为管道微型机器人、微型飞行器和水下微型机器人三类;3)按驱动方式,可分为气动、微电机驱动、智能材料驱动、能量场驱动等;4)按移动方式,可分为轮式、足式、蠕动式、泳动式等;5)按能源供给方式,可分为有线和无线两种形式。
◎微型机器人的国内外研究现状目前,微型机器人已经成为了MEMS研究的一个重要的方向和热点,世界各国正积极地开展微型机器人的研究。
美国国家自然科学基金会将MEMS技术列为优先支持的项目,美国国防部先进研究计划署也制定了有关MEMS的研究发展计划。
在欧洲,尤其是德国和法国,MEMS技术作为前沿高科技,得到欧盟组织的大力支持。
在日本,微机械研究始于1991年由通产省资助的“微机械技术十年计划”,分为基础研究、中间评价和系统化技术三个阶段,并于1992年组建了“微机械研究中心”来负责组织管理和规划研究,重点是发展进入工业狭窄空间微型机器人、进入人体狭窄空间的医疗微系统和微型工厂。
我国微型机器人的研究起步较晚,在驱动控制系统的研究方面和国外差距比较明显。
微型机器人的研究己经被列为国家“863”计划。
国内研究人员已经开展了卓有成效的工作,也取得了一系列的研究成果。
主要集中在三个领域:(1)面向煤气、化工、发电设备细小管道探测的微型机器人;(2)针对人体、进入肠道的无创诊疗微型机器人;(3)面向复杂机械系统非拆卸检修的微型机器人。
下面按照微型机器人不同工作环境的分类,来看微型机器人的研究成果。
◆微型管道机器人微型管道机器人是基于狭小空间内的应用背景提出的,其环境特点是在狭小的管状通道或缝隙行走进行检测,维修等作业。
在工业、核工业、石油天然气等领域中,管道作为一种有效的物料输送手段而得到广泛应用,为了提高这些管道的寿命,防止泄露等事故的发生,管道机器人作为满足高效准确的故障诊断、检测及维修的手段应运而生,其广泛地应用于管道的探伤、补口、维修、焊接等诸多领域。
医疗机器人将机器人技术应用到医疗领域,极大的推动了现代医疗技术的发展,近年来随着MEMS的发展,大大促进了医疗机器人的微型化,可用于人体内诊断和治疗的微型机器人的研究越来越受到重视,如下图所示。
◆微型飞行器微型飞行器不同于传统概念上的飞机,它是MEMS集成技术的产物。
微型飞行器的姿态控制系统中的微型地平仪、微型高度计,导航系统中的微型磁场传感器和微型加速度计、微陀螺仪等,飞行控制系统中的微型空速计、微型舵机等,在微型飞行器上应用的微型摄像机、微型通讯系统等,都需要MEMS技术的支持,以减少体积和重量,改善飞行器的性能。
微型飞行器的动力——微型发动机也需利用MEMS技术制造,所以说,微型飞行器除机身和机翼外,都需依靠MEMS技术,甚至机翼也可以用MEMS 技术制造灵巧的蒙皮,以控制飞行器的飞行姿态。
微型飞行器的一个重要应用是军事侦察,可进行敌情侦察及监视、战争危险估计、目标搜索、通信中继,侦察建筑物内部情况等。
适用于城市、丛林等多种战争环境。
因为其便于携带,操作简单,安全性好的优点,可以在部队中大量装备。
而在非军事领域,配置有相应传感器的微型飞行器,可以用来搜寻灾难幸存者、有毒气体或化学物质源,消灭农作物害虫等,如下图所示。
◆水下微型机器人微型水下机器人广泛应用于大坝监测、水下搜救、渔业生产、港航安防、水下考古和科学考察等水下调查领域,如下图中,左图为美国的VideoRay系列水下微型机器人,右图为仿生龙虾微型机器人。
◎微型机器人的应用微型机器人的应用领域正在不断扩大,无论是在民用如农业、工业、医学、生物等领域,还是军用如军事和航空领域,都有着广泛的应用。
美国国家科学基金委员会1988年的调查报告列举了MEMS在生物血管、眼科手术中、疾病检测与治疗、高级仪器的超级清洁、微细检测与修补、工业、军事、航空航天、农业等方面的25个有希望的重大应用领域。
微型机器人在农业上可以用来杀灭害虫、定点洒农药;在工业和人们日常生活中,微型机器人给埋藏在地下的大量、无数的小口径输液管道的检测和维护提供了一种很好方式和手段。
在核工业上可以用来处理核电站事故、进行设备维修以及对核燃料进行处理。
在医学上医用微型机器人的研究正在不断取得进展,微型机器人的使用可以减少对人体其它完好组织的伤害,缩短康复时间,消除手术引起的副作用,降低医疗费用,减轻患者的生理痛苦和医疗人员手术操作时的心理压力。
在军事上可以用于军事要地的报警、防卫战略要地等,也可以攻击敌人的重要设施、实现定点爆破,或者深入敌后获取重要的军事情报。
在航天上发射微型卫星可以大大降低卫星的成本和发射费用。
◎微型机器人研究所面临的问题◆驱动器的微型化问题微驱动器是MEMS最主要的部件,从微型机器人的发展来看,微驱动技术起着关键作用,并且是彰显微型机器人水平的标志。
开发耗能低、结构简单、易于微型化、位移输出和力输出大,线性控制性能好,动态响应快的新型驱动器(高性能压电元件、大扭矩微马达)是未来的研究方向。
◆微型机器人的尺寸效应问题微型机器人,特别是医用微型机器人,设计的最终目标都是将尺寸控制在毫米级以下。
由于尺度的微细,使得表面积体积比增大,与尺寸高次方成比例的力,如惯性力、电磁力等的作用相对减弱,而与尺寸低次方成比例的黏性力、表面张力、静电力、摩擦力等的作用显著增加,这样会造成微型机器人在运动时的阻力增大。
◆能源供给问题许多执行机构都是通过电能驱动的,但是对于微型移动机器人而言,供应电能的导线会严重影响微型机器人的运动,特别是在曲率变化比较大的环境中。
微型机器人发展趋势应是无线化,能量、控制信号以及检测信号应可以无线发送、传输。
微型机器人要真正实用化,必须解决无线微波能源和无线数据传输技术,同时研究开发小尺寸的高容量电池。
◆可靠性和安全性问题目前许多正在研制和开发的微型机器人是以医疗、军事以及核电站为应用背景,在这些十分重要的应用场合,机器人工作的可靠性和安全性是设计人员必须考虑的一个问题,因此要求机器人能够适应所处的环境,并具有故障排除能力。
◆高度自治系统的控制问题微型机器人要完成特定的作业,其自身定位和环境的识别能力是关键,开发微视觉系统,提高微图象处理速度,采用神经网络及人工智能等先进的技术来解决控制系统的高度自治难题是最终实现实用化的关键。
◎总结微型机器人目前大多还处于实验室或原型开发阶段,存在许多关键的技术没有得到解决,离实用化还有相当的距离。
但是,随着相关技术的不管发展,这些问题都将得到解决,促进微型机器人技术的不断进步。
可以预见,微型机器人在21世纪必将大量出现。
微型机器人又被称为“明天的机器人”,向微型化和超微型化方向发展的趋势,将使得机器人走向更广阔领域,也会让我们看到另外一个多姿多彩的世界。