自动换刀系统

合集下载

数控机床自动切换刀的原理

数控机床自动切换刀的原理

数控机床自动切换刀的原理数控机床是一种利用数控系统控制机床运动的机床。

在机床加工时,为了提高生产效率和加工质量,需要将不同的刀具进行切换。

数控机床自动切换刀的原理就是利用数控系统的控制信号和机床上的自动切换刀具系统实现的。

数控机床自动切换刀的原理要涉及到机床控制系统、切换刀具系统、动力传递系统和机床功能模块等方面。

下面我们就分别来介绍一下这些方面是如何共同作用的。

首先,数控机床自动切换刀的原理离不开机床控制系统。

数控系统通过程序控制切换刀具系统的动作,从而实现自动化的刀具更换。

数控系统内部会设计不同的切换信号,通过接口设备传递到机床上的切换系统,驱动切换系统的动作。

有的数控系统还能够实现刀具组合的自动切换,即按照预定的加工工艺,自动切换到不同的组合刀具,如切割刀、钻孔刀、铣刀、插铣刀等,以满足不同零件加工的需要。

其次,机床上的切换刀具系统也是数控机床自动切换刀的原理的关键组成部分。

该系统主要由刀库、换刀机构和切换机构三个部分构成。

刀库是刀具的存放处,一般有多个库位,每个库位可以存放不同形状、不同材质、不同尺寸的刀具。

换刀机构用于抓取和移动刀具,常见的是机械手形式或机械吸盘形式。

切换机构则是将刀具固定在刀柄上,并将刀柄插入主轴锥孔,完成刀具切换。

第三,动力传递系统也是数控机床自动切换刀的原理的重要部分。

就是将刀具的旋转力和推进力传递给工件的系统。

机床上的动力传递系统主要有主轴系统、伺服系统和进给系统等。

刀具切换时,要保证新刀具与传动装置的同心度,防止工件被切割时产生偏差或异常,同时还需保证机床整体刚度和运动精度。

最后,机床的功能模块也是数控机床自动切换刀的原理的一部分。

不同于传统机床,数控机床在进行刀具切换时还需要考虑各种功能模块的配合。

例如,需要进行刀具校正或零点重置等操作,以保证工件的精度和加工质量。

综上所述,数控机床自动切换刀的原理要涉及到机床控制系统、切换刀具系统、动力传递系统和机床功能模块等方面的配合运作。

数控机床的自动换刀系统操作指南

数控机床的自动换刀系统操作指南

数控机床的自动换刀系统操作指南数控机床的自动换刀系统是现代机床中重要的工具,它的作用是实现多种刀具的自动切换,提高生产效率和加工精度。

本文将为您介绍数控机床的自动换刀系统的操作指南。

1. 系统概述数控机床的自动换刀系统由控制单元、刀库、刀臂、刀具以及相关传感器组成。

通过控制单元的指令,刀库中的刀具可以自动切换到刀臂上,实现刀具的自动更换。

2. 操作前的准备在操作数控机床的自动换刀系统之前,首先要进行以下的准备工作:- 确认机床的电源是否正常,机床内部是否处理干净。

- 确认自动换刀系统的刀库是否存放有足够的刀具。

- 确认程序中的执行代码是否正确,不会发生刀具碰撞。

3. 操作步骤以下是数控机床的自动换刀系统的操作步骤:(1) 手动操作模式:首先将机床设置为手动操作模式,确保机床处于不会自动运行的状态。

(2) 加载刀具:通过控制单元的操作指令,将所需刀具从刀库中选取出来。

(3) 位置定位:使用机床的控制面板或相关软件对刀臂进行位置定位,使其准确匹配刀具的安装位置。

(4) 刀具安装:将选取的刀具正确安装到刀臂上,确保刀具牢固固定,避免出现松动的情况。

(5) 参数设定:在机床的控制面板或相关软件中设定刀具的相关参数,如切削速度、进给速度等。

(6) 刀具校对:在刀具安装完成后,进行刀具校对的操作,确保刀具位置的准确性。

(7) 确认操作:在进行自动换刀操作之前,要仔细确认刀具的安装是否正确,刀具是否符合加工要求。

(8) 运行程序:确认刀具安装正确后,将机床切换到自动运行模式,在控制单元中选择相应的程序,运行自动换刀操作。

(9) 监测切换:在自动换刀操作过程中,通过机床的控制面板或相关软件实时监测刀具的切换过程,确保刀具的准确切换。

(10) 完成切换:当刀具切换完成后,机床会自动停止,并显示切换完成的提示信息。

4. 常见问题及解决方法在使用数控机床的自动换刀系统时,可能会遇到以下的问题,下面为您提供一些建议的解决方法:- 刀具松动:检查刀具安装是否正确,确保刀具紧固螺母牢固固定。

自动换刀主轴工作原理

自动换刀主轴工作原理

自动换刀主轴工作原理
自动换刀主轴工作原理是指在机床中,主轴上配备了自动换刀装置,可以根据加工需要自主完成刀具的更换。

下面是自动换刀主轴的工作原理:
1. 刀具旋转:主轴驱动着刀具进行旋转,用于加工工件表面。

2. 刀库:机床上设置有刀库,刀库中存放着不同种类的刀具。

每种刀具都有一个唯一的识别编码。

3. 换刀装置:自动换刀装置包含刀库、刀具夹持器和换刀机构等部分。

换刀机构控制着刀夹位置的移动。

4. 刀具传感器:换刀装置上配备有刀具传感器,用于识别刀库中的刀具。

5. 选刀:根据加工任务,通过操作主轴控制系统进行刀具选择。

系统会指定需要哪种刀具进行加工,同时会记录已使用刀具的刀具编码。

6. 刀具识别:换刀装置开始动作,将选择的刀具位置移动到主轴旁边。

刀具传感器会识别刀夹位置是否有刀具。

如果没有刀具,则进入下一步。

7. 刀具更换:选取刀库中的合适刀具,并将其夹持在刀夹器上。

然后,换刀机构将刀夹器移动到主轴,完成刀具更换。

8. 刀具装夹校准:刀具更换后,主轴控制系统会对刀具进行校准,以保证刀具与工件的加工位置精确对应。

9. 加工:完成刀具更换后,主轴继续驱动新的刀具进行加工任务。

通过自动换刀主轴,可以实现高效的刀具更换,提高机床的加工效率和自动化程度。

数控机床自动换刀系统的设计与优化方法

数控机床自动换刀系统的设计与优化方法

数控机床自动换刀系统的设计与优化方法数控机床自动换刀系统作为现代制造业中的关键设备之一,其设计和优化对于提高生产效率和产品质量至关重要。

本文将讨论数控机床自动换刀系统的设计原理、关键技术以及优化方法,旨在指导工程师和研究人员进行相关工作。

首先,数控机床自动换刀系统的设计原理主要包括以下几个方面:刀具库、刀具传递机构和换刀动作控制。

刀具库是存放刀具的地方,通常设计成可自动旋转、抬升和倾斜的结构,以便于刀具的选择和取放。

刀具传递机构用于将所需刀具从刀具库传递到机床主轴上,并确保刀具的正确位置和方向。

换刀动作控制则通过编程和传感器来实现,保证换刀过程的准确性和稳定性。

在设计数控机床自动换刀系统时,我们需要注意一些关键技术。

首先是刀具库的设计,刀具库的容量和结构需要根据实际工作中所涉及到的刀具种类和数量进行合理规划。

其次是刀具传递机构的设计,传递机构需要具备快速、准确的传递能力,同时要考虑到刀具重量对传递机构的负荷影响,确保稳定性。

换刀动作控制需要精确控制刀具的位置和方向,可以采用光电传感器或编码器等传感器,通过编程实现动作的控制和判断。

为了进一步优化数控机床自动换刀系统的性能,我们可以采取一些优化方法。

首先是刀具库的优化,可以采用高效的刀具存放方案,如采用自动尺寸检测技术,将刀具按照尺寸进行分类存放,方便快速选择和取放。

其次是刀具传递机构的优化,可以采用更先进的传递机构设计,如采用电磁吸盘或气动夹持装置等,提高传递速度和准确性。

此外,还可以通过改进换刀动作控制算法,优化换刀过程的稳定性和精度。

在优化设计过程中,还需要充分考虑数控机床自动换刀系统的可靠性和安全性。

可靠性是指系统在长时间运行中的稳定性和故障率,我们可以通过选用高质量的部件和进行严格的测试来提高可靠性。

安全性是指系统在使用过程中的安全保障,我们需要设置安全装置,如机械锁或密码锁等,防止误操作或意外伤害的发生。

总结起来,数控机床自动换刀系统的设计与优化需要考虑刀具库、刀具传递机构和换刀动作控制等关键技术。

自动换刀系统

自动换刀系统

换刀系统自动换刀系统主要是将加工所需刀具,从刀库中传送到主轴夹持机构上。

换刀系统由刀库,机械手,驱动系统等构成。

基本要求:1. 换刀时间短2. 刀具重复定位精度高3. 足够的刀具储存量4. 刀库占地面积小(结构紧凑)5. 安全可靠。

刀库刀库系统是提供自动化加工过程中所需之储刀及换刀需求的一种装置;其自动换刀机构及可以储放多把刀具的刀库。

由电脑程式的控制,可以完成各种不同的加工需求,如铣削、钻孔、搪孔、攻牙等。

大幅缩短加工时程,降低生产成本。

刀库主要是提供储刀位置,并能依程式的控制,正确选择刀具加以定位,以进行刀具交换;换刀机构则是执行刀具交换的动作。

刀库必须与换刀机构同时存在,若无刀库则加工所需刀具无法事先储备;若无换刀机构,则加工所需刀具无法自刀库依序更换,而失去降低非切削时间的目的。

刀库的回转运动由带抱闸的三相异步电动机作动力源,三相电源通过交流接触器提供给电动机时抱闸打开,然后刀库进行运转,切断三相电源则抱闸闭锁,刀库立刻停止运转。

通过分度盘的运动及相关检测元件组的逻辑组合,可使每个刀套准确停在换刀位置。

刀套停在换刀位置后,由气缸控制刀套处于水平或垂直状态,以方便机械手换刀,刀套分度台可以顺时针或逆时针方向旋转,从而可以在最短的时间内搜索到所要更换的刀具。

驱动系统数控工具机的自动换刀系统有油压机构、气压机构、电气式凸轮机构。

现如今凸轮式换刀机构就广泛的被采用。

快速确实,除了换油外没有其他消耗零件及保养需求,故障率最少,寿命超过百万次以上。

换刀系统的速度要求快速自动换刀技术是以减少辅助加工时间为主要目的,综合考虑工具机的各方面因素,在尽可能短的时间内完成刀具交换的技术方法。

机台有几个特点:1.刀臂短2.刀臂不一定成直线 3.两刀可能互相垂直 4.凸轮箱小且可移动。

其主要目的是要让换刀时,可动件之转动惯量小,以达到快速换刀之目的。

提高换刀速度的方法1.在传统自动换刀装置的基础上提高动作速度,或采用动作速度更快的机构和驱动元件。

数控机床自动换刀系统

数控机床自动换刀系统

数控机床自动换刀系统一.概述要实现一次装夹多工序加工,在数控机床上必需具备自动换刀功能。

实现刀库与机床主轴之间刀具的装卸与传递功能的装置称为自动换刀系统。

自动换刀已广泛地用于镗铣床、铣床、钻床、车床、组合机床和其它机床。

使用自动换刀系统,协作精密的数控转台,不仅扩大了数控机床的使用范围,削减了生产面积,还可使机加工时间提高到70% ~80%,显著提高了生产率。

由于零件在一次安装中完成多工序加工,大大削减了零件安装的定位次数,从而进一步提高了加工精度。

自动换刀系统应当满意换刀时间短,刀具重复定位精度高,刀具储存数量足够,结构紧凑,便于制造、修理、调整,应有防屑、防尘装置,布局应合理等要求。

同时也应具有较好的刚性,冲击、振动及噪声小,运转平安牢靠等特点。

自动换刀系统的形式和详细结构对数控机床的总体布局、生产率和工作牢靠性都有直接的影响。

二.组成及其形式自动换刀系统由刀库、选刀机构、刀具交换机构(如机械手)、刀具在主轴上的自动装卸机构等部分组成。

自动换刀系统的形式是多种多样的,换刀的原理及结构的简单程度也不同,但一般可分为以下两大类:由刀库和主轴的相对运动实现刀具交换。

用这种形式交换刀具时,主轴上用过的刀具送回刀库和从刀库中取出新刀,这两个动作不能同时进行,选刀和换刀由数控定位系统来完成,因此换刀时间长,换刀动作也较多。

由机械手进行刀具交换。

由于刀库及刀具交换方式的不同,换刀机械手也有多种形式。

图1 换刀机械手的形式图1(a),(b),(c)为双臂回转机械手,能同时抓取和装卸刀库和主轴(或中间搬运装置)上的刀具,动作简洁,换刀时间短。

图(d)虽然不是同时抓取刀库和主轴上的刀具,但换刀预备时间及将刀具还回刀库的时间与机加工时间重复,因而换刀时间也很短。

抓刀运动可以是旋转运动,也可以是直线运动。

图1(a)为钩手,抓刀运动为旋转运动;图(b)为抱手,抓刀运动为两个手指旋转;(c)和(d)为叉手,抓刀运动为直线运动。

加工中心的自动换刀系统

加工中心自动换刀系统
加工中心自动换刀装置
一、加工中心自动换刀装置的类型 1.转塔式 更换主轴换刀装置 (1)脱开主轴传动 (2)转塔头抬起 (3)转塔头转位 (4)转塔头定位 (5)主轴传动重新接通
加工中心自动换刀装置
加工中心自动换刀装置
加工中心自动换刀装置
一、加工中心自动换刀装置的类型 2.成套更换式 (1)更换转塔 (2)更换主轴箱 (3)更换刀库
六、几种典型换刀过程 1、无机械手换刀
加工中心自动换刀装置
加工中心自动换刀装置
六、几种典型换刀过程 2、机械手换刀
加工中心自动换刀装置
六、几种典型换刀过程 3、带刀套机械手换刀
加工中心自动换刀装置
加工中心自动换刀装置
二、加工中心刀库形式 2.链式刀库
加工中心自动换刀装置
二、加工中心刀库形式 3.格子式刀库
加工中心自动换刀装置
二、加工中心刀库形式 3.格子式刀库
加工中心自动换刀装置
三、加工中心刀库结构
加工中心自动换刀装置
三、加工中心刀库结构
加工中心自动换刀装置
四、JCS-018A加工中心机械手结构 2、机械手抓刀部分的结构
五、其他类型机械手 2、两手互相垂直的回 转式单臂机械手
加工中心自动换刀装置
五、其他类型机械手 3、两手平行的回转式单臂机械手
加工中心自动换刀装置
五、其他类型机械手 4、双手交叉式机械手 (1)机械手移动到机床主轴处-卸装刀具 (2)机械手移动到刀库处送回卸下的刀具
加工中心自动换刀装置
加工中心自动换刀装置
加工中心自动换刀装置
四、JCS-018A加工中心 机械手结构 2、机械手抓刀部分的 结构
பைடு நூலகம் 加工中心自动换刀装置

自动换刀系统

多齿盘分度工作台的结构及调整 加工中心回转工作台的结构及调整
2004。09。
自动换刀装置的调整
数控机床自动换刀装置的形式
▪ 多转塔头自动换刀装置 ▪ 具有刀库和机械手的自动换刀装置
▪ 刀库类型 1) 转塔式刀库 2) 圆盘式刀库 3) 链式刀库 4) 格子式刀库
▪ 机械手 1) 单臂单手式机械手 2) 回转式单臂双手机械手
▪ 排屑器 ▪ 经常清理铁屑 ▪ 检查有无卡住
▪ 清理废油池 ▪ 及时取油池中废油,以免 外溢
▪ 调整主轴驱动带松紧 ▪ 按机床说明书调整
2004。09。
数控机床的维护
数控机床使用中应注意的问题
▪ 使用环境: ▪ 避免阳光的直射和其他辐射 ▪ 避免太潮湿或粉尘过多的场所 ▪ 避免有腐蚀气体的场所 ▪ 要远离振动大的设备
2004。09。
第二章 数控机床的调整
主轴部件的结构与调整
▪ CK7815型数控车床主轴部件的结构与调整 ▪ NT-J320A型数控铣床主轴部件的结构与调整 ▪ THK6380加工中心主轴部件的结构与调整
进给传动系统部件的调整 回转运动部件的调整 自动换刀装置的调整 位置检测装置的调整 床身导轨的调整
数控机床维修
第一章 数控机床的安装、调试及验收
数控机床的选用 数控机床的安装 数控机床的调试 数控机床的验收
2004。09。
数控机床的验收
开箱检验和外观检查 机床性能及数控功能的检验 机床精度的验收
2004。09。
机床性能的检验
主轴系统性能 进给系统性能 自动换刀系统 机床噪声 电气装置 数控装置 安全装置 润滑装置 气、液装置 附属装置
2004。09。

浅谈基于PLC的刀库自动换刀控制系统设计

图6 整体臂架第四阶模态振型图图7 整体臂架第五阶模态振型图图8 整体臂架第六阶模态振型图144中国设备工程 2024.03(上)图1 电源接线图3.2 控制系统的电路设计为了方便绘制PLC接线图和编写PLC程序,将每个输入/输出设备与PLC的输入/输出点相对应。

3.2.1 PLC的IO接线在这个设计里,首先设计了已有的PLC的输入点和输出点,接下来,按照目前的项目流程需求,为目前的设备设置了特定的PLC连接线,在程序设计中,这样就可以更清楚地看到当前设备的输入点和输出点。

3.2.2 电机接线三相电机运转时,装置的工作部件,必须使用三相电源,而且还会出问题,此时,若在装置的进电线上加装一组防风开关,那么在电动机发生故障的时候,而不会影响其他部件的工作,对现有设备马达进行保护。

三相电源通过交流保护空气开关的上端进入后,把它的下端头和AC接触器的上端头连接起来,当220V的电力供应完毕后。

电动机在PLC的控制下运转,在接触器绕组通电和常开度连接处,电动机就能正常运转。

4 控制系统的程序设计4.1 程序主流程图按照设计要求,本文给出了该控制系统的主要程序流程图,如图2所示。

它将目前的位置2传递给数据寄存器地址D100,以执行随后的目前的程序比较。

图3 位置传送块程序 4.2.2 当前刀号位置传送程序如图4所示,在程序在向网络72自动执行时,程序会自动判断输入继电器X14的状态,如果接受了这个任务,PLC将常数2自动转移到了目前的数据寄存器D102上,在同一时间内,输入继电器X15被激活,此时,数据寄存器常数3也被转移到了数据寄存图4 刀库位置传送程序电机正反转判断程序在程序开始的时候,要判断所选刀具编号D100当前刀具编号D102的尺寸,当D100大于D102时,M10表示,把它打开,并计算其差异,然后把它放到的数据寄存器里,再次判定D300中的数据是否大于图5 故障指示灯4.3 程序设计转刀装置的基础工作是转刀。

自动换刀系统设计

自动换刀系统设计摘要数控车床将向中高档发展,对数控刀架需求量将大大增加。

随着数控车床的发展,数控刀架也向快速换刀、电液组合驱动和伺服驱动方向发展。

本设计采用电液组合驱动,主要完成了八工位卧式刀架的机械结构设计和利用三菱FX2N可编程控制器(PLC)对自动换刀系统的控制系统进行设计。

机械设计主要包括分度机构及定位机构的选择和刀架主轴的设计等。

控制部分为自动和手动换刀两种工作方式。

关键词数控刀架,PLC控制,液压控制ABSTRACTNumerical Control lathe will be developed to middle and senior grade in the future. It is estimated that the demand for NC tool carrier will be much greater. NC tool start to the rapid tool change, electrohydraulic servo driving and portfolio-driven direction with the development of NC lathes.The paper takes electrohydraulic driving. It was discussed that mechanical design and control system design by Mitsubishi FX2N programmable logic controller (PLC) of the eight engineering automatic tool change. Machinery part includes the positioning tools and the degree of positioning choices and tool spindle design. Control part is divided into auto control and manual control.Key words ATC,PLC control,Hydraulic control目录摘要 (I)ABSTRACT (II)1 绪论 (1)1.1 课题背景 (1)1.2 研究的主要内容 (1)2 自动换刀系统机械部分设计 (3)2.1刀座的设计 (3)2.1.1 刀座基本形状及尺寸的确定 (3)2.1.2 刀座强度的校核 (6)2.2 刀盘主要尺寸的确定 (7)2.3 传动齿轮的设计 (8)2.4 刀架主轴的设计 (8)2.4.1 初步确定轴的最小直径 (8)2.4.2 轴的结构设计 (9)2.4.3 校核键的强度 (11)2.5 共轭分度凸轮机构基本参数的确定 (11)2.5.1 共轭分度凸轮的介绍 (11)2.5.2 主要运动参数的选择 (12)2.5.3 主要几何尺寸的确定 (12)2.6 端齿盘的选择 (12)2.6.1 端齿盘的介绍 (13)2.6.2 端齿盘的特点 (13)2.6.3 端齿盘主要参数的设计计算 (13)2.6.4 螺栓组强度校核 (17)2.7 液压缸的结构及主要尺寸的设计 (18)2.8 箱体的基本形状及尺寸确定 (19)2.9 液压马达及接近开关的选择 (19)2.9.1 液压马达的选择 (19)2.9.2 接近开关的选择 (19)2.10 润滑剂的选择 (20)2.11 对压力油的要求 (20)3 PLC控制的硬件设计 (21)3.1 换刀系统的工作原理 (21)3.2 PLC简介 (22)3.2.1 PLC的分类 (22)3.2.2 PLC的特点及主要功能 (23)3.3 PLC控制系统的硬件选择和资源配置 (25)3.3.1 自动换刀控制系统要求 (25)3.3.2 PLC型号的选择 (26)3.4 控制系统元件列表 (27)3.5 PLC I/O地址的分配 (28)3.6 PLC外围接线图 (29)4 控制系统PLC程序设计 (29)4.1 系统流程图的确设计 (30)4.2 PLC程序设计 (31)4.2.1程序结构设计 (31)4.2.2 自动换刀的程序设计 (31)4.2.3 手动换刀程序设计 (35)4.2.4 数据传送程序的设计 (37)4.3 程序的调试 (38)5 结论 (39)参考文献 (40)致谢 (41)1 绪论1.1 课题背景从自动换刀系统发展的历史来看,1956年日本富士通研究成功数控转塔式冲床,美国IBM公司同期也研制成功了“APT”(刀具程序控制装置)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

加工中心自动换刀系统的设计班级:09机械一班组员:杨露,夏先锋,席朝晟,王志国,傅金阳加工中心自动换刀系统的设计杨露,夏先锋,席朝晟,王志国,傅金阳(西安文理学院,西安,710065)摘要:90年代以来,数控加工技术得到迅速的普及和发展。

加工中心作为新时代数控机床的代表,已在机床领域广泛使用。

自动换刀装置作为加工中心最重要的部分之一,它的发展也直接决定了加工中心的发展。

本论文完成的是加工中心盘式刀库的传动设计、结构设计以及传动部分的动力设计。

这种刀库在数控加工中心上应用非常广泛,其换刀过程简单,换刀时间短,定位精度高;总体结构简单、紧凑,动作准确可靠;维护方便,成本低。

本刀库满载装刀20把,采用单环排列方式放置,按就近选刀原则选刀。

本次设计中的机械手采用单臂双手式机械手,这种机械手的优点是可以同时完成插刀和拔刀动作,结构简单,换刀时间短。

关键词:加工中心;自动换刀;A TC中图分类词:TH 文献标识码:A 文章编号:引言未来加工中心的发展是高速化、进一步提高精度和愈发完善的机能,加工中心是数控车床的代表,是高新技术集成度高的典型机电一体化产品。

而刀具库和自动换到系统是其必不可少的组成部分,它也与加工中心的精度、高速化息息相关。

因此实现自动换刀系统的快速化、准确化,在高速数控加工中心里显得格外重要。

本文的设计主要解决的问题是1、加工中心自动换刀系统的基本结构;2、刀库的运作方式;3、刀库电机的选择;4、自动换刀的程序流程。

正文一、刀具库1、刀库的主要构件刀库主要是提供储刀位置,并能依程式的控制,正确选择刀具加以定位,以进行刀具交换;换刀机构则是执行刀具交换的动作。

刀库必须与换刀机构同时存在,若无刀库则加工所需刀具无法事先储备;若无换刀机构,则加工所需刀具无法自刀库依序更换,而失去降低非切削时间的目的。

此二者在功能及运用上相辅相成缺一不可。

2、刀库的特点圆盘式刀库特点圆盘式刀库应该称之为固定地址换刀刀库,即每个刀位上都有编号,一般从1遍到12、18、20、24等,即为刀号地址,操作者把一把刀具安装进某一刀位后,不管该刀具更换多少次,总是在该刀位内。

制造成本低。

主要部件是刀库体及分度盘,只要这两件零件加工精度得到保证即可,运动部件中刀库的分度使用的是非常经典的“马氏机构”,前后、上下运动主要选用气缸。

装配调整比较方便,维护简单。

一般机床制造厂家都能自制。

刀号的计数原理。

一般在换刀位置安装一个无触点开关,1号刀位上安装挡板。

每次机床开机后刀库必须“回零”,刀库在旋转时,只要挡板靠近(区里为0.3mm 左右)无出带你开关,数控系统就默认为1号刀。

并以此为计数基准,“马氏机构”转过几次。

当前就是几号刀。

只要机床不关机,当前刀号就被记忆。

刀具更换时,一般按最近区里旋转原则,刀号编号按逆时针方向。

如果刀库数量是18,当前刀号位8,要换6号刀,按最近距离换刀原则,刀库是逆时针转。

如果换10号刀,刀库是顺时针转。

机床关机后刀具记忆清零。

固定地址换刀刀库换刀时间比较长国内的机床一般要8秒以上(从一次切削刀另一次切削)。

圆盘式刀库是总刀数量受限制,不宜过多,一般40#刀柄的不超过24把,50#的不超过20把,大型龙门机床也有把圆盘转变为链式结构,刀具数量多达60把。

3、确定刀库容量刀库容量设为20把。

4、刀具库的传动刀具库的作用是储备一定数量的刀具,通过机械手实现与主轴的刀具交换。

下图,为一链式刀具库结构,根据刀库中储存刀具的数目和最大刀具直径计算出盘式刀库的最小直径,相邻刀具应留有一定间隙。

链式刀具库的5、确定刀库形式刀库容量为20,容量不大,并且用于小型立式加工中心,因此决定采用盘式刀库。

盘式刀库结构简单,应用较多。

此换刀装置的优点是结构简单,成本较低,换刀可靠性较好。

整个换刀过程时间大约为4秒。

6、初步估计刀库驱动转矩及选定电机刀库驱动电动机的选择应同时满足刀库运转时的负载扭矩F T 和启动时的加速扭矩J T 的要求。

刀库负载扭矩F T 的计算圆盘式刀库负载扭矩F T 估算方法:这种刀库的负载扭矩主要用来克服刀具质量的不平衡,估算按如下两种情况进行:第一,用平均重量的刀具插满圆盘的半个圆,如图2-1(a )所示,根据工艺要求所需的各种刀具,确定每个刀具的(包括刀柄)平均重量CP W ,而其重心则设定为离刀库回转中心2/3半径处。

第二,把三把最重的刀具放在一起,如图2-1(b )所示。

按加工中心规格规定的最大刀具质量max W 算,而其重心则设定为离刀库回转中心半径处。

刀库加速扭矩J T 的计算m N J J t n T m J m J ∙+=)(6021π 式中 m n -刀库选刀时的电动机转速(r/min );J t -加速时间,通常取150~200ms ;mJ -电动机转子惯量(2m kg ∙),可查样本; 1J -负载惯量折算到电动机轴上的惯量(2m kg ∙)(a )刀具插满圆盘的半个圆 (b )三把最重的刀具插在一起刀库负载转矩计算方法驱动电动机输出扭矩D T 计算驱动电动机的输出扭矩D T 应同时满足刀库负载扭矩F T 和加速扭矩J T 之和,将以上计算的刀库负载扭矩和加速扭矩转换为驱动电动机轴上的输出扭矩D T 的公式为m N i T T T J F D ∙+=η 式中i-电动机轴至刀库轴的速比;η-传动效率。

考虑到实际情况比计算时所设定的条件复杂,电动机额定转矩S T 应为负载扭矩D T 的1.2~1.5倍。

设定当两个最大刀具相邻放置时,其间距为5毫米,则相邻刀套中心距为85毫米,夹角为20度。

可知刀套放置半径为7.24410sin 285=⨯= R mm ,圆整为245mm 。

刀库负载扭矩F T 的计算按方法二进行估算,即将三把最重的刀放在一起,则负载扭矩F T =R g W ⨯⨯⨯max 3=3⨯8⨯9.8⨯245⨯310-=57.624m N ∙加速扭矩J T 的计算设刀具最大运动线速度为24m/min ,则可确定刀库选刀转速为R v n xdm π2==15.6r/min ,加速时间暂定为J t =200ms ,电动机的转子惯量可查相关样本mJ =2.14⨯310-2m kg ∙, 负载惯量折算到电动机轴上的惯量48245.08.9624.571⨯=J =30.01310-⨯2m kg ∙ 则可求得J T =0.26m N ∙驱动电动机的输出扭矩应同时满足刀库负载扭矩和加速扭矩之和电动机轴到刀库轴的速比为i=48,蜗轮蜗杆的传动效率η=0.7,则可求得D T =7.04826.0624.57⨯+=1.72m N ∙电动机的额定转矩S T >(1.2~1.5) D T =(2.06~2.58) m N ∙而所选电机转矩为10m N ∙确定电机型号为SM130-10N1500,其主要技术参数为:额定功率 1.5Kw额定转速 1500r/min额定电流 6A转子惯量 0.002142m kg ∙机械时间常数 2.11ms工作电压 380V二、换刀过程及方式数控加工中心的刀具库在工件加工过程中,会根据加工工艺要求进行自动换刀,其设备结构如图所示,存放了20把刀具供加工时选用。

数控加工中心的换刀一般采用两种控制方式,即固定存放换刀控制和随机存取换刀控制。

在固定存取换刀控制中,各刀具位置是固定的,刀具选择指令(CNC的T代码)是以刀套编号为存取地址来控制存取取刀动作,在使用完毕后仍归还到哪一刀套中。

而随机换刀控制中,还刀是位置是随机的,刀具选择指令(CNC的T代码)与刀套编码无关,指令仅以刀具自身的直接编号为目标。

这种换刀方式在新刀具取出之后,刀具无需转动,立即随机存入原先使用的刀具,即换刀、存刀一次完成,缩短了换刀的时间。

所示是以刀套编码的T代码功能处理示意图。

T代码功能处理示意图。

数控加工中心在加工过程中,根据加工工艺要求,在需要换刀时送出T代码指令给PLC,PLC接受代码并经译码后在数据表中搜寻,找到T代码指定的新刀号所在的数据表地址,将获取的刀号与现行使用刀号比较,如果不符,则将控制信号送刀库回转控制系统,控制系统驱动刀库旋转,直到新刀号位置定位在取刀口,刀库停止回转后由机械手换刀。

三、CNC控制程序流程图总结本次设计的题目是加工中心自动换刀装置的设计。

关于盘式刀库的自动换刀。

刚拿到题目对于刀库换刀不是很了解,通过查阅资料对于自动换刀有了初步的了解。

自动刀库作为加工中心的重要部分应用广泛。

设计主要针对自动换刀PLC的程序设计,程序由功能指令编写更加简单。

其中用到的传送指令,运算指令等功能指令是这次实习的主要内容。

要正确分析控制要求,绘制程序控制流程图,写出I\O分配表,并进行PLC电气控制的元器件选型,还要画出电气原理图。

最后分析调试程序。

课程设计是让我对于课题不断深入了解,进行自主的学习掌握知识。

自动换刀的换刀取存是整个设计过程中困扰我的问题。

在自己冥思苦想而不得法,后来去学校图书馆查找有关书籍。

给了我很大的启发,在以后的日子里循序渐进抽丝剥茧的慢慢完成程序。

只有发现问题面对问题才有可能解决问题,以后自己在这些方面一定要努力学习去克服。

参考文献[1] 陈芳,李继中.盘式刀库加工中心自动换刀系统控制.机械设计与制造,2007[2] 黄泽正,刘冲,陈志辉.加工中心自动换刀装置的设计.机械工程与自动化,2007[3] 曹秋霞,马国亮.小型立式加工中心圆盘式刀库的设计.机电产品开发与创新,2005[4] 依兰∙欧克拉,比京∙克.数控平面加工中心轮式刀库自动换刀装置的设计.成都纺织高等专科学校学报,2000。

相关文档
最新文档