四年级奥数-第三讲-多位数计算

合集下载

小学数学四年级奥数基础教程目录

小学数学四年级奥数基础教程目录

小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

小学四年级奥数

小学四年级奥数

小学四年级奥数第一部分行程第一章小学四年级奥数第二章小学四年级奥数第三章流水行船第四章扶梯问题第二部分计数第一章乘法原理第二章几何计数第三章加法原理第四章排列第五章组合第三部分几何第一章风筝模型和梯形蝴蝶定理第二章三角形等高模型第三章鸟头模型第四章图形的分割与拼接第四部分计算第一章整数小数四则运算第二章多位数计算第三章换元法与常用计算结论第四章平方差公式和完全平方公式第五部分应用题第一章列方程解应用题第二章一元一次方程解法综合第六部分杂题第一章抽屉原理第二章统筹规划第三章游戏与策略第一部分----------------------------------------------------------------------------------------------------------------------行程----------------------------------------------------------------------------------------------------------------------火车过桥常见题型及解题方法(一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度;一个有长度、但没速度;解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度;一个没长度、没速度;解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度;一个没长度、但有速度; (1)、火车+迎面行走的人:相当于相遇问题;解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间; (2)火车+同向行走的人:相当于追及问题;解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;知识框架第一章 火车过桥和火车与人的相遇追及(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度 人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度;一个也有长度、有速度; (1)错车问题:相当于相遇问题;解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间; (2)超车问题:相当于追及问题;解法:快车车长+慢车车长(总路程) = (快车速度—慢车速度) ×错车时间;对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目;在分析题目的时候一定得结合着图来进行。

沪教版小学四年级奥数02

沪教版小学四年级奥数02

第3讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。

高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。

1~100正好可以分成这样的50对数,每对数的和都相等。

于是,小高斯把这道题巧算为(1+100)×100÷2=5050。

小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。

若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。

后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。

例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9,...,99;(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。

由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。

例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。

由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。

注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。

例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。

原式=(11+31)×21÷2=441。

在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。

(完整版)最大和最小问题

(完整版)最大和最小问题

华西英语培训学校——四年级奥数第三讲最大和最小问题1、最短的时间内完成作业,有更多时间去发展自己的业余爱好2、怎样乘车路程最短,话费时间最少3、怎样做可以使原材料最省4、大桥在什么位置,才能方便附件可能多数居民例1:幼儿园老师要把100根小棒分给小朋友做数学游戏,每个小朋友分的小棒根数不同。

那么,最多能分给几个小朋友?例2:把自然数1、2、3……19依次排列,1234567891011……1819,划去24个数字后得到一个多位数,这个数最大是多少?练习:1、先从0、1、2、4、6、8、9这七个数字中,选出5个数字组成一个能被5整除并且尽可能大的五位数,这个五位数是多少?2、小明看一本90页的童话故事,每天看的页数不同,而且一天中最少看3页,那么小明看完这本说最多需要几天?3、把自然数1、2、3……39、40依次排列,1234567891011……3940,划去65个数字后得到一个多位数,这个数最大是多少?观察下面两组算式的结果怎样变化,由此得出什么规律10=1+9 1×9=910=2+8 2×8=1610=3+7 3×7=2110=4+6 4×6=2410=5+5 5×5=25规律1:两个数的,这两个数和一定时,这两个数越接近,它们的乘积越大;当两个数相等时,它们的乘积最大。

例3:周长为36米的竹篱笆围成一个长方形菜园,要使菜园的面积最大,它的长和宽应该是多少?这时的最大面积是多少?观察下面两组算式的结果怎样变化,由此得出什么规律?16=1×16 1+16=1716=2×8 2+8=1016=4×4 4+4=8规律2:两数的积一定时,这两个数越接近,它们的和越小;当两个数相等时,它们的和最小。

例4:用竹篱笆围一个面积为25平方米的长方形菜园。

这个长方形的长、宽各是多少米时,最省材料?练习:1、a,b是两个自然数,a+b=16,那么a×b最大是多少?2、a,b是两个自然数,a×b=49,那么a+b最小是多少?3、用40厘米长的铁丝围成的长方形(不计接头长度)中,最大一个的面积是多少平方米?4、教室一个窗户的面积是225平方分米,怎样设计窗户的形状和尺寸最省材料?5、把14拆成两个数的和。

小学奥数—多位数计算

小学奥数—多位数计算
多位数计算
教学目标
多位数的运算在奥数计算体系里面一般都扮演难题角色,因为多位数计算不仅能体现普通数字四则运
算的一切考法,还有自身的“独门秘籍”,那就是“数字多的数不出来”,只能依靠观察数字结构发现数字规
律的方式掌握多位数的整体结构,然后再确定方法进行解题。
多位数的主要考查方式有
1.用带省略号的描述方式进行多位数的具体值四则计算
k个9
k个 9
例题精讲
模块一、多位数求精确值运算
【例 1】 计算: 55 5 33 3
2007个5 2007个3
【巩固】计算: 88 8 33 3
2007个8 2007个3
1-3-2.多位数计算.题库
学生版
page 1 of 5
【巩固】计算 33 33 59049
2004个3
【巩固】计算 6666 9 333...3 的乘积是多少?
固】快来自己动手算算(1 1 1 99 9 99 9 77 7) 3的结果看谁算得准?
2007个1 2007个9
2007个9
2007个7
【巩固】计算 99 9 88 8 66 6
2008个9
2008个8
2008个 6
【例 2】 请你计算 999 999 1999 结果的末尾有多少个连续的零?
1998个1998
199919991999 )×1999
1998个1999
【巩固】计算: 55555 666667 44445 666666 155555
【例 12】 计算: 341 2 3441 3 34441 8 3444444441 9 34444444441

275 2775 27775
2.计算多位数的各个位数字之和

小学奥数模块教程多位数计算(四年级提尖秋季)

小学奥数模块教程多位数计算(四年级提尖秋季)

多位数计算本章知识1、了解多位数巧算技巧2、掌握重复数拆数技巧3、利用凑整、位值原理、归纳递推等方法解决多位数计算问题前铺知识1、等差数列进阶——四年级暑假第5讲(第7级别上)2、定义新运算——四年级秋季第1讲(第7级别下)课前加油站1、计算,找规律:2、计算:3、计算:题型一 由数字9组成的多位数相加1、计算:9+999+99999+9999999+9999……999...910个 + 999...910个【演练】103333333333个+++⋯+⋯【演练】99+99+9999+9999+99999+99999题型二 添加补数凑整或去尾数凑整1、19+199+1999+19999+199999+1999999加法中的多位数计算模块1【演练】29+299+2999+……+929...910个2、8+98+998+9998+……+999...9810个【演练】7+97+997+……+999...9710个3、17+107+1007+……+100...0710个0【演练】25+205+2005+……+200...0510个0题型一:88...810个8 99...910个9模块2乘法中的多位数计算【演练】333333 999999【演练】200720073555333⋅⋅⋅⨯⋅⋅⋅个5个题型二:33...310个9 33...410个9【演练】55555666667⨯题型三:123123123=123 _________________12341234=1234 _____________________________;abcabcabc=abc _________________abcdabcd=abcd ____________________【演练】123 101 1234 1001 12345 1000113571357=1357_________ 123456123456=123456______________ 12341234123412341234=1234___________________________题型四:471471471157157157157【演练】571571571167167167167题型五:20142014 (2014)2014个201438003800 (380038)2013个3800【演练】19901990 (1990)1990个199038003800 (380038)1989个3800【演练】20092009 (2009)2009个200941004100 (410041)2008个4100模块3 四则运算中的多位数题型一:333 332332332-332 333333333题型二:99999 +33333 333341、999...911个 + 999...911个2、+++⋯+⋯102222222222个3、99+99+9999+9999+99999+99994、7+97+997+9997+……+99...9710个9温故而知新5、77 (7)10个799 (9)10个96、3456710001=___________________7、234523452345=2345_____________________8、3713713711471471471479、20142014 (2014)2014个201438003800 (380038)2013个380010、33323232-32 33333333。

奥数-整式的乘除-第3讲法师

第三讲 整式的乘法与除法一、 基础知识●整式的加减整式的加减涉及到许多概念,准确地把握这些概念并注意它们的区别与联系是解决有关问题的基础,概括起来就是要掌握好以下两点:1.透彻理解“三式”和“四数”的概念“三式”指的是单项式、多项式、整式;“四数”指的是单项式的系数、次数和多项式的次数、项数.2.熟练掌握“两种排列”和“三个法则”“两种排列”指的是把一个多项式按某一字母的升幂或降幂排列,“三个法则”指的是去括号法则、添括号法则及合并同类项法则.物以类聚,人以群分.我们把整式中那些所含字母相同、并且相同字母的次数也相同的单项式作为一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类型.这样,使得整式能大为简化,整式的加减实质就是合并同类项● 整式的乘法与除法 指数运算律是整式乘除的基础,有以下4个:.,(),()m n m n m mn a a aa a ab +==n =,.n n m n m n a b a a a -÷=学习指数运算律应注意:1.运算律成立的条件;2.运算律字母的意义:既可以表示一个数,也可以是一个单项式或者多项式;3.运算律的正向运用、逆向运用、综合运用.多项式除以多项式是整式除法的延拓与发展,方法与多位数除以多位数的演算方法相似,基本步骤是:1.将被除式和除式按照某字母的降幂排列,如有缺项,要留空位;2.确定商式,竖式演算式,同类项上下对齐;3.演算到余式为零或余式的次数小于除式的次数为止.二、 例题第一部分 基础概念与整式加减法例1. 若2x+5y-3=0,则432_____x y= (2002年绍兴市竞赛题)解:8例2. 已知单项式0.25x b y c 与单项式-0.125x 1-m y 12-n 的和为0.625ax n y m,求abc 的值. 解:12 提示:由题意得b=m-1=n,c=2n-1=m,0.625a=0.25+(-0.125)例3. 同时都含有字母a ,b ,c ,且系数为1的7次单项式共有( ).(A)4个 (B)12个 (D)25个(北京市竞赛题)解:C 提示:设满足条件的单项式为m n p a b c 的形式,其中m 、n 、p 为自然数,且m+n+p=7.例4. 把一个正方体的六个面分别标上字母A 、B 、C 、D 、E 、F 并展开如图 所示,已知:A=2234y xy x +-,C=2223y xy x --,B=)(21A c -, E=B -2C ,若正方体相对的两个面上的多项式的和都相等,求D 、F . (第9题) 解:2222374,9112D x xy y F x xy y =-+=-+例5. 已知 22276(2)()x xy y x y x y A x y B -----=-+++.求A 、B 的值. 思路点拨 等号左右两边的式子是恒等的,它们的对应项系数对应项系数对应相等,从而可以通过比较对应项系数来解.解:A=-3,B=2。

(小学奥数)多位数计算

多位數的運算在奧數計算體系裏面一般都扮演難題角色,因為多位數計算不僅能體現普通數字四則運算的一切考法,還有自身的“獨門秘笈”,那就是“數字多的數不出來”,只能依靠觀察數字結構發現數字規律的方式掌握多位數的整體結構,然後再確定方法進行解題。

多位數的主要考查方式有1.用帶省略號的描述方式進行多位數的具體值四則計算2.計算多位數的各個位數字之和一、 多位數運算求精確值的常見方法1. 利用99999101k k =-个,進行變形2. “以退為進”法找規律遞推求解二、 多位數運算求數字之和的常見方法M ×k 9999...9个的數字和為9×k .(其中M 為自然數,且M ≤k 9999...9个).可以利用上面性質較快的獲得結果.模組一、多位數求精確值運算【例 1】 計算:200720073555333⋅⋅⋅⨯⋅⋅⋅个5个知識點撥 教學目標 例題精講多位數計算【巩固】 計算:2007820073888333⋅⋅⋅⨯⋅⋅⋅个个【巩固】 計算20043333359049⨯个【巩固】 計算20042008366669333...3⨯⨯个6个的乘積是多少?【巩固】 快來自己動手算算20071200792007920077111999999777⋅⋅⋅⨯⋅⋅⋅+⋅⋅⋅⨯⋅⋅⋅÷个个个个()3的結果看誰算得准?【巩固】 計算200892008820086999888666⋅⋅⋅⨯⋅⋅⋅÷⋅⋅⋅个个个【例 2】 請你計算2008920089200899999991999⨯+个个个結果的末尾有多少個連續的零?【例 3】 計算199821998222222222⨯个个的積【例 4】 計算:123456791234567901234567901234567981⨯99个0【巩固】 1234567901234567981⨯【例 5】 求20073333333...33...3++++个的末三位數字.模組二、多位數求數字之和【例 6】 求33333336666666⨯乘積的各位數字之和.【巩固】 求111 111 × 999 999 乘積的各位數字之和。

四年级高思奥数之多位数与小数含答案

四年级高思奥数之多位数与小数含答案本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March第9讲 多位数与小数内容概述求解含有小数的四则运算问题,除了运用已学的各种整数计算方法外,还可以移动小数点来简化计算,求解带有省略号的多位数的四则运算问题,一般采用从简单情况出发找规律,通过算式的变形进行凑整、直接列竖式等方法。

典型问题兴趣篇1. 李老师在黑板上写了四个算式:①7469÷0.7; ②7.469÷0.007 ③0.7469÷0.07 ④746.9÷7. 请把它们按照商从小到大的顺序排列起来.2. 计算:5795.5795÷5.795×579.53. 计算:13.64×0.25÷1.1.4. 计算:24×(0.123+0.127) ×0.125×(2.52+1.48)5. 计算:(3.74+3.76+3.78+3.8+3.82) ×0.04÷24×60.6. 计算:1.25×3.14+125×0.0257+1250×0.00229.7. 计算:3.51×49+35.1×5.1+99×51.8. 计算:19+199+1999+……+199…9.9. 求和式3+33+333+……33…3 计算结果的万位数字.10. 计算:333……33×333……34. 10个910个310个39个3拓展篇1. 计算:(1) ()⨯-÷+÷÷4.2510.259.10.70.004⎡⎤⎣⎦(2)4.5×4.8÷0.25÷15÷0.24.2.在下面算式的两个方框中填入相同的数,使得等式成立. 所填的数应该是多少?22.5-(□×3.2-2.4×□) ÷3.2=10.3. 计算:(1)299.9×19.98-199.8×29.97;(2) 3.14+64.8×0.537×25+5.37×6.48×75-8×64.8×0.125×53.7.4. 计算:27.8×28.7-27.7×28.8.5. 计算:24.25×7.19+0.23×281+1.25×0.81.6. 计算:0.1+0.3+0.5+0.7+0.9+0.11+0.13+0.15+0.17+0.19+0.21+……+0.99.7. 计算:(1)28+208+2008+…+200…08;(2) 98+998+9998+…+99…98.8. 计算:3+33+333+3333+…+33…3. 9. 计算:999999×222222+333333×333334.10. 计算:1981×198319831983-1982×198119811981.11. 计算:(1)99…9×999+199…9;(2)33…3×66…6. 100个010个950个3 100个9 100个9 100个920个3 20个612. 求算式99…9×88…÷66…6的计算结果的各位数字之和.2000个9 2000个8 2000个6超越篇1. 计算:(1+1.2+1.23+1.234)×(1.2+1.23+1.234+1.2345)-(1+1.2+1.23+1.234+1.2345)×(1.2+1.23+1.234).2. 一个数去掉小数部分后得到一个整数,这个整数加上原数的4倍,等于27.6,原来这个数是多少?3. 计算:44…4-66…6…+88…800…0.40个4 20个6 20个8 10个04. 计算:888…882-111…112.2000个8 2000个15. 求算式888…8×333…3的计算结果的各位数字之和.300个8 300个36. 计算:3+3.3+3.33+3.333+…+3.33…3.99个37.已知数444…46.222…24是某一个小数的平方,请问:这个数是多少的平方?8. 计算以下各数的数字和:(1) 1111...1×1111...1;(2) 1111...1×1111 (1)99个1 99个1 100个1 100个1第9讲多位数与小数内容概述求解含有小数的四则运算问题,除了运用已学的各种整数计算方法外,还可以移动小数点来简化计算,求解带有省略号的多位数的四则运算问题,一般采用从简单情况出发找规律,通过算式的变形进行凑整、直接列竖式等方法。

小学奥数 四年级奥数寒假班 多位数计算

【家长评价】
___________________________________________________ _______________________________。
答案
【例1】13332
【例4】 3333300000
【例2】 2729727
【例5】11110
【例3】 18063
2
乘法结合律 a×b×c=a×(c×b)
【课前小练习】(★★) ① 72×125=____; ③ (40-2)×25=____;
② 25×24×5=_____; ④ 43×99=_____.
【例1】 (★★) 计算:9999×8888÷6666=_______.
【例2】 (★★★) 在273与9999的乘积中有几个数字是奇数?
多位数计算
艾宾浩斯
艾宾浩斯遗忘曲线
立即复习 分段复习 期中复习
本讲主线 1. 基本的大数计算方法。 2. 位值原理及应用。
乘法分配律 (a+b)×c=a×c+b×c (a-b)×c=a×c-b×c
除法: (a+b)÷c=a÷c+b÷c (a-b)÷c=a÷c-b÷c
乘法交换律 a×b×c=a×c×b
(2) ×9,×99,×999:添“0”减原数。 2. 位值原理:按位拆开,重新计算。 3. 提公因数:
常考点,利用因数分解凑公因数。
【知识点】(★)位值原理 (1) 计算:28+208+2008+20008=_____; (2) 计算:98+998+9998+99998=_____.
【例5】 (★★★★) 计算:1234+2341+3412+4123=_____.
【超常大挑战】(★★★★★) (56789+67895+78956+89567+95678)÷7=_____.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四年级奥数-第三讲-多位数计算
第三讲:多位数计算
学习内容:提升版凑整法、提公因数、平方差公式。

学习目标:灵活运用简便方法,提高做作业的计算速度以及准确率。

一、凑整法
【例1】(★★★)
计算:999999999×111111111
原式=(10000000000-1)×111111111
=1111111111000000000-1111111111
=111111110888888889
99……9常用处理方式——化为(100……0-1)
【例2】(★★★★)
计算:66666×133332
原式=33333×2×3×44444
=(33333×3)×(2×44444)
=99999×88888
=(100000-1)×88888
=8888800000-88888
=8888711112
99......9的亲戚:33......3 ,66 (6)
【例3】(★★★★)
求算式99……9×88……8÷66……6的计算结果的各位数字之和。

20099 2009个6
原式=99......9×44......4÷33 (3)
2009个9 2009个4 2009个3
=3×44 (4)
2009个4
=133 (32)
2008个3
解析:抵消思想。

……32之和=3×2009=6027 2008个3
【例4】(★★★★)
计算:88......82-11 (12)
2010个8 2010个1
(解析:利用平方差公式)
原式=(88……82+11……12)×(88……82-11……12)
2010个8 2010个1 2010个8 2010个1
=99......9×77 (7)
个9个7
=(100......0-1)×77 (7)
个020107
=77......700......0-77 (7)
2010个72010个02010个7
=77......7622 (23)
2009个7 2009个2
二、提公因数
【例5】(★★★)
计算:22222×99999+33333×33334
原式=22222×3×33333+33333×33334
=666666×33333+33333×33334
=33333×(66666+33334)
=33333×100000
=3333300000
公因数常见给法——倍数关系
【例6】(★★★★)
计算99……9×99……9+199……9结果末尾有多少个连续的零?
100个9 100个9 100个9
原式=99......9×99......9+99......9+100 0
100个9 100个9 100个9 100个0
=99......9×(99......9+1)+100 0
1009 1009 1000
=99......9×100......0+100 0
1009 100个0 1000
=100……0×(99……9+1)
1000 100个9
=100......0×100 0
100个0 100个0
=100 0
2000
计算结果末尾处有200个0。

【例7】(★★★★★)
计算:
33......3×55......5+6×44......4×22 (2)
2010个3 2010个5 2010个4 2010个2
原式=(11……1×3×11……1×5)+(6×11……1×4×11……1×2)2010个1 2010个1 2010个1 2010个1
=11……1×11……1×15+11……1×11……1×48
2010个1 2010个1 2010个1 2010个1
=11……1×11……1×63
个个1
=77......7×99 (9)
2010个7 2010个9
=(100......0-1)×77 (7)
2010个0 2010个7
=77......700......0-77 (7)
2010个7 2010个0 2010个7
=77......7622 (23)
2009个7 2009个2
【例8】(★★★)
1、求111111×999999乘积的各位数字之和。

原式=111111×(1000000-1)
=1111111000000-111111
=111110888889
数字之和:9×6=54
2、求222222×9999999乘积的各位数字之和。

原式=(10000000-1)×222222
=222222000000-222222
=2222219777778
数字之和:7×9=63
结论:多位数M×99……9(n个9)的数字之和为9n(M的位数小于n)。

【例9】(★★★)
若a=1515……15×333……3,则整数a的所有数位上的数字和等于
1004个15 2008个3
A、18063
B、18072
C、18079
D、18054
原式=505050......5×999 (9)
1004个5 1003个0 2008个9
=5050 (5)
课堂作业:
1、计算:
99999999×11111111
2、计算:
33333×166665
3、计算:
44444×66666+33333×11112
4、计算:
77......72-22 (22)
2009个7 2009个2
家庭作业:
1、计算:
99999×99999+299999
2、计算:
199999998+100000002×3
3、计算:
7777778×9999999+3333333×6666666
4、计算:
55......52-44 (42)
2008个7 2008个4
家长签字:
年月日。

相关文档
最新文档