教师资格证数学说课课件:全等三角形
合集下载
《全等三角形》PPT精品课件

点A 与点D、点B 与点E、
A
点C 与点F 重合,称为对应顶点;
边AB 与DE、边BC 与EF、 B
C
边AC 与DF 重合,称为对应边;
D
∠A 与∠D、∠B 与∠E、
∠C 与∠F 重合,称为对应角.
E
F
全等形、全等三角形及其有关概念
追问2 你能用符号表示出这两个全等三角形吗?
A △ABC与△DEF是全等的,
例 已知:如图,△ABC ≌△DEF. (3)若∠A =100°,∠B =30°,求∠F 的度数.
解:∵ ∠A =100°,∠B =30°,
∴ ∠C =180°-∠A -∠B
=50°. ∵ △DEF ≌△ABC ,
B
∴ ∠F =∠C =50°
(全等三角形的对应角相等).
E
A
C D
F
课堂练习
练习1 如图,△OCA ≌△OBD,点C 和点B,点
追问 你能说出它们的对应顶点、对应边和对应 角吗?
全等三角形的性质
问题5 全等三角形的对应边和对应角有何大小关 系?
A
全等三角形的性质:
全等三角形的对应边相等、 B
C
对应角相等.
D
E
F
全等三角形的性质
问题5 全等三角形的对应边和对应角有何大小关 系?
用几何语言表述:
A
∵ △ABC ≌△DEF,
∴ AB =DE,BC =EF,AC =DF B
B
M
N
C
课堂练习
练习3 如图,△ABC ≌△CDA,AB 与CD,BC 与
DA 是对应边,则下列结论错误的是( C ).
(A)∠ BAC =∠ DCA ;
数学 《全等三角形》 说课稿 PPT

3、说学法
• 通过接触身边环境中的数学信息,激发学生的学习兴趣,产 生自觉学习的内在动机,引导学生踏பைடு நூலகம்自主学习之路。 • 看听结合,形成表象。看教师演示,听教师讲解,形成表象。 • 手脑结合,自主探究,学生为主体,充分使用学具,动手操作 体会全等三角形。
4、教学流程
• • • • • •
情景导入 探求新知 小结提高 习题布置 板书设计 时间安排
(一)、教学目标:
• • • • 1、知道什么是全等形,全等三角形以及全等三角形对应的元素; 2、能用符号正确地表示两个三角形全等; 3、能熟练地找出两个全等三角形的对应顶点、对应边、对应角; 4、知道全等三角形的性质,并能用其解决简单的问题,要求学生会确 定全等三角形的对应元素及对全等三角形性质的理解;5、通过感受 全等三角形的对应美,培养学生热爱科学、勇于创新的精神和多方位 审视问题的能力与技巧。
人民教育出版社八年级上册第十一 章第一课时
《 全 等 三 角 形 》
• 说教材
• 说教法 • 说学法 • 教学流程
1、说教材
• 本节课是“全等三角形”的开篇,也是进一步学习其它图形的基 础之一。通过本章的学习,可以丰富和加深学生对已学图形的 认识,同时为学习其它图形知识打好基础。 • 本节教材在编排上意在通过全等图案引入新课教学,在新课教 学中又由直观演示图形的平移、翻折、旋转过渡,学生容易接 受。根据课程标准,确定本节课的目标为:
(二)、说教学重点、难点
• 重点:全等三角形的概念、性质 • 难点:找对应顶点、对应边和对应角
2、说教法
• 引导发现法 在教学过程中,有意创设诱人的知识情景,增加学生的好奇心、 求知欲,产生自觉学习的内在动机,不断提高学生的智慧,发 挥其潜力,促进学生的智能发展。 • 谈话法 在师生对话、问答的过程中,用谈话的方式引导学生积极思考、 探索,从而使学生在师生之间的交流、同学之间的交流中获得 知识。
全等三角形ppt课件

HL判定(直角三角形)
在直角三角形中,斜边和一条直 角边分别对应相等的两个三角形 全等。
常见误区及纠正
误区一
认为只要两个三角形有两个角相等,它们就 是全等的。
纠正
必须明确两角和它们的夹边或两角和一角的对 边分别对应相等才能判定全等。
误区二
忽视三角形的边长和角度的对应关系。
纠正
在判断三角形是否全等时,必须确保边长和角度的 对应关系正确。
误区三
错误使用SSS、SAS、ASA、AAS或HL判定方法。
纠正
熟练掌握并正确应用各种全等三角形的判定方法,注意 判定条件的准确性和完整性。
02
全等三角形证明方法
边角边定理及应用
边角边定理:如果两个三角形有两边和 夹角分别对应相等,则这两个三角形全 等。
在几何图形中,通过已知条件寻找全等 三角形,从而推导其他边的长度或角的 大小。
应用
在复杂图形中,通过寻找 角边角关系,简化问题并 求解。
用于证明两个三角形全等 。
直角三角形全等条件
示例:在Rt△ABC和Rt△DEF中, 如果∠C=∠F=90°,AC=DF, BC=EF,则Rt△ABC≌Rt△DEF。
HL定理:在直角三角形中,如果 斜边和一条直角边分别对应相等 ,则这两个直角三角形全等。
相似三角形定义:两个三角形
如果它们的对应角相等,那么
这两个三角形相似。
01
相似比:相似三角形的对应边
之间的比叫做相似比。
02
相似三角形的性质
03
对应角相等;
04
对应边成比例;
05
面积比等于相似比的平方。
06
相似三角形与全等三角形关系
联系
全等三角形是相似三角形的特例 ,即相似比为1:1的相似三角形。
全等三角形课件ppt

与三角函数的关系
三角函数是研究三角形边和角之间关系的数学工具。在全等 三角形中,可以利用三角函数来证明两个三角形全等。例如 ,在直角三角形中,可以利用勾股定理和三角函数来证明两 个直角三角形全等。
三角函数还可以用于计算三角形的角度、边长等几何量,这 些计算在证明两个三角形全等时也是非常有用的。
与四边形的联系
全等三角形的性质
全等三角形的对应边相等,对应角相 等。
全等三角形的周长、面积和角度和相 等。
全等三角形的分类
根据全等三角形的边长关系,可以分为SSS(三边全等)、SAS(两边和夹角全 等)、ASA(两角和夹边全等)和AAS(两角和非夹边全等)四种类型。
根据全等三角形的形状,可以分为直角三角形、等腰三角形、等边三角形等类型 。
详细描述
利用全等三角形的性质证明线段相等或 角相等。
综合练习题
详细描述
总结词:结合其他数学知识 ,考察学生综合运用全等三
角形的能力
01
02
03
将全等三角形与其他几何知 识结合,如平行线、角平分
线等。
在实际问题中应用全等三角 形的知识,如测量、构造等
。
04
05
结合其他数学知识,解决涉 及全等三角形的综合问题。
04
CHAPTER
练习题与解析
基础练习题
总结词:考察全等三角形 的基本性质和判定方法
详细描述
给出两个三角形,判断它 们是否全等。
根据给定的条件,判断能 否证明两个三角形全等。
进阶练习题
总结词:深化全等三角形的性质和判定 方法的应用
在复杂的图形中识别和构造全等三角形 。
利用全等三角形的判定方法证明两个三 角形全等。
《全等三角形》课件

当两个三角形的顶角和底边相等时,并且两条边有可比长,那么它们就是全等的。
全等三角形的基本性质
1
全等三角形的所有内角相等
在全等三角形中,所有角度都是相等的。
2
全等三角形的对应边相等
在全等三角形中,对应的边都是相等的。
3
全等三角形的对应高度相等
在全等三角形中,对应的高度(垂直于底边的线段)也是相等的。
全等三角形的应用
全等三角形的概念在几何学和实际生活中具有广泛的应用。 • 在建筑设计中,全等三角形帮助确定平面图中房屋的比例。 • 在地图制作中,全等三角形用于测量和标记距离和方向。 • 在工程中,全等三角形可用于测量物体和地形的高度和间距。
全等三角形的例题
例题1
已知两个三角形的三边分别为AB, AC和BC,DE, DF 和EF。如果AB = DE, AC = DF, BC = EF,则三角形ABC 全等于三角形DEF。
角角边(ASA)判定法
当两个三角形的两个角和一个边以及它们对应 的边相等时,它们就是全等的。
直角边(HL)判定法
当两个直角三角形的一条直角边和它们对应的 斜边相等时,它们就是全等的。
全等三角形的性质
等边三角形
全等三角形的特例,三条边都相等。
等腰三角形
全等三角形的另一个特例,两条边相等。
直角三角形
全等三角形可以是直角三角形。
多边形的全等
全等的概念也可以应用到多边形上。
全等三角形的判定条件
除了通过SSS、ASA、AAS和HL判定法,我们还可以通过侧角边(SAS)和顶角和底边(VERT)来判 定全等三角形。
1 SAS判定法
当两个三角形的一条边和两个非包含边的夹角以及它们对应的边相等时,它们就是全等 的。
全等三角形的基本性质
1
全等三角形的所有内角相等
在全等三角形中,所有角度都是相等的。
2
全等三角形的对应边相等
在全等三角形中,对应的边都是相等的。
3
全等三角形的对应高度相等
在全等三角形中,对应的高度(垂直于底边的线段)也是相等的。
全等三角形的应用
全等三角形的概念在几何学和实际生活中具有广泛的应用。 • 在建筑设计中,全等三角形帮助确定平面图中房屋的比例。 • 在地图制作中,全等三角形用于测量和标记距离和方向。 • 在工程中,全等三角形可用于测量物体和地形的高度和间距。
全等三角形的例题
例题1
已知两个三角形的三边分别为AB, AC和BC,DE, DF 和EF。如果AB = DE, AC = DF, BC = EF,则三角形ABC 全等于三角形DEF。
角角边(ASA)判定法
当两个三角形的两个角和一个边以及它们对应 的边相等时,它们就是全等的。
直角边(HL)判定法
当两个直角三角形的一条直角边和它们对应的 斜边相等时,它们就是全等的。
全等三角形的性质
等边三角形
全等三角形的特例,三条边都相等。
等腰三角形
全等三角形的另一个特例,两条边相等。
直角三角形
全等三角形可以是直角三角形。
多边形的全等
全等的概念也可以应用到多边形上。
全等三角形的判定条件
除了通过SSS、ASA、AAS和HL判定法,我们还可以通过侧角边(SAS)和顶角和底边(VERT)来判 定全等三角形。
1 SAS判定法
当两个三角形的一条边和两个非包含边的夹角以及它们对应的边相等时,它们就是全等 的。
全等三角形ppt课件

斜边直角边定理
总结词
斜边和一条直角边对应相等的两个直角三角形全等
详细描述
斜边直角边定理是全等三角形的基本定理之一,它表明如果两个直角三角形的斜边和一条直角边相等 ,则这两个直角三角形全等。这个定理可以用于证明两个直角三角形全等,也可以用于构造全等直角 三角形。
03
全等三角形的证明方法
利用全等三角形的性质和判定方法证明
两线垂直等。
在几何中,全等三角形可用于解 决角度、长度等问题,为许多几
何定理的证明提供了工具。
通过全等三角形,我们可以证明 两个平面图形是否全等,这对于 研究几何形状的性质和面积、体
积的计算非常重要。
在代数中的应用
全等三角形在代数中也有广泛的 应用,主要体现在因式分解、解
方程等方面。
利用全等三角形的性质,可以将 一个复杂的式子通过恒等变形转 化为一个更易于处理的式子,从
02
全等三角形的基本定理和 推论
边边边定理
01
总结词
三边对应相等的两个三角形全等
02
详细描述
边边边定理是全等三角形的基本定理之一,它表明如果两个三角形的 三条对应边相等,则这两个三角形全等。这个定理可以用于证明两个 三角形全等,也可以用于构造全等三角形。
边角边定理
总结词
两边和它们的夹角对应相等的两个三角形全等
全等三角形在三角函数的应用中,可以帮助我们理解如何用三角函数解决实际问题 ,如测量不可直接测量的角度或长度。
05
全等三角形的拓展知识
勾股定理的证明与应用
勾股定理的证明 欧几里得证法:利用相似三角形的性质证明勾股定理。 毕达哥拉斯证法:利用正方形的性质证明勾股定理。
勾股定理的证明与应用
《全等三角形》数学教学PPT课件(6篇)

加深理解
E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
E A
F
B
C
∆ABC ≌ ∆FDE
对应顶点 对应顶点 对应顶点 对应角 对应角 对应角 对应边 对应边 对应边
41
课堂测试 1.如果∆ABC≌ ∆ADC,AB=AD,∠B=70°, BC=3cm,那么∠D=___7_0,D°C=____3cm
D
课堂测试
2、若△AOC≌△BOD,对应边是 应角是 ;
小组讨论完成
解:∵ △ABD ≌ △EBC,∴AB=EB,BD=BC, ∵BD=ED+EB ∴DE=BD-EB=BC-AB=5-3=2cm.
三、巩固练习
基础练习(教材第三十二页练习1-2题)
四、课堂小结,请大家回顾一下:
这节课你学到了什么?还有哪些疑惑?学生充分讨论回答。
点评梳理:
(1)全等三角形的概念及表示方法; (2)全等三角形的性质及应用。
思考
将两个全等三角形重合在一起,
重合的顶点叫对应顶点
A
D
重合的边叫对应边
重合的角叫对应角
根据动画效果,你能说出
这两个全等三角形的对应顶点、
B
CE
F 对应边、对应角各是什么吗?
36
全等三角形表示
如果两个三角形全等,那么该如何表示吗?
A
D
右图中的∆ABC和∆DEF全等
记作: ∆ABC ≌ ∆DEF
五、课后练习
1、教材第33-34页,1-6题。
第十二章 全等三角形
12.1 全等三角形
人教版 数学(初中) (八年级 上)
Please Enter Your Detailed Text Here, The Content Should Be Concise And Clear, Concise And Concise Do Not Need Too Much Text
全等三角形ppt

全等三角形是几何 证明中的重要工具 。
两个三角形全等时 ,它们的对应边和 对应角都相等。
在代数中的应用
全等三角形可以用来证明代数 恒等式。
可以利用全等三角形的性质来 解方程。
全等三角形的证明方法在代数 中也有着广泛的应用。
在生活中的应用
1
全等三角形的证明方法在生活中的应用非常广 泛。
2
例如,在建筑、工程和设计中需要使用全等三 角形的证明方法。
证明方法
SSS(边边边定理)和AAA(角角角定理)。
THANK YOU.
3
全等三角形的证明方法也可以用于解决日常生 活中的问题。
05
全等三角形的拓展
黄金三角形
特点
两条腰的长度相等,两个底角分别为36度和36度。
证明方法
SSS(边边边定理)。
等腰直角三角形
特点
有一个角是直角,两条腰的长度相等。
证明方法
ASA(角边角定理)。
等边三角形
特点
三个角都相等,三条边都相等。
2023
全等三角形ppt
目录
• 全等三角形的定义和性质 • 全等三角形的证明方法 • 全等三角形的练习题 • 全等三角形的应用 • 全等三角形的拓展
01
全等三角形的定义和性质
定义
两个三角形全等是指它们能够完全重合,即三个内角相等且三条边相等。 全等三角形的对应边相等,对应角也相等。
性质
全等三角形的对应边上的高、中线、角平分线也分别相等。 全等三角形的周长、面积分别相等。
题目2
两个三角形全等,其中一个三角形三个角分别为30度、60度和90度,另一个三角形两个角相等,另一个角是多少度?
证明题
总结词
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教师资格证数学说课:全等三角形
尊敬的各位专家领导,大家好!
今天我说课的题目是人教版数学八年级上册第十章第1节《全等三角形》下面,我将从教材分析,教学方法与教材处理及教学过程等几个方面对本课的设计进行说明。
一。
教学地位和作用
全等三角形是《三角形》这一章的主线,在知识结构上,等腰三角形,直角三角形,线段的垂直平分线,角的平分线等内容都要通过证明两个三角形全等来加以解决;在能力培养上,无论是逻辑思维能力,推理论证能力,还是分析问题解决问题的能力,都可在全等三角形的教学中得以培养和提高。
因此,全等三角形的教学对全章乃至以后的学习都是至关重要的。
为此,我在设计这节课的时候,以学生为主体,让他们全面地参与到学习过程中来,有意识地培养学生的创新意识和实践能力,增强他们学习的能力,让他们充分的掌握该知识点,同时尽量扩充他们的知识范畴。
在教学中,采用的是"设疑——实验——发现——总结"的教学方法,并采用"变式练习"方法来提高学习效率。
二。
教学的目标和要求:
1。
知识目标:
(1)知道什么是全等三角形及全等三角形的对应元素;
(2)知道全等三角形的性质,能用符号正确地表示两个三角形全等;
(3)能熟练找出两个全等三角形的对应角,对应边。
2。
能力目标:
1。