贴片电阻电容电感的认识方法

合集下载

贴片电阻识别方法

贴片电阻识别方法

贴片电阻识别方法
贴片电阻是一种常见的电子元器件,用于电路中的电阻效应。

为了正确识别贴片电阻的参数,可以采用以下方法:
1. 颜色编码法:贴片电阻通常会在体积较小的侧面标有不同颜色的条纹。

根据颜色的顺序和数量,可以确定电阻的阻值和精度。

可以参照颜色编码表对条纹进行解读,并确定电阻的数值。

2. 电阻值标识法:有些贴片电阻上直接印刷了阻值的数值,例如"100"表示100欧姆。

使用万用表或电阻表可以直接测量电
阻的数值。

3. 封装尺寸标识法:贴片电阻的封装尺寸一般标有规格代码,例如"0603"、"0805"等。

通过测量电阻的长、宽、厚,可以与
规格代码进行对比,从而确定电阻的封装尺寸。

4. 热敏电阻法:将电阻与指定电流通过,可以测量电阻的温度变化。

根据电阻随温度变化的特性,可以判断电阻的阻值范围。

5. 测量阻值法:使用万用表或电阻计测量电阻的数值。

比较测量结果与理论数值,可以确定电阻的阻值。

以上是识别贴片电阻的常见方法。

根据电阻本身的特性和标识,可以确定电阻的参数。

贴片电阻识别方法

贴片电阻识别方法

贴片电阻识别方法
贴片电阻是电子元器件中常见的一种,它可以用来限制电流、分压和测量电阻等。

在电子产品的维修和维护中,经常需要对贴片电阻进行识别和测量。

下面将介绍几种常用的贴片电阻识别方法,希望能够帮助大家更好地进行电子产品的维护和维修工作。

首先,最简单的方法就是查阅贴片电阻的规格书。

每种贴片电阻都有自己的规格书,上面会标注着电阻的阻值、公差、尺寸等信息。

通过查阅规格书,可以快速准确地识别出贴片电阻的参数,从而进行后续的维修工作。

其次,可以使用万用表进行测量。

将万用表调至电阻档位,然后将测试笔分别接触贴片电阻的两端,即可测量出电阻的阻值。

根据测量结果和规格书中的参数进行对比,就可以确定贴片电阻的具体参数。

另外,还可以通过外观和标识来识别贴片电阻。

不同规格的贴片电阻在外观和标识上都会有所不同,可以通过外观和标识上的信息来进行识别。

比如,不同阻值的贴片电阻可能会有不同的颜色标识,通过识别颜色来确定电阻的阻值。

除此之外,还可以借助专用的电子测量仪器进行识别。

有些电子测量仪器具有自动识别功能,可以通过将贴片电阻接入测量仪器,即可自动显示出电阻的参数,极大地简化了识别的过程。

总之,识别贴片电阻的方法有很多种,可以根据实际情况选择最适合的方法进行识别。

在进行识别的过程中,需要注意保持仪器的清洁和准确性,避免因外界因素影响识别的准确性。

希望以上介绍的方法能够帮助大家更好地进行贴片电阻的识别工作,提高电子产品的维修和维护效率。

贴片电阻电容认识方法

贴片电阻电容认识方法

贴片电阻电容认识方法贴片电阻电容电感的认识方法一、电阻电阻的基本单位为欧姆,用符号“Ω”表示,PCB上代号为R,常用的单位还有千欧( k? ),兆欧(m? )进制换算:1000R=1KR 1000K=1MR电阻的常用误差有两种:J=±5% F=±1%例:一电阻表示为102J0402前面两位表示有效数字,第三位表示10的倍数,J表示误差计算方法:10*102=1000欧姆=1K J表示误差0402表示规格即表示此物料为:1K ±5% 0402 的电阻二、电容电容的基本单位为法拉,用符号“F”表示,PCB板上代号为C,其它单位还有:毫法(mF)、微法(uF)、纳法(nF)、皮法(pF),由于单位F 的容量太大,所以我们看到的一般都是μF、nF、pF的单位。

进制换算:1F=103mF=106UF=109NF=1012PF电容的常用误差有四种:J=±5% K=±10% M=±20% Z=+80%-20%常用耐压值为:6.3V 10V 16V 25V 50V例:一电容表示为103K16V0603前面两位表示有效数字,第三位表示10的倍数,K表示误差,16V表示耐压值,0603表示规格计算方法:10*103=10 000PF=10NF即表示此物料为:10NF ±10% 16V 0603的电容三、电感电感的基本单位是亨利,用符号“H”表示,PCB板上代号为L,其它单位还有毫亨(mH),微亨(uH),纳亨(nH),皮亨(pH)进制换算:1H=103mH=106uH=109nH=1012pH电感的常用误差:K=±10% M=±20%换算方法与电阻、电容相同四、常用贴片物料的规格常用贴片物料规格有:0402、0603、0805、1206、1210、1812、2010、2512、2225以下为相应规格所对相应尺寸:长*宽0402=1.0*0.5mm 0603=1.6*0.8mm 0805=2.0*1.2mm1206=3.2*1.6mm 1210=3.2*2.5mm 1812=4.8*3.2mm2010=5.0*2.5mm 2512=6.4*3.2mm 2225=5.6*6.5mm。

六大常用电子元器件的识别

六大常用电子元器件的识别

六大常用电子元器件的识别
以下是六大常用电子元器件的识别方法:
1.电阻(Resistor):
➢在电路中用"r"加数字表示,如r13表示编号为13的电阻。

➢参数识别:单位为欧姆(Ω),倍率单位有千欧(kΩ)、兆欧(M Ω)等。

2.电容(Capacitor):
➢在电路中一般用"c"加数字表示,如c223表示编号为223的电容。

➢电容的特性主要是隔直流通交流。

3.电感(Inductor):
➢电感线圈是将绝缘的导线在绝缘的骨架上绕一定的圈数制成的电子元件。

4.二极管(Diode):
➢二极管有多种封装,如玻璃封装、塑料封装和螺栓封装。

➢具体品种有稳压二极管、整流二极管、隧道二极管、快恢复二极管、微波二极管、肖特基二极管等。

5.三极管(Transistor):
➢三极管也有多种封装,如TO220封装和TO-3封装。

➢具体类型可能是三极管、可控硅、场效应管或双二极管。

6.可控硅(SCR):
➢可控硅是一种特殊的电子元件,具有单向导通特性和控制触发特性。

★以上是六大常用电子元器件的基本识别方法。

每种元件都有不同的外观、封装和功能特性,需要根据具体情况进行判断和识别。

贴片电阻识别方法

贴片电阻识别方法

贴片电阻识别方法
贴片电阻的识别方法主要包括以下几个方面:
1. 查看标记值:贴片电阻通常会在外部标注有阻值信息,如照片上的“100”代表100Ω的电阻。

可以通过直接查看标记值来确定电阻的阻值。

2. 使用万用表:使用万用表测量电阻的阻值,通过测量可以确定电阻的准确阻值。

3. 使用电阻色环:贴片电阻通常也会使用颜色环标注阻值,根据颜色环的排列组合来确定电阻的阻值。

具体法则为:
- 前两个环表示前两位数字;
- 第三个环表示一个系数值,它是一个功率的幂(10的幂);
- 最后一个环表示电阻的容差。

4. 使用电阻计:使用专门的电阻计来测量电阻的阻值和容差,并通过仪器上的显示结果来识别电阻。

5. 使用电路板上的标记:对于贴片电阻安装在电路板上的情况,可以通过查看电路板上的标记,如参考电路图、PCB标识等来确定电阻的阻值。

需要注意的是,不同电阻的识别方法略有差异,具体应根据电阻的标记特征、产
品手册或相关资源来进行准确定义。

另外,对于小尺寸的贴片电阻,可使用显微镜来辅助观测和识别。

【干货】史上最全解读SMT贴片电阻、电容、电感(性能,分类,读值,应用,检测,修维等

【干货】史上最全解读SMT贴片电阻、电容、电感(性能,分类,读值,应用,检测,修维等

干货】史上最全解读SMT贴片电阻、电容、电感(性能,分类,读值,应用,检测,修维等)物体对电流通过的阻碍作用称为电阻,利用这种阻碍作用做成的元件称为电阻器,简称电阻。

电阻器是电路元件中应用最广泛的一种元器件,其质量的好坏对电路工作的稳定性有极大影响。

电阻器主要用来稳定和调节电路中的电流和电压,即起降压、分压、限流、分流、隔离、过滤(与电容器结合)、匹配和信号幅度调节等作用。

如图1-1-1为主板上的贴片电阻器。

主板上的贴片电阻本任务主要对电阻作基本的介绍,让大家掌握电阻相关知识、应用和检测。

一、认识电阻计算机主板电路中的电阻器一般采用贴片电阻器,而在其它电路中,电阻器的类型多种多样,电路板通常会根据不同的需要,采用不同的电阻器。

如图1-1-2为各种电阻器的电路图符号SMT贴片电阻在电路板上的标示电阻器是电子电路的最基本、最常用的电子元件。

电阻器一般用R,RN,RF,FS,PR等字母符号来表示,图1-1-3为电阻在电路中的应用形式。

(2)电阻器的数标法:数标法主要3位数表示阻值,前两位表示有效数字,第三位数字表示倍率(10的几次方)如:标注为472表在路检测操作步骤:第一、将电路板的电源断开。

第二、对电阻器进行观察,看待测电阻器是否损坏,爆裂,有无烧焦、引脚断裂、引脚铜箔线断路或虚焊等情况。

第三、根据电阻器的标称阻值,调整万用表的量程到合适的挡拉,并将万用表的两表笔分别接待测电阻器的两引脚,测量得一个阻值R1。

第四、将万用表的两表笔对调,然后再测量得一个阻值R2。

第五、比较两次测量阻值,取大的一次作为参考值,如果它等于或接近于电阻标称值,可以断定电阻正常;如果远大于标称值,说明电阻损坏;如果远小于标称值,此时不能断定电阻损坏,还得将电阻进行开路检测才能断定。

(2)开路检测电阻器的方法开路检测,是指将电阻器元件的一端从电路板上焊脱(或是从电路板上焊下来),然后进行测量。

这样有效避免了其它电路对测量值的影响,能准确的判断电阻的好坏。

认识电阻、电容、电感

认识电阻、电容、电感

对电阻、电容、电感的认识1、电阻电阻是电子产品、设备中使用最多的电子元件,约占总数的35%,而有些产品如彩电则占50%以上,因此电阻器质量对产品影响很大。

根据材料,可将电阻分为:碳膜电阻、金属膜电阻、金属氧化膜电阻、实心(碳质)电阻和绕线电阻。

关于电阻的种类、标称值、误差、识别方法、表示方法以及一些主要参数等,我会在后面整理的文档中给出。

Ls 包括电阻体寄生电感与引线电感。

电阻体寄生电感与电阻结构有关,线绕电阻体寄生电感较大,非线绕,尤其是贴片电阻体寄生电感小。

引线电感与引线长度有关,因此传统轴向引线封装引线寄生电感较大,无引线贴片电阻引线寄生电感最小。

由于寄生电容Cs 、寄生电感Ls 与电阻结构有关,与阻值大小几乎无关。

因此相同材料、相同结构的电阻,其频率特性与阻值关系非常密切。

举例说明:下图以Cs=0.02p ,Ls=2.9nH 某系列金属膜、金属氧化膜电阻的频率特性。

如下面六幅图所示:注意:请大家仔细看上的图,横坐标是电阻阻值,纵坐标是频率通过上面6副图,可见对于高阻值电阻,当频率升高时,寄生电容分流作用不能忽略,例如阻值大于100K 的电阻,只能工作在频率<10MHz 的电路系统中,而阻值大于1M 的电阻,只能工作在频率≤1MHz 的电路系统中,因此在滤波、包括高速运放电路中尽量避免使用阻值大于100K 的电阻。

对于低阻值电阻,当频率升高时,寄生感抗不能忽略,例如阻值小于1Ω的电阻,也只能工作在频率<10MHz 的电路系统中,而阻值小于0.1Ω的电阻,只能工作在频率≤1MHz 的电路系统中,因此在滤波电路中尽量避免使用阻值小于1K 的电阻。

因此在高频,尤其是在频率大于>1GHz 的微波电路中,一般均使用几十欧~几百欧的电阻。

2、电容实际电容等效电路如图所示,寄生电感L 包括了由引线寄生电感与内部寄生电感(大小与电容内部结构,即工艺有关)组成,电解电容来说,内部寄生电感远大于引线寄生电感;对瓷片电容,内部寄生电感较小。

贴片电容、贴片电阻、贴片电感的区别

贴片电容、贴片电阻、贴片电感的区别

贴片电容、贴片电阻、贴片电感的使用量在电子元器件行业中占
据75%以上,也是现目前涨价尤为严重的贴片电子元件。

以下浅
谈他们三者间的区别。

电感在电路中是储存感抗的元件。

电感具有自感和互感功能和阻高频通低频功能,给一个线圈通入
电流,线圈周围就会产生磁场,线圈就有磁通量通过,通入线圈的
电流越大,磁场就越强,通过线圈的磁通量就越大,这就是自感。

两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个
电感线圈,这种影响就是互感。

在电路中,电感器常用来对交流信号进行隔离、滤波或与电容器、电阻器等组成谐振电路,电容在电路中是储存电荷的元件。

电容在
电路中有隔直通交和耦合作用,常用来存储和释放电荷以充当滤波器,在低频信号的传递与放大过程中,为防止前后两级电路的静态
工作点相互影响,常采用电容藕合。

电阻在电路中是消耗电能的元件。

主要用来限制电流,调整电压等。

简单说来,电阻用来控制电路中的电流,电容用来隔直流通交流,电感用来阻高频通低频。

另一方面电容和电感都是储能元件,在电
路中都有滤波功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用肉眼就可以识别
贴片电阻一般上面有数字表示阻值,另一面是白色瓷体,扁平长方形状!
贴片电容身上没有标识,黄褐色,通常比同封装的电阻厚,长方形状!
贴片电感形状是扁方形的,中间是个圆盘,里面可以看到线圈!
(3)片式铝电解电容器
片式铝电解电容器按外形可分为圆柱形、矩形两种类型。

按封装形式可以分为金属封装形、树脂封装形,如图
铝电解电容器的容量范围在0.1~220μF,误差范围为±20%,额定耐压值为4~50V。

铝电解电容器的极性表示方法如图
图2.1.5 片式铝电解电容
图2.1.6 铝电解电容极性表示方法
(2)片式钽电解电容器
容量超过0.33μF的表面组装元件通常使用钽电解电容器,优点是响应速度快,内部为固体电解质。

矩形钽电解电容器有裸片型、模塑封装型和端帽型三种类型。

日本松下公司的TE系列矩形钽电容的外型尺寸如表,误差范围为±20%或±10%,额定耐压值为4~35V。

表松下TE系列矩形钽电容
5.片式电感器
片式电感器是将线绕在磁芯上,低电感时用陶瓷作磁芯,大电感时用铁氧体作磁芯,再将绕组引出两个电极,制作成贴片元件。

按分类可以分为两类普通型和功率应用型。

常见的外形,如图
图2.1.7 片式电感器外形。

相关文档
最新文档