分式方程及其解法教学设计
分式方程及其解法说课稿

分式方程及其解法说课稿一、说教材本文是高中数学课程中关于分式方程及其解法的重要内容。
在数学教育中,分式方程不仅是代数基础的重要组成部分,也是解决实际问题时常用的一种数学工具。
它既承接了初中阶段一元一次方程、不等式等内容,又为后续学习更高级的数学知识,如函数、导数等打下基础。
(1)作用与地位分式方程在数学课程中的作用至关重要。
它既是代数知识体系中的桥梁,也是培养学生抽象思维能力、逻辑推理能力的关键。
通过学习分式方程,学生能够更好地理解数学概念之间的内在联系,提高解决问题的能力。
(2)主要内容本文主要内容包括分式方程的定义、性质、解法及其应用。
具体分为以下几部分:1. 分式方程的定义:介绍分式方程的概念,让学生理解分式方程的基本形式及其特点。
2. 分式方程的性质:分析分式方程的性质,如对称性、奇偶性等,帮助学生更好地把握分式方程的内在规律。
3. 分式方程的解法:详细讲解解分式方程的步骤,包括去分母、化简、求解等,使学生在实际操作中掌握解法。
4. 分式方程的应用:通过实际例题,展示分式方程在解决实际问题中的应用,提高学生的实际操作能力。
二、说教学目标学习本课需要达到以下教学目标:(1)理解分式方程的概念,掌握分式方程的基本形式及其特点;(2)掌握分式方程的性质,如对称性、奇偶性等;(3)学会解分式方程的步骤,能熟练地解决各类分式方程问题;(4)能将分式方程应用于解决实际问题,提高数学应用能力。
三、说教学重难点(1)重点:分式方程的定义、性质、解法;(2)难点:分式方程的解法,特别是去分母、化简的步骤。
在教学过程中,要注重对重点知识的讲解,同时针对难点问题进行详细剖析,使学生能够扎实掌握分式方程的相关知识。
四、说教法在教学分式方程及其解法的过程中,我将采用以下几种教学方法,旨在提高学生的理解和应用能力,同时突出我的教学特色。
1. 启发法:- 通过提出引导性问题,激发学生的思考,如“分式方程与之前学过的一元一次方程有何不同?”或“为什么我们要去分母?”,让学生在探索中理解分式方程的本质。
八年级数学上册《分式方程及解法》教案、教学设计

-教师针对分式方程的解法进行详细讲解,特别是换元法、消元法等难点。
-设计具有针对性的练习题,让学生在练习中巩固所学知识,逐步突破难点。
4.实践应用,提高能力
-设计实际应用题,让学生将分式方程应用于解决实际问题,提高数学应用能力。
-教师及时给予反馈,指导学生调整解题策略,提高解题效果。
(四)课堂练习
1.设计具有代表性的练习题,涵盖分式方程的各种解法。
-练习一:求解分式方程,如:$\frac{2x+1}{3} = \frac{4}{x}$
-练习二:实际问题转化为分式方程,如:某商品原价为x元,打8折后的价格为0.8x元,求原价。
2.学生独立完成练习题,教师巡回指导,解答学生疑问。
(五)总结归纳
1.分式方程的定义:给出分式方程的一般形式,讲解分母、分子和未知数之间的关系。
-解释:分式方程就是含有分数的方程,其中分数的分母和分子可以是各种代数式。
2.分式方程的解法:
-换元法:通过设未知数,将分式方程转化为整式方程,然后求解。
-消元法:将方程两边的分母消去,转化为整式方程求解。
-通分法:将方程两边的分式通分,转化为整式方程求解。
7.创设良好的学习氛围,激发学生学习兴趣
-教师应以亲切、热情的态度对待学生,营造轻松、愉快的学习氛围。
-通过表扬、鼓励等方式,激发学生的学习积极性,提高他们的自信心。
四、教学内容与过程
(一)导入新课
1.生活实例引入:以学生熟悉的购物打折、银行利率等实际问题为例,引导学生思考如何用数学知识解决这些问题。
4.针对不同学生的需求,给予个性化的指导,帮助他们克服学习中的困难,提高学习效果。
三、教学重难点和教学设想
人教版初中八年级上册数学《分式方程及其解法》精品教案

而
x
1
5
10 x2 25
②
方程的解呢?
去分母后所得整式方程的解却不是原分式
我们再来观察去分母的过程:
90 60
两边同乘(30+x)(30-x) ①
30+x 30 x 当x=6时,(30+x)(30-x)≠0
90(30-x)=60(30+x)
真相揭秘: 分式两边同乘了不为0的式子,所得整式方程的解与 分式方程的解相同.
90 60 . 30+x 30 x
讲授新课
一 分式方程
90 60 ① 30+x 30 x
定义: 此方程的分母中含有未知数x,像这样分母中含未知数的方程叫做 分式方程.
判一判 下列方程中,哪些是分式方程?哪些整式方程.
(1) x 2 x 23
4 3 (72) 1 3
xy
x2 x
(4)
x(x 1) x
1(3)
3
x
x(6)2x 2
x 1 5
10
(5)x 1 2 x
2x 1 3x 1 x
整式方程 分式方程
你能试着解这个分式方程吗?
90 60 ① 30+x 30 x
(1)如何把它转化为整式方程呢?
(2)怎样去分母?
(3)在方程两边乘什么样的式子才能把每一个 分母都约去? (4)这样做的依据是什么? 解分式方程最关键的问题是什么? “去分母”
2.师生共同总结反思学习情况。
课堂小结
1.同桌之间相互交流本课学习收获。 2.老师引导学生总结归纳本课学习知识点,并 总结交流本课学习心得
教学研讨:
说课与反思
1.上课教师说课。 2.上课教师做教学反思。
北京版数学八年级上册《分式方程及解法》教学设计

北京版数学八年级上册《分式方程及解法》教学设计一. 教材分析《分式方程及解法》是北京版数学八年级上册的一章内容。
本章主要介绍了分式方程的概念、性质和求解方法。
通过本章的学习,学生能够理解分式方程的意义,掌握分式方程的解法,并能够应用分式方程解决实际问题。
教材内容共分为5个小节,分别是分式方程的概念、分式方程的解法、分式方程的解法实例、分式方程的应用和分式方程的综合练习。
二. 学情分析学生在学习本章内容之前,已经学习了分式的概念、性质和运算规则,具备了一定的数学基础。
然而,对于分式方程的理解和解法,学生可能还存在一定的困难。
因此,在教学过程中,需要注重引导学生理解分式方程的意义,并通过实例讲解和练习,帮助学生掌握分式方程的解法。
三. 教学目标1.知识与技能目标:使学生理解分式方程的概念,掌握分式方程的解法,并能够应用分式方程解决实际问题。
2.过程与方法目标:通过实例讲解和练习,培养学生的数学思维能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的自主学习能力和团队合作精神。
四. 教学重难点1.重点:分式方程的概念、性质和解法。
2.难点:分式方程的解法应用和解决实际问题。
五. 教学方法1.讲授法:通过教师的讲解,引导学生理解分式方程的概念和性质,讲解分式方程的解法和解法实例。
2.实践法:通过学生的练习和应用,培养学生的数学思维能力和解决问题的能力。
3.小组讨论法:通过小组合作,促进学生之间的交流和合作,共同解决问题。
六. 教学准备1.教学PPT:制作教学PPT,包括分式方程的概念、性质、解法和解法实例等内容。
2.练习题:准备一些分式方程的练习题,用于学生的课堂练习和巩固。
3.教学素材:准备一些实际问题的案例,用于引导学生应用分式方程解决实际问题。
七. 教学过程1.导入(5分钟)教师通过引入一些实际问题,引发学生对分式方程的思考,激发学生的学习兴趣。
2.呈现(10分钟)教师通过PPT呈现分式方程的概念、性质和解法,引导学生理解和掌握分式方程的基本知识。
最新分式方程教案(优秀3篇)

最新分式方程教案(优秀3篇)分式方程教案篇一教师准备多媒体课件1.谈话导入。
我们学过了关于方程的哪些知识?(结合学生的回答板书)预设生1:方程的意义。
生2:方程与等式的关系。
生3:解方程的方法。
生4:用方程知识解决实际问题。
……2.揭示课题。
同学们说得很全面,这节课我们就来系统地复习有关方程的知识。
(板书课题:方程) 1.方程。
(1)什么是方程?它与算术式有什么不同?明确:①含有未知数的等式叫作方程。
②算术式是一个式子,由运算符号和已知数组成。
方程是一个等式,在方程里的未知数可以参与运算,并且只有当未知数为特定的数值时,方程才成立。
(2)什么是方程的解?使方程左右两边相等的未知数的值,叫作方程的解。
(3)什么是解方程?求方程的解的过程叫作解方程。
(4)解方程的依据是什么?①等式的性质。
②加减法和乘除法各部分之间的互逆关系。
(5)课件出示教材80页“回顾与交流”3题。
①组织学生分组讨论解方程的步骤和方法,以及哪些地方需要注意。
②指名到黑板前进行板演。
③全班交流并说一说自己是怎么解的。
2.列方程解决实际问题。
(1)列方程解应用题的步骤。
学生小组交流并集体汇报,然后教师明确:①弄清题意,确定未知数并用x表示;②找出题中数量间的相等关系;③列方程,解方程;④检验并写出答语。
(2)列方程解应用题的关键及找等量关系的方法。
①列方程解应用题的关键是什么?列方程解应用题的关键是找出题中的等量关系,根据等量关系列方程解答。
②你知道哪些找等量关系的方法?预设生1:根据关键性词语找等量关系。
生2:根据常见的四则混合运算的意义及各部分之间的关系找等量关系。
生3:根据常见的数量关系找等量关系。
生4:根据计算公式找等量关系。
(3)课件出示教材80页“回顾与交流”4题。
教师引导学生先找出各题的等量关系,再列方程自主解决问题。
分式方程教案篇二教科书第12~一三页,“回顾与整理”、“练习与应用”第1~4题。
1、通过回顾与整理,使学生进一步加深等式与方程的意义,等式的性质的理解。
52分式方程及其解法教案

分式方程及其解法(2)一、教学目标(一)知识与技能:能熟练解可化为一元一次方程的分式方程,并会验根.(二)过程与方法:经历“分式方程一整式方程”的过程,发展学生分析问题、解决问题的能力,渗透数学的转化思想培养学生的应用意识.(三)情感态度与价值观:培养学生自主探充的意识,提高学生的观察能力和分析能力.二、教学重点、难点重点:能熟练解可化为一元一次方程的分式方程,并会验根.难点:了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.三、教学过程讨论再讨论一个分式方程一二=-⅛为去分母,在方程两边乘最简公分母(X-5)(户5),得整式方程x+5=10,解得户5尸5是原分式方程的解吗?将x=5代入原分式方程检验,得分母JΓ-5和√-25的值都为0,相应的分式无意义.因此,户5虽是整式方程x+5=10的解,但不是原分式方程一L=Y-的解.实际上,这个分式方程x-5X2-25无解.思考为什么_22_=_以①去分母后所得整式方程的解尸6就是①的解,而」_=30+V30-V x-5X--25 ②去分母后所得整式方程的解x=5却不是②的解呢?方程①两边乘(30+0(30-力,得到整式方程,它的解尸6.当尸6时,(30+v)(30-v)0,这就是说,去分母时,①两边乘了同一个不为0的式子,因此所得整式方程的解与①的解相同.方程②两边乘(尸5)G+5),得到整式方程,它的解尸5.当尸5时,(X-5)(x+5)=0,这就是说,去分母时,②两边乘了同一个等于0的式子,这时所得整式方程的解使②出现分母为0的现象,因此这样的解不是②的解.在这里,我们把k5称它为方程②的增根.验根增根:在去分母时,将分式方程转化为整式方程的过程中出现的使分母值为零的根.产生的原因:分式方程两边同乘以一个零因式后,所得的根是整式方程的根,而不是分式方程的根.一般地,解分式方程时,去分母后所得整式方程的解有可能使原方程中分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.例1解方程—x-3X解:方程两边乘X(X-3),得2x=3x~9解得x=9检验:当x=9时,X(X-3)≠0所以,原分式方程的解为尸9. 解:方程两边乘(XT)(X+2),得Xa+2)-(AH)(X+2)=3解得x=l检验:当户1时,(ΛH)(X +2)=0,因此尸1不是原分式方程的解.所以,原分式方程无解.归纳解分式方程的一般步骤如下:〃是分式方程的解〃不是分式方程的解练习解方程: (1)—=—(2)—=^^+1(3)—=-^—(4)---- r !-=O 2x x+3 x+13x+3x-1x^-1x~+xx"-x解:(1)方程两边乘2x(x+3),得x+3=4x解得x=l检验:当X=I 时,2x(x+3)≠0所以,原分式方程的解为尸1.解:(2)方程两边乘3CrH),得3x=2x+3(x+l)解得x=~∖.5检验:当r=T.5时,3(x+l)≠0所以,原分式方程的解为卡-L5.解:(3)方程两边乘G+1)(x7),得2(x+l)=4解得x=l 检验:当尸1时,(x+l)Cr-D=O,因此尸1不是原分式方程的解.所以,原分式方程无解.解:(4)方程两边乘X(X+1)G-1),得5(尸1)-(X+1)=0解得x=l.5检验:当尸】.5时,x(x+l)(χ-l)≠0所以,原分式方程的解为尸1.5.课堂小结1.本节课你有哪些收获?2.还有没解决的问题吗?四、教学反思这节课主要是讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错. 例2解方程 上-I=—^ x-1 (X-I)(X+ 2)去分母分式方程——-整式方程最简公分母为0 最简公分母不为0。
解分式方程的教学设计

解分式方程的教学设计一、教学目标1. 理解什么是分式方程,能够解决简单的一元分式方程。
2. 能够将实际问题转化为分式方程,并成功解决。
3. 培养学生的逻辑思维能力和解决问题的能力。
二、教学重点和难点1. 教学重点:分式方程的基本概念和解法。
2. 教学难点:将实际问题转化为分式方程。
三、教学内容和教学步骤1. 分式方程的基本概念介绍(15分钟)- 引导学生了解分式方程的定义和特点,以及与代数方程的区别。
- 通过实例讲解分式方程的形式和解法,培养学生对分式方程的理解能力。
2. 分式方程的解法讲解(30分钟)- 分式方程的解法可以分为分母去因式法、通分法和代入法等。
- 通过实例演示和解题训练,让学生熟悉基本的解法。
3. 分式方程实际问题的转化(20分钟)- 引导学生分析实际问题,并将其转化为分式方程。
- 通过多组实例,让学生能够熟练运用所学的解法解决实际问题。
4. 分小组练习和讨论(20分钟)- 将学生分成小组,出示一些分式方程问题的思考题。
- 每组讨论解题思路,并给出解答过程和结果。
5. 布置作业和解答(15分钟)- 布置适量的分式方程作业,让学生在家里复习和巩固所学的知识。
- 下节课解答作业问题,给予学生指导和进一步的讲解。
四、教学方法1. 探究式教学法:通过引导学生分析实际问题,自主思考和解决问题的方法。
2. 演示法和示范法:通过实例演示和解题训练,激发学生的学习兴趣。
3. 小组讨论:激发学生的合作学习意识,培养团队合作能力。
五、教学评价与反馈1. 教师通过讲解、解题训练和小组讨论等方式,观察和评价学生的学习情况。
2. 布置作业并进行解答,及时给予学生反馈和指导。
3. 总结本节课的教学效果,根据学生的表现调整教学策略和方法。
六、教学资源1. 教材:提供分式方程的相关知识和例题。
2. 黑板、白板、彩色笔:用于展示教学内容和解题过程。
3. 分组练习和讨论题:用于学生的小组讨论和问题解答。
通过以上教学设计可以有效地引导学生理解和掌握解分式方程的方法和技巧。
分式方程及其解法 公开课教案

9.3 分式方程第1课时 分式方程及其解法1.了解分式方程的概念;(重点)2.掌握可化为一元一次方程的分式方程的解法,知道转化的思想方法在解分式方程中的应用;(重点)3.了解增根的概念,会检验一个数是不是分式方程的增根,会根据增根求方程中字母的值.(难点)一、情境导入1.什么是方程?2.什么是一元一次方程?3.解一元一次方程的一般步骤是什么?我们今天将学习另外一种方程——分式方程.二、合作探究探究点一:分式方程的概念下列方程是分式方程的是( )A.2x +1=3x -1B.23x -1=32x +2 C.12x 2-x =1 D.2x -3解析:根据分式方程的定义,分母含有未知数的方程是分式方程,B ,C 选项是整式方程,D 选项是分式,只有A 选项分母含有未知数,并且是方程.故选A.方法总结:判断一个方程是否为分式方程,主要是依据分式方程的定义,也就是看分母中是否含有未知数,如果分母中含有未知数就是分式方程,分母中不含未知数就不是分式方程.探究点二:分式方程的解法【类型一】 解分式方程解方程:(1)5x =7x -2; (2)1x -2=1-x 2-x-3. 解析:分式方程两边同乘以最简公分母,把分式方程转化为整式方程求解,注意验根. 解:(1)方程两边同乘x (x -2),得5(x -2)=7x ,5x -10=7x ,2x =-10,解得x =-5.检验:把x =-5代入最简公分母,得x (x -2)≠0,∴x =-5是原方程的解;(2)方程两边同乘最简公分母(x -2),得1=x -1-3(x -2),解得x =2.检验:把x =2代入最简公分母,得x -2=0,∴原方程无解.方法总结:解分式方程的步骤:①去分母;②解整式方程;③检验;④写出方程的解.注意检验有两种方法,一是代入原方程,二是代入去分母时乘的最简公分母,一般是代入公分母检验.【类型二】 由分式方程的解确定字母的取值范围关于x 的方程2x +ax -1=1的解是正数,则a 的取值范围是____________. 解析:去分母得2x +a =x -1,解得x =-a -1,∵关于x 的方程2x +a x -1=1的解是正数,∴x >0且x ≠1,∴-a -1>0且-a -1≠1,解得a <-1且a ≠-2,∴a 的取值范围是a <-1且a ≠-2.方法总结:求出方程的解(用未知字母表示),然后根据解的正负性,列关于未知字母的不等式求解,特别注意分母不能为0.探究点三:分式方程的增根【类型一】 求分式方程的增根若方程3x -2=a x +4x (x -2)有增根,则增根可能为( ) A .0 B .2 C .0或2 D .1解析:∵最简公分母是x (x -2),方程有增根,则x (x -2)=0,∴x =0或x =2.去分母得3x =a (x -2)+4,当x =0时,2a =4,a =2;当x =2时,6=4不成立,∴增根只能为x =0.故选A.方法总结:增根是使分式方程的分母为0的根.所以判断增根只需让分式方程的最简公分母为0;注意应舍去不合题意的解.【类型二】 分式方程有增根,求字母的值如果关于x 的分式方程2x -3=1-m x -3有增根,则m 的值为( ) A .-3 B .-2C .-1D .3解析:方程两边同乘以x -3,得2=x -3-m ①.∵原方程有增根,∴x -3=0,即x =3.把x =3代入①,得m =-2.故选B.方法总结:增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.【类型三】 分式方程无解,求字母的值若关于x 的分式方程2x -2+mx x 2-4=3x +2无解,求m 的值. 解析:先把分式方程化为整式方程,再分两种情况讨论求解:一元一次方程无解与分式方程有增根.解:方程两边都乘以(x +2)(x -2)得2(x +2)+mx =3(x -2),即(m -1)x =-10.①当m -1=0时,此方程无解,此时m =1;②方程有增根,则x =2或x =-2,当x =2时,代入(m -1)x =-10得(m -1)×2=-10,m =-4;当x =-2时,代入(m -1)x =-10得(m -1)×(-2)=-10,解得m =6,∴m 的值是1,-4或6.方法总结:分式方程无解与分式方程有增根所表达的意义是不一样的.分式方程有增根仅仅针对使最简公分母为0的数,分式方程无解不但包括使最简公分母为0的数,而且还包括分式方程化为整式方程后,使整式方程无解的数.三、板书设计1.分式方程的概念2.分式方程的解法3.分式方程的增根这节课主要是通过对比有分数系数的整式方程的解法来学习分式方程的解法,从而归纳出分式方程的基本解题步骤.在教学过程中要着重讲解分式方程为什么要检验,要让学生理解增根的由来,从而牢记分式方程在解题后要进行检验,避免解题出错.在完成解题步骤归纳之后,通过例题与练习让学生在出错中找到正确的解法,让学生自己归纳理解解题时容易出错的地方,防止犯错。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学设计
个解不是原分式方程的解,必须舍去,并写出原方程的根.
活动9
例题讲解:解方程
例1:x x 332=- 例2:2
3
112
-+=--x x x x 例1,老师板书,例2学生解决 让学生掌握分式方程的解法
多媒体呈现正确答案
活动10
解方程
(1)
273
78=----x
x x (2) (2)14
122
-=-x x (3)01
522=--+x
x x x
学生巩因分式方程的解法
知识巩固 多媒体呈现
知识总结
解分式方程的注意点: (1)去分母时,先确定最简公分母;若
分母是多项式,要进行因式分解;
(2)去分母时,不要漏乘不含分母的项;约去分母时,分子是多项式要加括号;
(3)最后不要忘记验根。
学生与老师归纳 让学生掌握易错点
多媒体呈现
活动11
当m= 时,)1(163-=-+x x m
x x 有
增根。
知识延伸 巩固增根的概念 多媒体呈现正确答案
归纳提升
知识归纳 提升学生
的归纳能力,达到知识的升华
多媒体呈现。