电阻,电容,电感之基本参数

合集下载

基础电路实验报告

基础电路实验报告

一、实验目的1. 熟悉常用电子元件(电阻、电容、电感)的特性和测量方法。

2. 掌握基本电路分析方法,如串联、并联电路的等效电阻、电压、电流的计算。

3. 培养动手能力和实验技能,提高对电路实验数据的处理和分析能力。

二、实验器材1. 实验电路板:1块2. 电阻:10kΩ、1kΩ、100Ω各1个3. 电容:0.1μF、10μF各1个4. 电感:100μH、10μH各1个5. 信号发生器:1台6. 示波器:1台7. 直流稳压电源:1台8. 万用表:1台9. 连接线:若干三、实验原理1. 串联电路:串联电路中,电流相等,电压分配与电阻成正比。

2. 并联电路:并联电路中,电压相等,电流分配与电阻成反比。

3. 电阻的串联和并联:串联电路的等效电阻等于各电阻之和;并联电路的等效电阻的倒数等于各电阻倒数之和。

四、实验内容1. 测量电阻、电容、电感的参数(1)将电阻、电容、电感分别接入电路,使用万用表测量其电阻、电容、电感值。

(2)将测量结果与元件标签上的标称值进行比较,分析误差产生的原因。

2. 分析串联电路(1)搭建串联电路,包括电阻、电容、电感。

(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。

(3)计算等效电阻,验证串联电路的电压、电流分配规律。

3. 分析并联电路(1)搭建并联电路,包括电阻、电容、电感。

(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。

(3)计算等效电阻,验证并联电路的电压、电流分配规律。

4. 电阻的串联和并联(1)搭建串联电路,包括电阻、电容、电感。

(2)使用示波器观察电路中的电压、电流波形,分析电压、电流的分布情况。

(3)计算等效电阻,验证串联电路的电压、电流分配规律。

五、实验步骤1. 测量电阻、电容、电感的参数(1)将电阻、电容、电感分别接入电路,使用万用表测量其电阻、电容、电感值。

(2)记录测量结果,与元件标签上的标称值进行比较。

2. 分析串联电路(1)搭建串联电路,包括电阻、电容、电感。

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数

电阻,电感,电容的主要参数电阻主要特性参数1、标称阻值:电阻器上面所标示的阻值。

2、允许误差:标称阻值与实际阻值的差值跟标称阻值之比的百分数称阻值偏差,它表示电阻器的精度。

允许误差与精度等级对应关系如下:±0.5%-0.05、±1%-0.1(或00)、±2%-0.2(或0)、±5%-Ⅰ级、±10%-Ⅱ级、±20%-Ⅲ级3、额定功率:在正常的大气压力90-106.6KPa及环境温度为-55℃~+70℃的条件下,电阻器长期工作所允许耗散的最大功率。

线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、4、8、10、16、25、40、50、75、100、150、250、500非线绕电阻器额定功率系列为(W):1/20、1/8、1/4、1/2、1、2、5、10、25、50、1004、额定电压:由阻值和额定功率换算出的电压。

5、最高工作电压:允许的最大连续工作电压。

在低气压工作时,最高工作电压较低。

6、温度系数:温度每变化1℃所引起的电阻值的相对变化。

温度系数越小,电阻的稳定性越好。

阻值随温度升高而增大的为正温度系数,反之为负温度系数。

7、老化系数:电阻器在额定功率长期负荷下,阻值相对变化的百分数,它是表示电阻器寿命长短的参数。

8、电压系数:在规定的电压范围内,电压每变化1伏,电阻器的相对变化量。

9、噪声:产生于电阻器中的一种不规则的电压起伏,包括热噪声和电流噪声两部分,热噪声是由于导体内部不规则的电子自由运动,使导体任意两点的电压不规则变化。

电感器的主要参数电感器的主要参数有电感量、允许偏差、品质因数、分布电容及额定电流等。

(一)电感量电感量也称自感系数,是表示电感器产生自感应能力的一个物理量。

电感器电感量的大小,主要取决于线圈的圈数(匝数)、绕制方式、有无磁心及磁心的材料等等。

通常,线圈圈数越多、绕制的线圈越密集,电感量就越大。

电路基本元件R,C,L(电阻,电容,电感) 介绍

电路基本元件R,C,L(电阻,电容,电感)  介绍

电路基本元件R,C,L(电阻,电容,电感)介绍1.电阻元件电阻是表征电路中电能消耗的理想元件。

一个电阻器有电流通过后,若只考虑它的热效应,忽略它的磁效应,即成为一个理想电阻元件。

电阻元件的图形符号如图1-16所示。

图中电压和电流都用小写字母表示,表示它们可以是任意波形的电压和电流。

图1-16中,u和i的参考方向相同,根据欧姆定律得出即电阻元件上的电压和与通过的电流成线性关系,两者的比值是一个大于零的常数,称为这一部分电路的电阻,单位是欧姆(Ω)。

在直流电路中,电阻的电压与电流的乘积即为电功率,单位是瓦(W)。

在t时间内消耗的电能为W=Pt。

W的单位是焦[耳](J),工程上电能的计量单位为千瓦∙小时(kW∙h),1千瓦∙小时即1度电,1度电与焦的换算关系为1kW∙h=3.6×106J。

这些电能或变成热能散失于周围的空间,或转换成其他形态的能量作有用功了。

因此,电阻消耗电能的过程是不可逆的能量转换过程。

2.电容元件电容是用来表征电路中电场能储存这一物理性质的理想元件。

图1-17是一电容器,当电路中有电容器存在时,电容器极板(由绝缘材料隔开的两个金属导体)上会聚集起等量异号电荷。

电压u越高,聚集的电荷q就越多,产生的电场越强,储存的电场能就越多。

q与u的比值为C=q/u。

C称为电容。

式中,q的单位为库[仑](C);u的单位为伏[特](V);C的单位为法[拉](F)。

由于法[拉]的单位太大,工程上多用微法( F)或皮法(pF),它们的换算关系为1F=10-6pF,1pF=10-12F。

当极板上的电荷量q或电压u发生变化时,在电路中就要引起电流流过。

其大小为(1-5)上式是在u和i的参考方向相同的情况下得出的,否则要加负号。

图1-16 电阻元件图1-17 电容元件当电容器两端加恒定电压时,则由上式可知i=0,电容元件相当于开路。

将式(1-5)两边积分,便可得出电容元件上的电压与电路中电流的一种关系式,即(1-6)式(1-6)中,u0是初始值,即在t=0时电容元件上的电压。

电阻-电容-电感

电阻-电容-电感

振荡器设计
RC振荡器
由电阻和电容组成的RC振荡器是一种 简单的振荡电路,通过改变电阻和电 容的值可以调节振荡频率。这种振荡 器常用于产生方波或三角波信号。
LC振荡器
由电感和电容组成的LC振荡器能够产 生较高频率的振荡信号,通常用于产 生正弦波信号。通过调节电感和电容 的值可以调节振荡频率和幅度。
05
详细描述
电感值是衡量线圈产生自感电动势能力的重 要参数,其大小与线圈的匝数、直径、材料 等有关。一般来说,线圈的匝数越多、直径 越大、导磁率越高,电感值就越大。在实际 应用中,需要根据电路的具体要求和电感的 特点进行选择和计算。
04
电阻-电容-电感在电路中 的应用
串联与并联
串联
在电路中,电阻、电容和电感可以串联连接,以实现分压、限流或延迟等效果。 串联电阻可以用来分压,而串联电容和电感可以用来延迟信号或限制电流。
06
电阻-电容-电感的未来发 展
新材料的应用
高性能材料
随着科技的发展,新型的高性能材料如碳纳 米管、石墨烯等将被应用于电阻、电容和电 感的生产,以提高其性能和稳定性。
复合材料
通过将不同材料进行复合,可以创造出具有 优异性能的复合型电阻、电容和电感材料,
以满足各种特殊应用需求。
新工艺的应用
3D打印技术
利用3D打印技术,可以制造出具有复杂结构和形状的 电阻、电容和电感元件,从而实现个性化定制和快速 原型制造。
纳米加工技术
通过纳米加工技术,可以制造出更小、更精确的电阻、 电容和电感元件,从而提高集成度和可靠性。
新应用领域的发展
物联网
随着物联网技术的快速发展,电阻、电容和电感元件将被广泛应用于各种智能设备和传感器中,以实现智能化和 远程控制。

电路元件特性与参数分析

电路元件特性与参数分析

电路元件特性与参数分析在电路设计和分析中,了解电路元件的特性和参数是非常重要的。

本文将介绍电路元件的常见特性和参数,并探讨它们在电路设计和分析中的应用。

1. 电阻(Resistor)电阻是最常见的电路元件之一,它的特性主要由电阻值(单位为欧姆)来描述。

电阻值越大,阻碍电流通过的能力越强。

在电路中,我们常使用欧姆定律来计算电阻、电流和电压之间的关系:V = I * R。

电阻还有温度系数、功率承载能力等参数。

2. 电容(Capacitor)电容是储存电荷的元件,它的特性主要由电容值(单位为法拉)来描述。

电容值越大,储存电荷的能力越强。

在电路中,电容器可以用来存储能量,并可以影响电路的频率响应。

电容还有额定电压、损耗因子等参数。

3. 电感(Inductor)电感是储存磁场能量的元件,它的特性主要由电感值(单位为亨利)来描述。

电感值越大,储存磁场能量的能力越强。

电感器常用于滤波、隔离和变压器等应用中。

它的特性也与直流电阻、铁芯材料等参数有关。

4. 二极管(Diode)二极管是一种电子器件,它具有单向导电特性。

二极管的主要参数包括正向电压降、反向击穿电压和最大电流等。

在电路中,二极管常用作保护电路、整流电路等。

5. 晶体管(Transistor)晶体管是一种半导体器件,它可以放大信号和控制电流。

晶体管有两种常见类型:NPN型和PNP型。

晶体管的主要参数包括最大电压、最大电流和放大倍数等。

在电路设计中,晶体管可以用作放大器、开关和振荡器等。

6. 集成电路(Integrated Circuit)集成电路是一种复杂的电路,其中包含了多个电子元件。

它的特性和参数非常多样化,涵盖了电阻、电容、电感、二极管、晶体管等多个元件的特性参数。

集成电路在电子设备中广泛应用,包括计算机、手机、电视等。

总结:电路元件的特性和参数对于电路设计和分析至关重要。

了解这些特性和参数可以帮助我们选择适当的元件、计算电路参数、预测电路行为等。

直流电路中的电阻电容和电感

直流电路中的电阻电容和电感

直流电路中的电阻电容和电感直流电路中的电阻、电容和电感一、引言电阻、电容和电感是直流电路中常见的三种基本元件,它们在电路中起着重要的作用。

本文将详细介绍直流电路中电阻、电容和电感的特性和应用。

二、电阻电阻是指阻碍电流通过的物理量,单位为欧姆(Ω)。

在直流电路中,电阻对电流的变化非常稳定,线性关系明显。

1. 特性- 电阻产生的主要效应是消耗电能,通过电阻的电流与电压之间遵循欧姆定律:I = V/R。

- 不同材质的电阻具有不同的电阻值,例如金属导体常用的电阻材料有铜、银等。

- 电阻的温度系数是描述电阻随温度变化的特性,一般表示为ppm/℃,常见的电阻温度系数有正温度系数和负温度系数。

2. 应用- 电阻可用于限流和分压,例如电阻在电源前串联可实现限流保护。

- 电阻还可以用于电压调节和分压,通过串联电阻可以实现电压的稳定输出。

- 在电子电路中,电阻还可用于电压分配和电流检测。

三、电容电容是指存储电荷的能力,单位为法拉(F)。

在直流电路中,电容能够存储电荷,并且对电流的变化具有一定的延迟效应。

1. 特性- 电容器由两个带电极板之间的介质隔开,当施加电压时,正负电荷在两板之间积累,形成电场。

- 电容器的容量大小取决于两板之间的面积、板间距以及介质介电常数。

- 电容器的充放电过程与时间有关,充电过程中电容器内的电荷线性增加,而放电过程则是指数型减少。

2. 应用- 电容可用于直流电源的滤波,通过并联电容器实现对电源的干扰信号滤除。

- 电容还可以用于启动电机、存储能量等。

四、电感电感是指导体中所产生的自感感应,单位为亨利(H)。

在直流电路中,电感对电流的变化具有抵抗效应,并且能够存储磁能。

1. 特性- 电感通过阻碍电流的变化来储存磁能,并产生电动势抵抗电流的变化。

- 电感的大小取决于线圈的匝数、截面积以及磁导率。

- 电感的极性具有反向电压的特性,在电流变化快速的场合会产生自感电压。

2. 应用- 电感可用于直流电源的滤波,通过串联电感器实现对电源中的高频噪声滤除。

电感的主要参数

电感的主要参数
电感是电子元器件中常见的一种 passove 元件,其主要参数包括导磁率、电感值、品质因素、直流电阻和自共振频率。

导磁率是铁芯的一个重要参数,对于带铁芯的电感,铁芯的导磁率越高,电感值会越高。

电感值是电感的一个基本参数,可以用公式
L=(4πμiN2A/l)*10-9(H) 表示。

其中,N 表示线圈圈数,A 表示磁路截面积,l 表示磁路平均长度。

电感值与铁芯的导磁率成正比,与线圈圈数的平方成正比,与测试频率有关。

电感值通常是用仪器测出的,目录上通常标示 L 值的公差范围。

品质因素是电感的一个重要参数,客户通常对 Q 值的要求是越高越好。

Q=2πfLe/Re,其中 Re 是有效电阻,是消耗能量的部分,有效电阻由 DCR、表面效应、铁损所贡献。

Le 是真实电感扣除分布电容影响后的值。

Q 值也是随测试频率而变化的,目录上通常以其最小值为标注。

直流电阻是电感在直流电流下测量得之电阻,客户通常对DCR 值的要求是越小越好。

目录上通常以其最大值为标注。

自共振频率是电感的真实电感与电感的分布电容产生共振时的频率,客户通常对 SRF 值的要求是越大越好。

自共振频
时电感的表现就像电阻,即(真实)电感值的感抗(2πfL)与分布
电容的容抗(-1/2πfCd)相互抵消,即2πfL-1/2πfCd=0,所以自
共振频率f=1/2π√LCd。

自共振频时电感的Le(有效电感值) 为,此时的 Q 值为。

目录上通常以其最小值为标注。

电阻、电容、电感规格、封装、尺寸、功率识别

公制长(L) 宽(W) 高(t) a0402 1/16W0603 1/10W0805 1/8W1206 1/4W电容电阻外形尺寸与封装的对应关系是:0402=1.0x0.50603=1.6x0.80805=2.0x1.21206=3.2x1.61210=3.2x2.51812=4.5x3.22225=5.6x6.5常规贴片电阻(部分)常规的贴片电阻的标准封装及额定功率如下表:英制(mil) 公制(mm) 额定功率(W)@ 70°C 0201 0603 1/200402 1005 1/160603 1608 1/100805 2012 1/81206 3216 1/41210 3225 1/31812 4832 1/22010 5025 3/42512 6432 1国内贴片电阻的命名方法:2、1%精度的命名:RS-05K1002FTR -表示电阻S -表示功率0402是1/16W、0603是1/10W、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512是1W。

05 -表示尺寸(英寸):02表示0402、03表示0603、05表示0805、06表示1206、1210表示1210、1812表示1812、10表示1210、12表示2512。

K -表示温度系数为100PPM,102-5%精度阻值表示法:前两位表示有效数字,第三位表示有多少个零,基本单位是Ω,102=10000Ω=1KΩ。

1002是1%阻值表示法:前三位表示有效数字,第四位表示有多少个零,基本单位是Ω,1002=100000Ω=10KΩ。

J -表示精度为5%、F-表示精度为1%。

T -表示编带包装1:0402(1/16W) 2:0603(1/10W) 3:0805(1/8W) 4:1206(1/4W) 5:1210(1/3W)6:2010(1/2W) 7:2512(1W)1206 20欧1/4 *4 5欧1w120贴片电阻各参数说明国内贴片电阻的命名方法:1、5%精度的命名:RS-05K102JTR -表示电阻S -表示功率0402是1/16W、0603是1/10W、0805是1/8W、1206是1/4W、1210是1/3W、1812是1/2W、2010是3/4W、2512是1W。

电路中的电阻电容和电感有哪些基本特性

电路中的电阻电容和电感有哪些基本特性电路中的电阻、电容和电感是电路中常见的三种基本元件,它们具有各自独特的特性。

本文将就电路中的电阻、电容和电感的基本特性进行探讨。

一、电阻的基本特性电阻是指电路中抵抗电流流动的元件,常用单位是欧姆(Ω)。

以下是电阻的基本特性:1. 阻值(电阻大小):电阻的阻值表示电阻对电流的阻碍程度,阻值越大,电流通过的越困难。

2. 电压-电流关系:根据欧姆定律,电阻元件的电压和电流之间存在线性关系,即V=IR,其中V表示电压,I表示电流,R表示电阻。

3. 功率消耗:当电流通过电阻时,电阻元件会发生功率消耗,功率的大小与电压和电流的乘积成正比。

4. 发热特性:由于电阻发生功率消耗,因此在高电流通过时会发热,需要特别注意散热问题。

二、电容的基本特性电容是储存电荷的元件,常用单位是法拉(F)。

以下是电容的基本特性:1. 电容量(容值大小):电容的容值表示其储存电荷的能力,容值越大,电容器储存电荷的能力越强。

2. 充放电过程:电容器可以通过连接电源进行充电,当电容器充满电荷后,可以通过放电过程释放电荷。

3. 电压-电荷关系:电容器上的电压与其带有的电荷量之间呈线性关系,电容器的电压随电荷量的增加而增加。

4. 频率特性:电容器对不同频率的交流信号具有不同的阻抗,对低频信号直流响应较好,对高频信号表现出较高的阻抗。

三、电感的基本特性电感是储存磁能的元件,常用单位是亨利(H)。

以下是电感的基本特性:1. 电感量(感值大小):电感的感值表示其储存磁能的能力,感值越大,电感器储存磁能的能力越强。

2. 反应速度:电感器对电流的变化有一定的惯性反应,即不会立即改变电流强度,具有瞬态特性。

3. 频率特性:电感器对交流信号的阻抗与频率有关,对高频信号表现出较高的阻抗,对低频信号直流响应较好。

4. 电感耦合:电感可以通过互感耦合方式将信号传递到其他电路中,实现信号的耦合与隔离。

综上所述,电路中的电阻、电容和电感是具有不同特性的基本元件。

电阻电容电感基础知识

电阻、电容、电感基础知识(一)电阻常用电阻有碳膜电阻、碳质电阻、金属膜电阻、线绕电阻和电位器等。

表1是几种常用电阻的结构和特点。

图1 电阻的外形电阻种类(电阻结构和特点):碳膜电阻气态碳氢化合物在高温和真空中分解,碳沉积在瓷棒或者瓷管上,形成一层结晶碳膜。

改变碳膜厚度和用刻槽的方法变更碳膜的长度,可以得到不同的阻值。

碳膜电阻成本较低,性能一般。

金属膜电阻在真空中加热合金,合金蒸发,使瓷棒表面形成一层导电金属膜。

刻槽和改变金属膜厚度可以控制阻值。

这种电阻和碳膜电阻相比,体积小、噪声低、稳定性好,但成本较高。

碳质电阻把碳黑、树脂、粘土等混合物压制后经过热处理制成。

在电阻上用色环表示它的阻值。

这种电阻成本低,阻值范围宽,但性能差,很小采用。

线绕电阻用康铜或者镍铬合金电阻丝,在陶瓷骨架上绕制成。

这种电阻分固定和可变两种。

它的特点是工作稳定,耐热性能好,误差范围小,适用于大功率的场合,额定功率一般在1瓦以上。

碳膜电位器它的电阻体是在马蹄形的纸胶板上涂上一层碳膜制成。

它的阻值变化和中间触头位置的关系有直线式、对数式和指数式三种。

碳膜电位器有大型、小型、微型几种,有的和开关一起组成带开关电位器。

还有一种直滑式碳膜电位器,它是靠滑动杆在碳膜上滑动来改变阻值的。

这种电位器调节方便。

线绕电位器用电阻丝在环状骨架上绕制成。

它的特点是阻值范围小,功率较大。

大多数电阻上,都标有电阻的数值,这就是电阻的标称阻值。

电阻的标称阻值,往往和它的实际阻值不完全相符。

有的阻值大一些,有的阻值小一些。

电阻的实际阻值和标称阻值的偏差,除以标称阻值所得的百分数,叫做电阻的误差。

表2是常用电阻允许误差的等级。

表2 常用电阻允许误差的等级国家规定出一系列的阻值作为产品的标准。

不同误差等级的电阻有不同数目的标称值。

误差越小的电阻,标称值越多。

表2是普通电阻的标称阻值系列。

表3中的标称值可以乘以10、100、1000、10k;100k;比如1.0这个标称值,就有1.0Ω、10.OΩ、100.OΩ、1.0kΩ、10.0kΩ、100.0kΩ、1.0MΩ;10.0MΩ;表3 普通固定电阻标称阻值系列不同的电路对电阻的误差有不同的要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电阻电阻/电阻器的主要参数在电阻器的使用中,必需正确应用电阻器的参数。

电阻器的性能参数包括标称阻值及允许偏差、额定功率、极限工作电压、电阻温度系数、频率特性和噪声电动势等。

对于普通电阻器使用中最常用的参数是标称阻值和允许偏差,额定功率。

⑴标称电阻值和允许偏差每个电阻器都按系列生产,有一个标称阻值。

不同标称系列,电阻器的实际值在该标称系列允许误差范围之内。

例如,E24系列中一电阻的标称值是1000欧,E24系列电阻的偏差是5%,这个电阻器的实际值可能在950~1050欧范围之内的某一个值,用仪表测得具体的阻值就是这个电阻的实际值。

表1-4 几种固定电阻器的外形和特点压。

器、仪表等。

电路。

在要求电阻偏差小的电路中,可选用E48、E96、E192精密电阻系列,在电阻器的使用中,根据实际需要选用不同精密度的电阻,一般来说误差小的电阻温度系数也小,阻值稳定性高。

电阻的单位是欧姆,用符号Ω表示。

还常用千欧(KΩ)、兆欧(MΩ)等单位表示。

单位之间的换算关系是:1MΩ=1000KΩ=1000000Ω⑵电阻器的额定功率电阻器在电路中实际上是个将电能转换成热能的元件,消耗电能使自身温度升高。

电阻器的额定功率是指在规定的大气压和特定的温度环境条件下,长期连续工作所能呈受的最大功率值。

电阻器实际消耗的电功率P等于加在电阻器上的电压与流过电阻器电流的乘积,即P=UI。

电阻器的额定功率从0. 05W至500W之间数十种规格。

在电阻的使用中,应使电阻的额定功率大于电阻在电路中实际功率值的1.5~2倍以上。

表1-5 电阻器和电位器的命名方法图1-4 电阻器额定功率的图形符号在现代电子设备中,还常用到如水泥电阻和无引脚的片状电阻等新型电阻器。

水泥电阻体积小,功率较大,在电路中常作降压或分流电阻。

片状电阻有两种类型,厚膜片状电阻和薄膜片状电阻。

目前常用的是厚膜电阻,如国产RL11系列片状电阻。

片状电阻的特点是体积小,重量轻,高频特性好,无引脚采用贴焊安装。

除此之外,还有集成电阻(排阻)。

电容电容器的参数与分类很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等。

由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等。

本文介绍电容器的主要参数及应用,可供读者选择电容器种类时用。

很多电子产品中,电容器都是必不可少的电子元器件,它在电子设备中充当整流器的平滑滤波、电源和退耦、交流信号的旁路、交直流电路的交流耦合等。

由于电容器的类型和结构种类比较多,因此,使用者不仅需要了解各类电容器的性能指标和一般特性,而且还必须了解在给定用途下各种元件的优缺点、机械或环境的限制条件等。

本文介绍电容器的主要参数及应用,可供读者选择电容器种类时用。

1 标称电容量(CR):电容器产品标出的电容量值。

云母和陶瓷介质电容器的电容量较低(大约在5000pF以下);纸、塑料和一些陶瓷介质形式的电容量居中(大约在0 005μF~1 0μF);通常电解电容器的容量较大。

这是一个粗略的分类法。

2 类别温度范围:电容器设计所确定的能连续工作的环境温度范围,该范围取决于它相应类别的温度极限值,如上限类别温度、下限类别温度、额定温度(可以连续施加额定电压的最高环境温度)等。

3 额定电压(UR):在下限类别温度和额定温度之间的任一温度下,可以连续施加在电容器上的最大直流电压或最大交流电压的有效值或脉冲电压的峰值。

电容器应用在高压场合时,必须注意电晕的影响。

电晕是由于在介质/电极层之间存在空隙而产生的,它除了可以产生损坏设备的寄生信号外,还会导致电容器介质击穿。

在交流或脉动条件下,电晕特别容易发生。

对于所有的电容器,在使用中应保证直流电压与交流峰值电压之和不的超过直流电压额定值。

4 损耗角正切(tgδ):在规定频率的正弦电压下,电容器的损耗功率除以电容器的无功功率。

这里需要解释一下,在实际应用中,电容器并不是一个纯电容,其内部还有等效电阻,它的简化等效电路如下图所示。

图中C为电容器的实际电容量,Rs是电容器的串联等效电阻,Rp是介质的绝缘电阻,Ro是介质的吸收等效电阻。

对于电子设备来说,要求Rs愈小愈好,也就是说要求损耗功率小,其与电容的功率的夹角δ要小。

这个关系用下式来表达:tgδ=Rs/Xc=2πf×c×Rs因此,在应用当中应注意选择这个参数,避免自身发热过大,以减少设备的失效性。

5 电容器的温度特性:通常是以20℃基准温度的电容量与有关温度的电容量的百分比表示。

6 使用寿命:电容器的使用寿命随温度的增加而减小。

主要原因是温度加速化学反应而使介质随时间退化。

7 绝缘电阻:由于温升引起电子活动增加,因此温度升高将使绝缘电阻降低。

电容器包括固定电容器和可变电容器两大类,其中固定电容器又可根据所使用的介质材料分为云母电容器、陶瓷电容器、纸/塑料薄膜电容器、电解电容器和玻璃釉电容器等;可变电容器也可以是玻璃、空气或陶瓷介质结构。

以下附表列出了常见电容器的字母符号。

电阻电容的主要参数电阻器的主要电器参数如下:1) 标称阻值和允许误差:2) 额定功率:3) 最高工作电压:4) 噪声电动势:5) 温度系数:电容的主要特性参数:(1)容量与误差:实际电容量和标称电容量允许的最大偏差范围。

一般分为3级:I级±5%,II级±10%,III级±20%。

在有些情况下,还有0级,误差为±20%。

精密电容器的允许误差较小,而电解电容器的误差较大,它们采用不同的误差等级。

常用的电容器其精度等级和电阻器的表示方法相同。

用字母表示:D——005级——±0.5%;F——01级——±1%;G——02级——±2%;J——I级——±5%;K——II级——±10%;M——III级——±20%。

(2)额定工作电压:电容器在电路中能够长期稳定、可靠工作,所承受的最大直流电压,又称耐压。

对于结构、介质、容量相同的器件,耐压越高,体积越大。

(3)温度系数:在一定温度范围内,温度每变化1℃,电容量的相对变化值。

温度系数越小越好。

(4)绝缘电阻:用来表明漏电大小的。

一般小容量的电容,绝缘电阻很大,在几百兆欧姆或几千兆欧姆。

电解电容的绝缘电阻一般较小。

相对而言,绝缘电阻越大越好,漏电也小。

(5)损耗:在电场的作用下,电容器在单位时间内发热而消耗的能量。

这些损耗主要来自介质损耗和金属损耗。

通常用损耗角正切值来表示。

(6)频率特性:电容器的电参数随电场频率而变化的性质。

在高频条件下工作的电容器,由于介电常数在高频时比低频时小,电容量也相应减小。

损耗也随频率的升高而增加。

另外,在高频工作时,电容器的分布参数,如极片电阻、引线和极片间的电阻、极片的自身电感、引线电感等,都会影响电容器的性能。

所有这些,使得电容器的使用频率受到限制。

不同品种的电容器,最高使用频率不同。

小型云母电容器在250MHZ以内;圆片型瓷介电容器为300MHZ;圆管型瓷介电容器为200MHZ;圆盘型瓷介可达3000MHZ;小型纸介电容器为80MHZ;中型纸介电容器只有8MHZ。

电容和电解电容电容器电容器一般可以分为没有极性的普通电容器和有极性的电解电容。

普通电容器分为固定电容器、半可调电容器(微调电容器)、可变电容器。

一.固定电容器:指一经制成后,其电容量不能再改变的电容器。

1.电容的分类:电容一般按电介质来分类。

1)纸介电容器:一般容量在几十皮法(pF)到零点几微法(uF),耐压有250V、400V、630V等,容量误差一般为:±5%,±10%,±20%。

还有一种是金属化纸介电容器,最大特点是具有有限的自愈能力。

一般不能用于高频电路中,工作频率只有几十KHZ。

2)涤纶电容器:3)聚苯乙烯电容器:4)聚丙烯电容器:5)聚四氟乙烯电容器:6)聚酰亚胺薄膜电容器:7)聚碳酸酯薄膜电容器:8)复合薄膜电容器:9)漆膜电容器:10)叠片形金属化聚碳酸酯电容器:11)云母电容器:12)瓷介电容器:价格低廉,应用广泛。

分为低压低功率和高压高功率2种。

低压低功率瓷介电容器按照所用材料的性能、特点,可以分为I和II型。

I 型的特点是介质损耗低,电容量对于温度、频率、电压、时间的稳定性都比较好,常用于高频电路。

II型的特点是体积小,但稳定性差、介质损耗大,常用于低频电路。

超高频瓷介电容器,可用于频率不超过500MHZ的高频电路中。

高压高功率的瓷介电容器,通常只适合在低损耗、功率不大的电路中使用。

13)玻璃釉电容器:2.电容的型号命名:1)各国电容器的型号命名很不统一,国产电容器的命名由四部分组成:第一部分:用字母表示名称,电容器为C。

第二部分:用字母表示材料。

第三部分:用数字表示分类。

第四部分:用数字表示序号。

2)电容的标志方法:(1)直标法:用字母和数字把型号、规格直接标在外壳上。

(2)文字符号法:用数字、文字符号有规律的组合来表示容量。

文字符号表示其电容量的单位:P、N、u、m、F等。

和电阻的表示方法相同。

标称允许偏差也和电阻的表示方法相同。

小于10pF的电容,其允许偏差用字母代替:B——±0.1pF,C——±0.2pF,D——±0.5pF,F——±1pF。

(3)色标法:和电阻的表示方法相同,单位一般为pF。

小型电解电容器的耐压也有用色标法的,位置靠近正极引出线的根部,所表示的意义如下表所示:颜色黑棕红橙黄绿蓝紫灰耐压 4V 6.3V 10V 16V 25V 32V 40V 50V 63V(4)进口电容器的标志方法:进口电容器一般有6项组成。

第一项:用字母表示类别:第二项:用两位数字表示其外形、结构、封装方式、引线开始及与轴的关系。

第三项:温度补偿型电容器的温度特性,有用字母的,也有用颜色的,其意义如下表所示:序号字母颜色温度系数允许偏差字母颜色温度系数允许偏差1 A 金 +100 R 黄 -2202 B 灰 +30 S 绿 -3303 C 黑 0 T 蓝 -4704 G ±30 U 紫 -7505 H 棕 -30 ±60 V -10006 J ±120 W -15007 K ±250 X -22008 L 红 -80 ±500 Y -33009 M ±1000 Z -470010 N ±2500 SL +350~-100011 P 橙 -150 YN -800~-5800备注:温度系数的单位10e -6/℃;允许偏差是 % 。

相关文档
最新文档