高中数学苏教版必修精品教学案全集: 第一课时 向量的概念及表示

合集下载

高中数学新苏教版精品教案《苏教版高中数学必修4 2.1 向量的概念及表示》3

高中数学新苏教版精品教案《苏教版高中数学必修4 2.1 向量的概念及表示》3

向量的概念及表示高一数学备课组高冬芹一、课程标准通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。

二、教学要求向量的概念教学应从物理背景和几何背景入手,物理背景是力、速度、加速度等概念,几何背景是有向线段。

三、考试说明平面向量的概念 B 等级四、教学目标五、教学重点:六、教学难点:七、教学过程(一)问题情境:蜘蛛织了一张边长为20厘米的正六边形网,蜘蛛位于正六边形的中心,蚊子恰好被网在了点A处,请思考一下三个问题:1(二)学生活动:情境1:一尺之棰,日取其半,万世不竭问:“试写出取完x次后所剩下长度y与x的函数关系式?”(1)取4次后,剩下的长度为多少?(2)第几次取完后,剩下的长度为尺目标达成分析:对于(2)从学生熟悉的模型开始,列出方程10.1252x⎛⎫=⎪⎝⎭,学生用已有的知识是可以解出3x=,帮助学生寻找问题的本质:已知底数和幂值,求指数的值情境2:某种放射性物质不断变化为其他的物质,每经过1年,这种物质剩留的质量是原来的84%,若该物质最初的质量是1,则经过:x年,该物质剩余量关于时间的函数关系式为0.84xy=,问:经过多少年这种物质的剩余量为原来的一半?目标达成分析:学生容易列出方程()10.842x=,问题的本质同于情境1,区别于情境1的是无法求解,因此激发了学生的学习兴趣,顺其自然的引入了对数的概念(三)数学理论1定义:2目标达成分析:问题1:问题2:目标达成分析:3两个重要的对数:目标达成分析:(四)数学应用例1 例2目标达成分析: 例3目标达成分析: 探究活动1: 思考: 目标达成分析: 探究活动2: 思考: 目标达成分析:探究活动3:求下列各式的值:(1)43log 3= (2)50.5log (0.5)=(3)2lg10= (4)6lne =思考:你发现了什么?目标达成分析:对数恒等式:log n a a n = 探究活动4:求下列各式的值:(1)2log 32= (2)8log 0.28= (3)0.5log 320.5= (4)ln 2e = 思考:你发现了什么? 目标达成分析:对数恒等式:logaNa N =回顾反思:本节课先由引例出发,创设情境,激发学生对对数的兴趣;在讲授新课部分,通过结合多媒体教学以及一系列的课堂探究活动,加深学生对对数的认识;最后通过课堂练习来巩固学生对对数的掌握。

高中数学 第二章 第一课时 向量的概念及表示教案 苏教版必修4

高中数学 第二章 第一课时 向量的概念及表示教案 苏教版必修4

第一课时 向量的概念及表示教学目标:理解向量的概念,掌握向量的几何表示,了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.教学重点:向量概念、相等向量概念、向量几何表示.教学难点:向量概念的理解.教学过程:Ⅰ.课题导入在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量. 向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用. 而这一节课,我们将学习向量的有关概念.Ⅱ.讲授新课这一节,大家通过自学来熟悉相关内容,然后我们通过概念辨析例题来检验大家自学的效果.1.向量的概念:(我们把既有大小又有方向的量叫向量)2.向量的表示方法:①用有向线段表示;②用字母a 、b 等表示;③用有向线段的起点与终点字母:AB →.3.零向量、单位向量概念:①长度为0的向量叫零向量,记作0;②长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都是只限制大小,不确定方向.4.平行向量定义:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.说明:(1)综合①、②才是平行向量的完整定义;(2)向量a 、b 、c 平行,记作a ∥b ∥c .5.相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量a 与b 相等,记作a =b ;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无.........关.. 6.共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上.说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.[例1]判断下列命题是否正确,若不正确,请简述理由.①向量AB →与CD →是共线向量,则A 、B 、C 、D 四点必在一直线上;②单位向量都相等;③任一向量与它的相反向量不相等;④四边形ABCD 是平行四边形的充要条件是AB →=DC →;⑤模为0是一个向量方向不确定的充要条件;⑥共线的向量,若起点不同,则终点一定不同.分析:①不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量AB →、AC →在同一直线上.②不正确.单位向量模均相等且为1,但方向并不确定.③不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.④、⑤正确.⑥不正确.如图,AC →与BC →共线,虽起点不同,但其终点却相同.评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.[例2]下列命题正确的是 ( )A.a 与b 共线,b 与c 共线,则a 与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a 与b 不共线,则a 与b 都是非零向量D.有相同起点的两个非零向量不平行分析:由于零向量与任一向量都共线,所以A 不正确,由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D 不正确.对于C ,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a 与b 不都是非零向量,即a 与b 至少有一个是零向量,而由零向量与任一向量都共线,可有a 与b 共线,不符合已知条件,所以有a 与b 都是非零向量,所以应选C.评述:对于有关向量基本概念的考查,可以从概念的特征入手,也可以从反面进行考虑,要启发学生注意这两方面的结合.几点说明:1.向量有三个要素:起点、方向、长度.2.向量不能比较大小,但向量的长度(或模)可以比较大小3.实数与向量不能相加减,但实数与向量可以相乘.4.向量a 与实数a .5.零向量0与实数06.注意下列写法是错误的:①a -a =0; ②AB →+BC →+CA →=0;③a +0=a ; ④|a |-|a |=0.7.平行向量与相等向量 方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件. 为巩固大家对向量有关概念的理解,我们进行下面的课堂训练.Ⅲ.课堂练习课本P 59练习1,2,3,4.Ⅳ.课时小结通过本节学习,要求大家能理解向量的概念,掌握向量的几何表示,了解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.Ⅴ.课后作业课本P 59习题 1,2,3,4。

苏教版数学高一必修4教案 2.1向量的概念及表示

苏教版数学高一必修4教案 2.1向量的概念及表示

2.1向量的概念及表示●三维目标1.知识与技能(1)理解、掌握向量的概念.(2)掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等的概念.2.过程与方法在理解向量等有关概念的基础上,充分联系实际,培养学生解决生活实际问题的能力.3.情感、态度与价值观(1)通过对向量的学习,使学生对现实生活中的向量和数量有一个清楚的认识,培养学生对现实生活中的真善美的识别能力.(2)对学生进行辩证思维的教育.●重点难点重点:向量的概念、相等向量的概念、向量的几何表示.难点:向量的概念和共线向量的概念.●教学建议1.关于向量概念的教学教学时,建议教师从向量的物理背景出发,借助物理学中的位移、速度、力等矢量引出向量的概念,并指出向量具有“数”和“形”的双重特征.2.关于零向量、单位向量、相等向量和共线向量的教学教学时,建议教师类比数及向量的概念给出零向量、单位向量的概念;结合向量的两要素给出相等向量的定义;强调指出共线向量未必是在同一直线上的向量.由于零向量、单位向量、相等向量和共线向量是研究向量的基础,为增加学生对上述概念的感性认识,学习时建议教师对该知识点进行适当训练.●教学流程创设问题情境,引入向量的概念.⇒引导学生结合物理学中的位移、速度、力等矢量理解向量具有“数”和“形”的双重特征.⇒通过类比数与向量的概念,引导学生理解零向量、单位向量、相等向量、共线向量等概念.⇒通过例1及其变式训练,使学生掌握利用向量有关概念判断有关命题真假的方法.⇒通过例2及其变式训练,使学生掌握利用有向线段表示向量的方法,并注意向量模的大小.⇒通过例3及其变式训练,使学生掌握写出图形中的相等共线向量的方法.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.课标解读1.了解向量的实际背景,理解平面向量的概念.2.理解零向量、单位向量、相等向量、共线(平行)向量、相反向量的含义.(重点、难点)3.理解向量的几何表示.向量及其有关概念(1)火车向正南方向行驶了50 km,行驶速度的大小为120 km/h,方向是正南.(2)起重机吊装物体时,物体既受到竖直向下的重力作用,同时又受到竖直向上的起重机拉力的作用.1.上述两个实例中涉及的物理量的特点是什么?【提示】它们的大小和方向都是确定的.2.上述实例中的速度和力,如何表示?【提示】可以用有向线段表示,也可以用字母表示.1.向量的概念向量:既有大小,又有方向的量叫向量.2.向量的表示(1)用有向线段表示向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.以A 为起点、B 为终点的向量记作AB →.向量AB →的大小称为向量的长度(或称为模),记作|AB →|. (2)用字母表示向量通常在印刷时,用黑体小写字母a ,b ,c …表示向量,在手写时用带箭头的小写字母a →, b →, c →…表示向量.也可用表示向量的有向线段的起点和终点字母表示,如AB →,CD →. 3.与向量有关的概念(1)零向量:长度为0的向量叫做零向量,记作0.(2)单位向量:长度等于1个单位长度的向量叫做单位向量. (3)相等向量:长度相等且方向相同的向量叫做相等向量. (4)相反向量:长度相等且方向相反的向量叫相反向量.(5)平行向量(共线向量):方向相同或相反的非零向量叫做平行向量,也叫共线向量.规定零向量与任一向量平行.向量的有关概念(1)单位向量一定相等; (2)若a =b ,b =c ,则a =c ;(3)若AB →=CD →,则点A 与点C 重合,点B 与点D 重合; (4)若向量a 与b 同向,且|a |>|b |,则a >b ; (5)若向量a =b ,则a ∥b ; (6)若a ∥b ,b ∥c ,则a ∥c .【思路探究】 从概念的理解出发,结合具体实例进行判断.【自主解答】 (1)不正确.向量有大小和方向两个要素,单位向量的模一定是1,但方向不一定相同,所以单位向量不一定相等.(2)正确.∵a =b ,∴a ,b 的长度相等且方向相同;又∵b =c ,∴b ,c 的长度相等且方向相同,∴a ,c 的长度相等且方向相同,故a =c .(3)不正确.这是因为AB →=CD →时,应有|AB →|=|CD →|及由A 到B 与由C 到D 的方向相同,但不一定有A 与C 重合,B 与D 重合.(4)不正确.“大于”、“小于”对于向量来说是没有意义的.(5)正确.相等向量一定是共线向量,但共线向量不一定相等.(6)不正确.对于非零向量命题正确,但当b =0时,满足a ∥b ,b ∥c ,但a 与c 不一定共线.1.在判断与向量有关的命题时,既要立足向量的数(即模的大小),又要考虑其形(即方向性).2.涉及共线向量或平行向量的问题,一定要明确所给向量是否为非零向量. 3.对于判断命题的正误,应该熟记有关概念,理解各命题,逐一进行判断,对于错误命题,只要举一反例即可.下列说法:①方向相同或相反的向量是平行向量;②零向量的长度是0;③长度相等的向量叫相等向量;④共线向量是在一条直线上的向量.其中正确的命题是________.(填序号)【解析】 方向相同或相反的非零向量才是平行向量,所以①不正确;长度相等,方向相同的向量才叫相等向量,所以③不正确;共线向量也叫平行向量,它们不一定在一条直线上,也可能在平行直线上,所以④不正确;零向量的长度为0,所以②正确.【答案】 ②向量的表示50°行驶了200千米到达点C ,最后又改变方向,向东行驶了100千米到达点D.(1)作出向量AB →,BC →,CD →; (2)求|AD →|.【思路探究】 解答本题应首先确定指向标,然后再根据行驶方向确定有关向量,进而求解.【自主解答】 (1)如图.(2) 由题意,易知AB →与CD →方向相反,故AB →与CD →共线,即AB ∥CD. 又∵|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD. ∴四边形ABCD 为平行四边形.∴|AD →|=|BC →|=200(千米).用有向线段表示向量时,先确定起点,再确定方向,最后依据向量模的大小确定向量的终点.必要时,需依据直角三角形知识求出向量的方向或长度(模),选择合适的比例关系作出向量.在如图2-1-1的方格纸中,画出下列向量.图2-1-1(1)|OA →|=3,点A 在点O 正西方向; (2)|OB →|=32,点B 在点O 北偏西45°方向.【解】 取每个方格的单位长为1,依题意,结合向量的表示可知,相应的向量如图所示:相等向量与共线向量图2-1-2如图2-1-2所示,在△ABC 中,三边长均不相等,D ,E ,F 分别是BC ,AC ,AB 的中点,在以A ,B ,C ,D ,E ,F 这6点中任意一点为起点,另一点为终点的所有向量中,写出:(1)与EF →共线的向量; (2)与EF →长度相等的向量; (3)与EF →相等的向量.【思路探究】 (1)与EF →共线的向量即与之方向相同或相反的向量;(2)与EF →长度相等即表示向量的线段与EF 长度相等;(3)与EF →相等的向量即与之共线且长度相等的向量.【自主解答】 (1)∵E ,F 分别是AC ,AB 的中点,∴EF ∥BC , ∴与EF →共线的向量为FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)∵D ,E ,F 分别是BC ,AC ,AB 的中点,∴BD =DC =12BC ,EF =12BC.∵AB ,BC ,AC 均不相等,∴与EF →长度相等的向量为FE →,BD →,DB →,DC →,CD →. (3)与EF →相等的向量为DB →,CD →.1.寻找相等向量:先找与表示已知向量的有向线段长度相等的向量,再确定哪些是同向共线.2.寻找共线向量:先找与表示已知向量的有向线段平行或共线的线段,再构造同向与反向的向量,注意不要漏掉以表示已知向量的有向线段的终点为起点,起点为终点的向量.图2-1-3如图2-1-3,D ,E ,F 分别是△ABC 各边上的中点,四边形BCMF 是平行四边形,请分别写出:(1)与CM →模相等且共线的向量; (2)与ED →相等的向量; (3)与BF →相反的向量.【解】 (1)DE →,ED →,BF →,FB →,FA →,AF →,MC →. (2)FB →,AF →,MC →. (3)FB →,AF →,ED →,MC →.对向量的有关概念理解不透彻致误判断下列说法是否正确: (1)向量就是有向线段; (2)AB →=BA →;(3)若向量AB →与向量CD →平行,则线段AB 与CD 平行; (4)若|a |=|b |,则a =±b ;(5)若AB →=DC →,则ABCD 是平行四边形. 【错解】 以上说法都正确.【错因分析】 (1)向量常用一条有向线段来表示,有向线段的长度表示向量的大小,箭头所指的方向表示向量的方向.因此,有向线段是向量的一种表示方法,不能说向量就是有向线段.(2)AB →与BA →的长度相等,但方向相反,故当AB →是非零向量时,AB →与BA →不相等. (3)方向相同或相反的非零向量叫做平行向量,故若AB →与CD →平行,则线段AB 与CD 可能平行,也可能共线.(4)由|a |=|b |,仅能说明两向量的模相等,但方向却不能确定,故(4)不正确.而(5)中,A ,B ,C ,D 可能落在同一条直线上,故(5)不正确.【防范措施】 首先,要清楚向量的两要素:大小和方向;其次,要对共线向量、单位向量、相等向量、零向量有深入的理解,考虑问题要全面,注意零向量的特殊性.【正解】 以上说法都不正确.1.如果有向线段AB 表示一个向量,通常我们就说向量AB →,但有向线段只是向量的表示,并不是说向量就是有向线段.2.共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,当然向量所在的直线可以平行,也可以重合,其中“共线”的含义不同于平面几何中“共线”的含义.1.下列说法正确的是________. ①若|a |=0,则a =0; ②若|a |=|b |,则a =b ;③向量AB →与向量BA →是相反向量; ④若a ∥b ,则a =b .【解析】 ①不正确,若|a |=0,则a =0;由于相等向量的长度相等且方向相同,故②④不正确;③显然正确.【答案】 ③图2-1-42.如图2-1-4所示,E ,F 分别为△ABC 的边AB ,AC 的中点,则与向量EF →共线的向量有________(将图中适合条件的向量全写出来).【解析】 ∵E ,F 分别为AB ,AC 的中点,∴EF ∥BC , ∴适合条件的向量为FE →,BC →,CB →. 【答案】 FE →,BC →,CB →3.若四边形ABCD 是矩形,则下列命题中不正确的是________. ①AB →与CD →共线;②AC →与BD →相等;③AD →与CB →是相反向量;④AB →与CD →的模相等.【解析】 ∵四边形ABCD 是矩形,∴AB ∥CD ,AB =CD ,故①,④正确; AC =BD ,但AC →与BD →的方向不同,故②不正确; AD =CB 且AD ∥CB ,AD →与CB →的方向相反,故③正确. 【答案】 ②4.在直角坐标系中,画出下列向量,使它们的起点都是原点O. (1)|a |=2,a 的方向与x 轴正方向成60°,与y 轴正方向成30°;(2)|a |=4,a 的方向与x 轴正方向成30°,与y 轴正方向成120°. 【解】 所求向量及其向量的终点坐标如图所示:一、填空题1.若a 为任一非零向量,b 为单位向量,下列各式:①|a |>|b |;②a ∥b ;③|a |>0;④|b |=±1;⑤a |a |=b .其中正确的是________.(填序号)【解析】 |a |不一定大于1,|b |=1,∴①④不正确;a 和b 不一定平行.a|a |是与a 方向相同的单位向量,所以②⑤不正确;a 为非零向量,显然有|a |>0. 只有③正确. 【答案】 ③2.若a =b ,且|a |=0,则b =________. 【解析】 ∵a =b ,且|a |=0,∴a =b =0. 【答案】 0图2-1-53.如图2-1-5所示,四边形ABCE 为等腰梯形,D 为CE 的中点,且EC =2AB ,则与AB →相等的向量有________.【解析】 易知四边形ABDE 为平行四边形,则AB →=ED →, 又∵D 是CE 的中点,则ED →=DC →. 【答案】 DC →,ED →4.某人向正东方向行进100米后,再向正南方向行进1003米,则此人位移的方向是________.【解析】 如图所示,此人从点A 出发,经点B ,到达点C ,则tan ∠BAC =1003100=3,∴∠BAC =60°,即位移的方向是东偏南60°,即南偏东30°.【答案】 南偏东30°5.给出以下4个条件:①a =b ;②|a |=|b |;③a 与b 的方向相反;④|a |=0或|b |=0,其中能使a 与b 共线成立的是________.【解析】 两向量共线只需两向量方向相同或相反.①a =b ,两向量方向相同;②|a |=|b |两向量方向不确定;④|a |=0或|b |=0即为a =0或b =0 ,因为零向量与任一向量平行,所以④成立.综上所述,答案应为①③④. 【答案】 ①③④图2-1-66.如图2-1-6,已知正方形ABCD 边长为2,O 为其中心,则|OA →|=________. 【解析】 正方形的对角线长为22, ∴|OA →|= 2. 【答案】27.四边形ABCD 满足AD →=BC →且|AC →|=|BD →|,则四边形ABCD 的形状是________. 【解析】 由四边形ABCD 满足AD →=BC →可知,四边形ABCD 为平行四边形. 又|AC →|=|BD →|,即平行四边形ABCD 对角线相等,从而可知四边形ABCD 为矩形. 【答案】 矩形8.设O 是正方形ABCD 的中心,则①AO →=OC →;②AO →∥AC →;③AB →与CD →共线;④AO →=BO →.其中,所有表示正确的序号为________.【解析】 如图,正方形的对角线互相平分,∴AO →=OC →,①正确;AO →与AC →的方向相同,所以AO →∥AC →,②正确;AB →与CD →的方向相反,所以AB →与CD →共线,③正确;尽管|AO →|=|BO →|,然而AO →与BO →的方向不相同,所以AO →≠BO →,④不正确.【答案】 ①②③二、解答题图2-1-79.设在平面上给定了一个四边形ABCD ,如图2-1-7所示,点K ,L ,M ,N 分别是边AB ,BC ,CD ,DA 的中点,求证:KL →=NM →.【证明】 ∵N ,M 分别是AD ,DC 的中点,则NM →=12AC →,同理KL →=12AC →,故KL →=NM →.图2-1-810.如图2-1-8所示菱形ABCD 中,对角线AC ,BD 相交于O 点,∠DAB =60°,分别以A ,B ,C ,D ,O 中的不同两点为起点与终点的向量中,(1)写出与DA →平行的向量;(2)写出与DA →模相等的向量.【解】 由题意可知,(1)与DA →平行的向量有:AD →,BC →,CB →;(2)与DA →模相等的向量有:AD →,BC →,CB →,AB →,BA →,DC →,CD →,BD →,DB →.11.一架飞机从A 点向西北飞行200 km 到达B 点,再从B 点向东飞行100 2 km 到达C 点,最后从C 点向南偏东60°飞行50 2 km 到达D 点,求飞机从D 点飞回A 点的位移.【解】 如图所示,由|AB →|=200 km ,|BC →|=100 2 km ,知C 在A 的正北100 2 km 处.又由|CD →|=50 2 km ,∠ACD =60°,知∠CDA =90°,所以∠DAC =30°,所以|DA →|=50 6 km.故DA →的方向为南偏西30°,长度为50 6 km.如图,已知四边形ABCD 中,M ,N 分别是BC ,AD 的中点,又AB →=DC →.求证:CN綊MA.【思路探究】 要证CN ∥MA 且CN =MA ,只需证四边形AMCN 是平行四边形,而四边形AMCN 是平行四边形,可以通过AN →=MC →得证.【自主解答】 由条件AB →=DC →可知AB =DC 且AB ∥DC ,从而四边形ABCD 为平行四边形,从而AD →=BC →.又M ,N 分别是BC ,AD 的中点,于是AN →=MC →,所以AN =MC 且AN ∥MC ,所以四边形AMCN 是平行四边形,从而CN =MA 且CN ∥MA ,即CN 綊MA.1.若AB →=DC →,且四点A ,B ,C ,D 不共线,则四边形ABCD 为平行四边形,反之,若四边形ABCD 为平行四边形,则AB →=DC →.2.利用向量相等或共线证明平行、相等问题:(1)证明线段相等,只需证明相应向量的长度(模)相等.(2)证明线段平行,先证明相应的向量共线,再说明线段不共线.在四边形ABCD 中,AB →=DC →,N 、M 分别是AD ,BC 上的点,且CN →=MA →,证明:四边形DNBM 是平行四边形.【证明】 ∵AB →=DC →,∴四边形ABCD 为平行四边形,∴AD ,BC 平行且相等.又∵CN →=MA →,∴四边形CNAM 为平行四边形,∴AN ,MC 平行且相等,∴DN ,MB 平行且相等,∴四边形DNBM 是平行四边形.。

2015-2016学年高一苏教版数学必修4教案第2章第1课时《向量的概念及表示》

2015-2016学年高一苏教版数学必修4教案第2章第1课时《向量的概念及表示》

第1课时向量的概念及表示教学过程一、问题情境1.情境:湖面上有三个景点O,A,B(如图1),一游艇将游客从景点O送至景点A,半小时后,游艇再将游客送至景点B,从景点O到景点A有一个位移,从景点A到景点B也有一个位移.(图1)2.问题:(1)位移和距离这两个量有什么不同?(2)我们知道物理中的力、速度、位移等都是矢量,不同于路程、质量等,它们具有什么样的共同特征?你能举出几个具有以上特征的量吗?年龄、身高、体重、长度等具有这些特征吗?二、数学建构(一)生成概念引导学生思考、讨论上面的问题,从而引出以下概念.(1)定义:既有大小又有方向的量叫向量,如位移、力、速度、加速度等.(2)向量的表示方法1°几何表示法:有向线段——具有一定方向的线段,如;2°字母表示法:如a.(3)模的概念:向量的大小称为向量的模,记作||,模是可以比较大小的.(4)两个特殊的向量1°零向量:长度(模)为0的向量,记作0.0的方向是任意的.2°单位向量:长度(模)为1个单位长度的向量叫做单位向量.引导学生思考下面的问题:观察图2,在中心为O的正六边形ABCDEF中,(图2)向量与向量,有什么关系?向量与向量有什么关系?向量与向量有什么关系?向量,,,,有什么关系?(5)平行向量:方向相同或相反的非零..向量叫做平行向量.向量a,b平行,记作a∥b.规定:0与任一向量平行.(6)相等向量:长度相等且方向相同的向量叫做相等向量.向量a,b相等,记作a=b.规定:0=0.(7)相反向量:长度相等且方向相反的向量叫做相反向量.(8)共线向量:任一组平行向量都可移到同一条直线上,所以平行向量也叫共线向量.如图3,=a,=b,=c,且a∥b∥c,则向量a,b,c可以平移到一条直线上.(图3)(二)理解概念(1)数量与向量的区别:数量只有大小,可以比较大小;向量既有方向又有大小,不能比较大小(强调).(2)0与0的区别:0是向量,是有方向的(虽然方向是任意的);0是数量,没有方向.(3)任意两个相等的非零向量都可用同一条有向线段表示,与起点无关.(三)巩固概念桌面上,质量相同的两个物体A和B,它们所受的重力是否相等?它们所受的重力对应的向量是否相等?解因为它们所受的重力的作用点不同,所以它们所受的重力不相等.因为它们所受的重力对应的向量大小相等,方向相同,所以它们所受的重力对应的向量相等.这说明数学中研究的向量是自由向量,只有两个要素:大小和方向.三、数学运用【例1】下列命题中正确的是(填序号).①向量a与b共线,b与c共线,则a与c也共线;②任意两个相等的非零向量的始点与终点是一平行四边形的四顶点;③向量a与b不共线,则a与b都是非零向量;④有相同起点的两个非零向量不平行.[3](见学生用书P35) [规范板书]解对于①,考虑到b可能是零向量,所以①错;对于②,考虑到两个向量可能在同一条直线上,所以②错;对于④,向量平行不同于直线平行,所以④错.显然③正确,故填③.[题后反思]向量平行不同于直线平行:若两直线重合,则它们不平行;若两向量在一条直线上,则它们必平行,共线向量即为平行向量.【例2】(教材第60页例1)已知O为正六边形ABCDEF的中心,在下图所标出的向量中:(例2)(1)试找出与共线的向量;(2)确定与相等的向量;(3)与相等吗?[4](见学生用书P36)[处理建议]在学生充分了解正六边形的几何性质的基础上,让其自主解题;再充分利用图形,多问几个问题,全面覆盖本节课的内容.[规范板书]解(1)与共线的向量有和.(2)与长度相等且方向相同,故=.(3)虽然∥,且||=||,但它们方向相反,故这两个向量并不相等.变式1在图中标出的向量中,与向量模相等的向量有多少个?[规范板书]解3个.[题后反思]向量相等要看两个要素(大小,方向),若有一个要素不同,则两向量不等.向量共线不同于几个点共线,也不同于几个线段共线.变式2如图,在以1cm×3cm方格纸中的格点为起点和终点的所有向量中,请写出以A为起点的不同向量,并求其大小.[5](变式2)[处理建议]写出向量的关键是找出起点和终点,而求其大小就是求向量的模,也即求起点、终点两点间的距离.[规范板书]解由图可知,以A为起点的向量有,,,,,,,且||=1,||=2,||=3,||=,||=,||=,||=1.[题后反思]在求向量模的过程中,可借助勾股定理求解.(例3)【例3】如图,在四边形ABCD中,=,N,M分别是AD,BC上的点,且=,求证:四边形DNBM是平行四边形.[6](见学生用书P36) [处理建议]由=可得到四边形ABCD为平行四边形,则AD BC.又由=可得到四边形CNAM为平行四边形,则AN CM,可得DN MB,从而可证明四边形DNBM为平行四边形.[规范板书]证明∵=,∴AB DC,∴四边形ABCD为平行四边形,∴AD BC.又∵=,∴CN MA,∴四边形CNAM为平行四边形,∴AN CM,∴DN MB,∴四边形DNBM为平行四边形.[题后反思]向量相等包括两方面的含义:长度相等和方向相同(即平行).(例4)*【例4】如图,已知半径为1的圆O上有8个等分点A,B,C,D,E,F,G,H,以图中标出的9个点为起点和终点作向量,那么(1)有多少个单位向量?(2)有多少个模为的向量?(3)与平行的向量有哪些?[7][规范板书]解(1)共有16个单位向量.(2)圆周上,只隔一个点的两点所连的向量的模为,共有2×8=16个.(3)与平行的向量有,,,,.[题后反思]相反向量与原向量平行,且长度相等.向量平行(共线)只要关注:方向相同或相反,不要忘了方向相反的向量.四、课堂练习1.有下列命题:①向量的模是一个正实数;②两个相等向量必是两个平行向量;③坐标平面上的x轴和y轴都是向量;④温度有零上温度和零下温度,所以温度是向量.其中真命题的个数是1.2.设点O为正方形ABCD的中心,在以正方形的顶点及点O为起点或终点的向量中,分别与,相等的向量是,.3.某人从A点出发向东走了5m到达B点,然后改变方向往东北方向走了10错误!未找到引用源。

高中数学第二章平面向量第1课时2.1向量的概念及表示教案苏教版必修4

高中数学第二章平面向量第1课时2.1向量的概念及表示教案苏教版必修4

第1课时 §2.1 向量的概念及表示【教学目标】一、知识与技能1.理解向量的概念,掌握向量的二要素(长度、方向),能正确地表示向量;2.注意向量的特点:可以平行移动(长度、方向确定,起点不确定);3.理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量等概念。

二、过程与方法(1)从对不同问题的思考中感受什么是向量。

(2)通过师生互动、交流与学习,培养学生探求新知识的学习品质.三、情感、态度与价值观(1)通过向量包含大小和方向,概念的学习感知数学美。

(2)向量的方向包含正反两方面,正反关系的对照培养学生辨证唯物主义思维【教学重点难点】:1.向量、相等向量、共线向量等概念;2.向量的几何表示【教学过程】一、问题情境:问题1、湖面上有3个景点O ,A ,B ,如图所示.一游艇将游客从景点O 送至景点A ,半小时后,游艇再将游客送至景点B ,从景点O 到景点A 有一个位移,从景点A 到景点B 也有一个位移.位移与距离这两个量有什么不同?问题2、下列物理量中,那些量分别与位移和距离这两个量类似:(1)物体在重力作用下发生位移,重力所做的功;(2)物体所受重力;(3)物体的质量为a 千克;(4)1月1日的4级偏南风的风速。

O AB问题3、上述的物理量中有什么区别吗?二、新课讲解:(一)概念辨析:(1)向量的定义:(2)向量的表示:(3)向量的大小及表示(4)零向量:(5)单位向量:(二)向量的关系:AB CD AB DC有什么关系?问题4:在平行四边形ABCD中,向量与,与Array(1)平行向量(2)相等向量(3)相反向量说明:(1)规定:零向量与任一向量平行,记作;(2)零向量与零向量相等,记作;(3)任意二个非零相等向量可用同一条有向线段表示,与有向线段的起点无关。

问题5:1.向量能否平移?2. 要确定一个向量必须确定什么?要确定一个有向线段必须确定什么?两者有何区别?二、例题分析:例1、已知O 为正六边形ABCDEF 的中心,如图,所标出的向量中:(1)试找出与FE 共线的向量;(2)确定与FE 相等的向量;(3)OA 与BC 向量相等么?例2、判断:(1)平行向量是否一定方向相同?(2)不相等的向量是否一定不平行?(3)与零向量相等的向量必定是什么向量?0//a 00(4)与任意向量都平行的向量是什么向量?(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(6)两个非零向量相等的当且仅当什么?(7)共线向量一定在同一直线上吗?例3、如图,在4×5的方格纸中有一个向量AB ,分别以图中的格点为起点和终点作向量,其中与AB 相等的向量有多少个?与AB 长度相等的共线向量有多少个?(AB 除外)课时小结:(1) 向量是既有大小又有方向的量,向量有两个要素:方向和长度,称为自由向量;有向线段具有三个要素:起点,方向和长度;(2) 数量(标量)与向量的区别与联系:向量不同于数量。

苏教版数学高一苏教版必修4教学设计 2.1向量的概念及表示

苏教版数学高一苏教版必修4教学设计 2.1向量的概念及表示

教学设计2.1向量的概念及表示整体设计教学分析1.本节是本章的入门课,概念较多,但难度不大.学生可根据原有的位移、力等物理概念来学习向量的概念,结合图形、实物区分平行向量、相等向量、共线向量等概念.由于向量来源于物理,并且兼具“数”和“形”的特点,所以它在物理和几何中具有广泛的应用,可通过几个具体的例子说明它的应用.位移是物理中的基本量之一,也是几何研究的重要对象.几何中常用点表示位置,研究如何由一点的位置确定另外一点的位置.位移简明地表示了点的位置之间的相对关系,它是向量的重要的物理模型.力是常见的物理量.重力、浮力、弹力等都是既有大小又有方向的量.物理中还有其他力,让学生举出物理学中力的其他一些实例,目的是要建立物理课中学过的位移、力及矢量等概念与向量之间的联系,以此更加自然地引入向量概念,并建立学习向量的认知基础.2.在类比数量的抽象过程引出向量的概念后,为了使学生更好地理解向量概念,可采用与数量概念比较的方法,引导学生认识年龄、身高、长度、面积、体积、质量等量是“只有大小,没有方向的量”,同时给出“时间、路程、功是向量吗?速度、加速度是向量吗?”的思考题.通过这样的比较,可以使学生在区分相似概念的过程中更深刻地把握向量概念.实数与数轴上的点是一一对应的,数量常常用数轴上的一个点表示.教科书通过类比实数在数轴上的表示,给出了向量的几何表示——用有向线段表示向量.用有向线段表示向量,赋予了向量一定的几何意义.有向线段使向量的“方向”得到了表示,那么,向量的大小又该如何表示呢?一个自然的想法是用有向线段的长度来表示,从而引出向量的模、零向量及单位向量等概念,为学习向量作了很好的铺垫.3.数学中,引进一个新的量后,首先要考虑的是如何规定它的“相等”,这是讨论这个量的基础.如何规定“相等向量”呢?由于向量涉及大小和方向,因此把“长度相等且方向相同的向量”规定为相等向量是非常自然的.由向量相等的定义可以知道,对于一个向量,只要不改变它的方向和大小,就可以任意平行移动.因此,用有向线段表示向量时,可以任意选取有向线段的起点,这为用向量处理几何问题带来方便,并使平面上的向量与向量的坐标得以一一对应.教学时可结合例题、习题说明这种思想.4.共线向量和平行向量是研究向量的基础,由此可以将一组平行向量平移(不改变大小和方向)到一条直线上,这给问题的研究带来方便.教学中,要使学生体会两个共线向量并不一定要在一条直线上,只要两个向量平行就是共线向量.当然,在同一直线上的向量也是平行向量.要避免向量的平行、共线与平面几何中直线、线段的平行和共线相混淆,教学中可以通过对具体例子的辨析来正确掌握概念.三维目标1.通过实例,利用平面向量的实际背景以及研究平面向量的必要性,理解平面向量的概念和确定平面向量的两个要素,搞清数量与向量的区别.2.理解自由向量、相等向量、相反向量、平行向量等概念,并能判断向量之间的关系,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.3.在教学过程中,应充分根据平面向量的两个要素加以研究向量的关系,揭示向量可以平移这一特性.4.通过本节学习,培养学生从数学的角度思考生活中实际问题的习惯.加强数学的应用意识,切实做到学以致用.用联系、发展的观点观察世界.重点难点教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.教具准备实物投影仪,多媒体课件.课时安排1课时教学过程导入新课思路1.如图1,图1在同一时刻,老鼠由A 向西北方向的C 处逃窜,猫在B 处向正东方向的D 处追去,猫能否追到老鼠呢?学生马上得出结论:追不上,猫的速度再快也没用,因为方向错了.教师适时设问:如何从数学的角度来揭示这个问题的本质?由此展开新课.思路2.两列火车先后从同一站台沿相反方向开出,各走了相同的路程,怎样用数学式子表示这两列火车的位移?从中国象棋中规定“马”走日,象走“田”,让学生在图上画出马、象走过的路线引入新课也是一个不错的选择.推进新课新知探究1.向量既有大小又有方向的量叫做向量.向量的大小叫做向量的长度(或称模).2.向量的表示方法(1)字母表示法:如a 、b 、AB →等.(2)几何表示法:用一条有向线段表示向量.3.零向量长度为零的向量,记为0,其方向是任意的.4.单位向量模为1个单位长度的向量.5.平行向量方向相同或方向相反的非零向量,也叫做共线向量.规定:0与任一非零向量平行.a 与b 平行,记作a ∥b .6.相等向量长度相等且方向相同的向量,记作a =b .7.相反向量长度相等且方向相反的向量.在物理课中,我们学过力的概念.请回顾一下力的三要素是什么?还有哪些量和力具有同样特征呢?这些量的共同特征是什么?怎样利用你所学的数学中的知识抽象出这些具有共同特征的量呢?教师指导学生阅读教材,思考讨论并解决上述问题,学生讨论列举与位移一样的一些量.物体受到的重力是竖直向下的,物体的质量越大,它受到的重力越大;物体在液体中受到的浮力是竖直向上的,物体浸在液体中的体积越大它受到的浮力越大;被拉长的弹簧的弹力是沿着反拉方向的,被压缩的弹簧的弹力是沿着反压方向的,并且在弹性限度内,弹簧拉长或压缩的长度越大,弹力越大;速度与加速度都是既有大小,又有方向的量;物理中的动量与矢量都有方向,且有大小;物理学中存在着许多既有大小,又有方向的量.教师引导学生观察思考这些量的共同特征,我们能否在数学学科中对这些量加以抽象,形成一种新的量?至此时机成熟,引入向量,并把那些只有大小,没有方向的量,如年龄、身高、长度、面积、体积、质量等称为数量,物理学上称为标量.显然数量和向量的区别就在于方向问题.教师再次指导学生阅读教材,通过阅读教材思考讨论向量的表示方法、向量的长度、零向量,单位向量、平行向量、相等向量、共线向量等概念.特别是有向线段,是学习向量的关键.但不能说“向量就是有向线段,有向线段就是向量”,有向线段只是向量的一种几何表示,二者有本质的区别.向量只由方向和大小决定,而与向量的起点的位置无关,但有向线段不仅与方向、长度有关,也与起点的位置有关.如图2,图2在线段AB 的两个端点中,规定一个顺序,假设A 为起点、B 为终点,我们就说线段AB 具有方向,具有方向的线段叫做有向线段,通常在有向线段的终点处画上箭头表示它的方向.以A 为起点、B 为终点的有向线段记作AB →,起点要写在终点的前面.已知AB →,线段AB 的长度也叫做有向线段AB →的长度,记作|AB →|.有向线段包含三个要素:起点、方向、长度.知道了有向线段的起点、方向和长度,它的终点就惟一确定了.用有向线段表示向量的方法是:①起点是A ,终点是B 的有向线段,对应的向量记作:AB →.这里要提醒学生注意AB →的方向是由点A 指向点B ,点A 是向量的起点.②用字母a ,b ,c ,…表示.(一定要让学生规范书写:印刷用黑体a ,书写用 a →)③向量AB →(或a )的大小,就是向量AB →(或a )的长度(或称模),记作|AB →|(或|a |).教师要注意引导学生将数量与向量的模进行比较,数量有大小而没有方向,其大小有正、负和0之分,可进行运算,并可比较大小;向量的模是正数或0,也可以比较大小.由于方向不能比较大小,所以像a >b 就没有意义,而|a |>|b |有意义.注意:手写体上面的箭头一定不能漏写.对于有向线段:具有方向的线段就叫做有向线段,其有三个要素:起点、方向、长度.向量与有向线段的区别:向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段.长度为0的向量叫做零向量,记作0,规定零向量的方向是任意的.长度等于1个单位的向量,叫做单位向量.长度相等且方向相同的向量叫相等向量.对于平行向量定义的理解:第一,方向相同或相反的非零向量叫平行向量,第二,我们规定0与任一向量平行即0∥a .综合第一、第二才是平行向量的完整定义;向量a ,b ,c 平行,记作a ∥b ∥c .如图3.图3又如图4,a ,b ,c 是一组平行向量,任作一条与a 所在直线平行的直线l ,在l 上任取一点O ,则可在l 上分别作出OA →=a ,OB →=b ,OC →=c .这就是说,任一组平行向量都可以移动到同一直线上,因此,平行向量也叫做共线向量.图4这里一定要特别注意平行向量可以在同一直线上,要区别于两平行线的位置关系; 共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向、大小双重性质,不能比较大小.本章学习的向量都是平面内的自由向量,它们仅由方向和大小确定而与起点的位置无关.应用示例例1判断下列命题是否正确,若不正确,请简述理由.(1) ABCD 中,AB →与CD →是共线向量;(2)单位向量都相等.活动:教师引导学生画出平行四边形,如图5.图5因为AB ∥CD ,所以AB →∥CD →.由于上面已经明确,单位向量只限制了大小,方向不确定,所以单位向量不一定相等,即单位向量模均相等且为1,但方向不确定.解:(1)正确;(2)不正确.点评:本题考查基本概念,对于单位向量、平行向量的概念特征及相互关系必须把握好. 例2见课本本节例1.点评:向量相等是一个重要的概念,今后经常用到.让学生在训练中明确:向量相等不仅大小相等,还要方向相同.对于相反向量,我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量(opposite vectors),记作-a ,a 与-a 互为相反向量.并且规定零向量的相反向量仍是零向量.于是,对任一向量a 有-(-a )=a .例3见课本本节例2.图6在以图中的点为端点的所有向量中,与AG →平行的向量有哪些?其中单位向量有哪些?例4下列命题正确的是( )A .a 与b 共线,b 与c 共线,则a 与c 也共线B .任意两个相等的非零向量的起点与终点是一个平行四边形的四个顶点C .向量a 与b 不共线,则a 与b 都是非零向量D .有相同起点的两个非零向量不平行活动:由于零向量与任一向量都共线,所以A 不正确.由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B 不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D 不正确.对于C ,其条件以否定形式给出,所以可从反面入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非零向量,所以只有C正确.答案:C点评:对于有关向量基本概念的考查,可以从概念特征入手,也可以从反面进行考虑,即要判断一个结论不正确,只需举一个反例即可.要启发学生注意这两方面的结合.知能训练课本本节练习1、2、3、4.课堂小结1.先由学生回顾本节都学了哪些概念:向量的描述,向量的两种表示,即对向量的手写要标上箭头,图示要标上箭头和起点、终点,零向量、单位向量、平行向量、相等向量等概念,明了平行向量不是平面几何中的平行线段的简单类比.2.教师简要总结:本节课我们从平面向量的物理背景和几何背景入手,利用类比的方法,介绍了向量的两种表示方法:几何表示和字母表示,几何表示为用向量处理几何问题打下了基础,字母表示则利于向量的运算;然后又介绍了向量的模、平行向量、共线向量、相等向量等重要概念,这些概念是我们进一步学习后续课程的基础,必须要在理解的基础上把握好.3.点拨学生要领悟我们是如何从实际背景中获得这些数学概念的方法,本节的数学知识或许将来会忘掉,但是我们探究这些知识的方法却会伴随我们一生,永远不会忘掉,使我们终生受益.作业如图7,在梯形ABCD 中,AB ∥CD ,AE ∶ED =BF ∶FC =AB ∶DC ,O 是AC 与BD的交点,求证:EO →=OF →.图7证明:∵AB ∥CD ,∴AO ∶OC =BO ∶OD =AB ∶CD.又AE ∶ED =BF ∶FC =AB ∶DC ,∴AE ∶ED =AO ∶OC.∴EO ∥DC.同理,OF ∥DC ,∴E ,O ,F 在同一直线上.∴EO DC =AE AD =BF BC =OF DC. ∴EO =OF ,即|EO →|=|OF →|.又EO →与OF →方向相同,∴EO →=OF →.设计感想1.本节是平面向量的第一节,显然属于“概念课”,概念的理解无疑是重点,但也是难点.本教案设计的指导思想是:把学生划分小组合作讨论学习,经过小组成员们的合作探究,对平面向量的基本概念和基本解题方法都明了不少,应该有很多的成功之处或收获.对失败或教训之处可能是由于一些概念性问题没有深入研究,导致解题存在困难,不过这些会通过学习的深入弥补上来的.2.作为现代数学重要标志之一的向量引入中学数学以后,给中学数学带来无限生机.通过本节具体问题的解决,让学生体会到数学在生活中的重要作用,并在实际课堂教学中规范学生的习惯,培养学生严谨的思考习惯和行为习惯,为后面学习打下基础.备课资料备用习题1.若正多边形有n 条边,它们对应的向量依次为a 1,a 2,…,a n ,则这n 个向量…() A .都相等 B .都共线C .都不共线D .模都相等2.如图8所示,在△ABC 中,DE ∥BC ,则其中共线向量有…( )图8A .一组B .二组C .三组D .四组3.如图9所示,在四边形ABCD 中,若AB →=DC →,则下列各组向量相等的是( )图9A.AD →与CB →B.OA →与OC →C.AC →与DB →D.DO →与OB →4.如图10所示,四边形ABCD 和ABDE 都是平行四边形.图10(1)写出与ED →相等的向量;(2)若|AB →|=3,求向量EC →的模.5.判断下列各命题的真假:①向量AB →的长度与向量BA →的长度相等;②向量a ∥b ,则a 与b 的方向相同或相反;③两个有共同起点而且相等的向量,其终点必相同;④两个有公共终点的向量,一定是共线向量;⑤向量AB →与向量CD →是共线向量,则点A 、B 、C 、D 必在同一条直线上;⑥有向线段就是向量,向量就是有向线段.其中假命题的个数为( )A .2B .3C .4D .56.如图11,O 为正方形ABCD 的中心.图11(1)AB →与CD →是相等向量吗?(2)AO →与AC →是平行向量吗?(3)AD →的长度与AC →的长度之比为________.7.如图12,有四个全等的相邻正方形,从中找出与GF →相等的向量.图128.(1)如果非零向量a 、b 平行,非零向量b 、c 也平行,则a 、c 是否平行?(2)如果非零向量a 、b 共线,非零向量a 、c 也共线,则向量a 、b 是否共线? 参考答案:1.D 2.C 3.D4.(1)与ED →相等的向量有DC →和AB →(因为四边形ABCD 和ABDE 都是平行四边形,故AB =ED =DC).(2)向量EC →的模等于6.5.C 因为①真命题;②假命题;③真命题;④假命题;⑤假命题;⑥假命题.6.(1)不是 (2)是 (3)1∶ 2评注:弄清平行向量及表示方法,能正确地解决有关相等向量和向量模的问题.7.解:与GF →相等的向量有CG →,MH →,NE →.评注:成为相等向量的条件是方向相同和长度相等.8.解:(1)(2)符合任一组平行向量都可移到同一直线上及它们的位置关系与表示它们的有向线段的起点无关.所以(1)是平行,(2)是共线.(设计者:郑吉星)。

苏教版数学高一学案 2.1 向量的概念及表示

苏教版数学高一学案 2.1 向量的概念及表示

[学习目标] 1.能结合物理中的力、位移、速度等具体背景认识向量,掌握向量与数量的区别.2.会用有向线段作向量的几何表示,了解有向线段与向量的联系与区别,会用字母表示向量.3.理解零向量、单位向量、平行向量、共线向量、相等向量、相反向量及向量的模等概念,会辨识图形中这些相关的概念.知识点一 向量的概念数学中,我们把既有________,又有________的量叫做向量,而把那些___________________的量(如年龄、身高、体积等)称为数量.注意:①向量的两个要素:大小和方向,缺一不可.解题时,注意从两个要素出发考虑问题. ②数量之间可以比较大小,而两个向量不能比较大小.思考 已知下列各量:①力;②功;③速度;④质量;⑤温度;⑥位移;⑦加速度;⑧重力;⑨路程;⑩密度. 其中是数量的有________________,是向量的有________________.知识点二 向量的表示方法(1)向量的几何表示:向量可以用一条有向线段表示.带有________的线段叫做有向线段,它包含三个要素:________、________、________,如图所示.以A 为起点、B 为终点的有向线段记作AB →.(2)向量的字母表示:向量可以用字母a ,b ,c ,…,表示(印刷用黑体a ,b ,c ,书写时用a →,b →,c →).(3)向量AB →的大小:也就是向量AB →的长度(或称模),即有向线段AB →的长度,记作________.________________的向量叫做零向量,记作________;________________________的向量,叫做单位向量.思考 在同一平面内,把所有长度为1的向量的始点固定在同一点,这些向量的终点形成的轨迹是________.知识点三 相等向量、共线向量与相反向量(1)相等向量:________________且________________的向量叫做相等向量.(2)平行向量:方向________________的________向量叫做平行向量.①记法:向量a 平行于b ,记作________.②规定:零向量与________________平行.(3)共线向量:由于任意一组平行向量都可移动到同一直线上,所以________向量也叫做共线向量.也就是说,平行向量与共线向量是等价的,因此要注意避免向量平行、共线与平面几何中的直线、线段的平行和共线相混淆.(4)相反向量:长度________,方向________的向量叫做相反向量.思考 向量平行具备传递性吗?题型一 向量的基本概念例1 判断下列命题是否正确,并说明理由.①若a ≠b ,则a 一定不与b 共线;②若AB →=DC →,则A.B.C.D 四点是平行四边形的四个顶点;③在平行四边形ABCD 中,一定有AB →=DC →;④若向量a 与任一向量b 平行,则a =0;⑤若a =b ,b =c ,则a =c ;⑥若a ∥b ,b ∥c ,则a ∥c .反思与感悟 对于命题判断正误题,应熟记有关概念,看清、理解各命题,逐一进行判断,有时对错误命题的判断只需举一反例即可.跟踪训练1 下列说法正确的有________.(1)若|a |=|b |,则a =b 或a =-b ;(2)向量AB →与CD →是共线向量,则A.B.C.D 四点必在同一条直线上;(3)向量AB →与BA →是平行向量;(4)任何两个单位向量都是相等向量.题型二 向量的表示及应用例2 一辆汽车从A 点出发向西行驶了100 km 到达B 点,然后又改变方向向西偏北50°走了200 km 到达C 点,最后又改变方向,向东行驶了100 km 到达D 点.(1)作出向量AB →、BC →、CD →;(2)求|AD →|.反思与感悟 准确画出向量的方法是先确定向量的起点,再确定向量的方向,然后根据向量的大小确定向量的终点.跟踪训练2 在如图的方格纸上,已知向量a ,每个小正方形的边长为1.(1)试以B 为终点画一个向量b ,使b =a ;(2)在图中画一个以A 为起点的向量c ,使|c |=5,并说出向量c 的终点的轨迹是什么?题型三 平行向量与共线向量例3 如图所示,△ABC 的三边均不相等,E.F 、D 分别是AC.AB.BC 的中点.(1)写出与EF →共线的向量;(2)写出与EF →的模大小相等的向量;(3)写出与EF →相等的向量.反思与感悟 (1)非零向量共线是指向量的方向相同或相反.(2)共线的向量不一定相等,但相等的向量一定共线.跟踪训练3 如图,已知四边形ABCD 为平行四边形,则(1)与OA →的模相等的向量有多少个?(2)与OA →的模相等,方向相反的向量有哪些?(3)写出与AB →共线的向量.例4 下列说法正确的个数是________.①向量a ,b 共线,向量b ,c 共线,则a 与c 也共线;②任意两个相等的非零向量的起点与终点都分别重合;③向量a 与b 不共线,则a 与b 都是非零向量;④有相同起点的两个非零向量不平行.错解 向量共线具有传递性,相等向量的各要素相同(包括起点、终点),同起点共线向量不是平行向量.答案 4错因分析 对共线向量的概念理解不清,零向量与任一向量都是共线向量,共线向量也是平行向量,它与平面几何中的共线和平行不同.正解 事实上,对于①,由于零向量与任意向量都共线,因此①不正确;对于②,由于向量都是自由向量,则两个相等向量的始点和终点不一定重合,故②不正确;对于④,向量的平行只与方向有关,而与起点是否相同无关,故④不正确;a 与b 不共线,则a 与b 都是非零向量,否则,不妨设a 为零向量,则a 与b 共线,与a 与b 不共线矛盾,从而③正确. 答案 1点评 正确理解共线向量、相等向量以及非零向量的概念及其性质是关键.1.下列说法错误的是________.(填序号)①若a =0,则|a |=0;②零向量是没有方向的;③零向量与任一向量平行;④零向量的方向是任意的.2.若四边形ABCD 是矩形,则下列命题正确的是________.(填序号)①AB →与CD →共线;②AC →与BD →相等;③AD →与CB →是相反向量;④AB →与CD →的模相等.3.如图所示,以1×2方格纸中的格点(各线段的交点)为起点和终点的向量中.(1)写出与AF →、AE →相等的向量;(2)写出与AD →模相等的向量.4.在直角坐标系中,画出下列向量,使它们的起点都是原点O .(1)|a |=2,a 的方向与x 轴正方向成60°,与y 轴正方向成30°;(2)|a |=4,a 的方向与x 轴正方向成30°,与y 轴正方向成120°.5.如图所示,在四边形ABCD 中,AB →=DC →,N ,M 分别是AD ,BC 上的点,且CN →=MA →,求证:四边形DNBM 是平行四边形.向量是既有大小又有方向的量,解决向量问题时一定要从大小和方向两个方面去考虑.同时要注意理解以下几个概念:(1)平行向量:方向相同或相反的非零向量叫做平行向量.任一向量都与它自身是平行向量,并且规定:零向量与任一向量都是平行向量.(2)共线向量也就是平行向量,其要求是几个非零向量的方向相同或相反,其所在直线可以平行也可以重合.“共线”的含义不是平面几何中“共线”的含义.实际上,共线向量有以下四种情况:方向相同且模相等;方向相同且模不等;方向相反且模相等;方向相反且模不等.因此,任意一组共线向量都可以移到同一条直线上.(3)相等向量:长度相等且方向相同的向量叫做相等向量.由向量相等的定义可以知道,对于一个向量,只要不改变它的大小和方向,是可以平行移动的.因此,用有向线段表示向量时,可以任意选取有向线段的起点.(4)相反向量:长度相等、方向相反的向量叫做相反向量.规定:零向量的相反向量仍是零向量.答案精析知识梳理知识点一大小 方向 只有大小,没有方向思考 ②④⑤⑨⑩ ①③⑥⑦⑧知识点二(1)方向 起点 方向 长度(3)|AB →| 长度为0 0 长度等于1个单位长度思考 单位圆知识点三(1)长度相等 方向相同 (2)相同或相反 非零 ①a ∥b ②任一向量 (3)平行 (4)相等 相反思考 向量的平行不具备传递性,即若a ∥b ,b ∥c ,则未必有a ∥c ,这是因为,当b =0时,A.c 可以是任意向量,但若b ≠0,必有a ∥b ,b ∥c ⇒a ∥c .因此在今后学习时要特别注意零向量的特殊性,解答问题时,一定要看清题目中是“零向量”还是“非零向量”.题型探究例1 解 两个向量不相等,可能是长度不同,方向可以相同或相反,所以a 与b 有共线的可能,故①不正确.②AB →=DC →,A.B.C.D 四点可能在同一条直线上,故②不正确.③在平行四边形ABCD 中,|AB →|=|DC →|,AB →与DC →平行且方向相同,故AB →=DC →,③正确.④零向量的方向是任意的,与任一向量平行,④正确.⑤a =b ,则|a |=|b |且a 与b 方向相同;b =c ,则|b |=|c |且b 与c 方向相同,则a 与c 方向相同且模相等,故a =c ,⑤正确.若b =0,由于a 的方向与c 的方向都是任意的,a ∥c 可能不成立;b ≠0时,a ∥c 成立,故⑥不正确.跟踪训练1 (3)解析 (1)错误.由|a |=|b |仅说明a 与b 模相等,但不能说明它们方向的关系.(2)错误.共线向量即平行向量,只要方向相同或相反,并不要求两个向量AB →、CD →必须在同一直线上,因此点A.B.C.D 不一定在同一条直线上.(3)正确.向量AB →和BA →是长度相等,方向相反的两个向量.(4)错误.单位向量不仅有长度,而且有方向;单位向量的方向不一定相同,而相等向量要求长度相等,方向相同.例2 解 (1)向量AB →、BC →、CD →如图所示.(2)由题意,易知AB →与CD →方向相反,故AB →与CD →共线,又|AB →|=|CD →|,∴在四边形ABCD 中,AB 綊CD .∴四边形ABCD 为平行四边形.∴AD →=BC →,∴|AD →|=|BC →|=200 km.跟踪训练2 解 (1)根据相等向量的定义,所作向量与向量a 平行,且长度相等(作图略).(2)由平面几何知识可知所有这样的向量c 的终点的轨迹是以A 为圆心,半径为5的圆(作图略).例3 解 (1)因为E.F 分别是AC.AB 的中点,所以EF 綊12BC .又因为D 是BC 的中点, 所以与EF →共线的向量有:FE →,BD →,DB →,DC →,CD →,BC →,CB →.(2)与EF →模相等的向量有:FE →,BD →,DB →,DC →,CD →.(3)与EF →相等的向量有:DB →与CD →.跟踪训练3 解 (1)与OA →的模相等的向量有AO →,OC →,CO →三个向量.(2)与OA →的模相等且方向相反的向量为OC →,AO →.(3)与AB →共线的向量有DC →,CD →,BA →.当堂检测1.②解析 零向量的长度为0,方向是任意的,它与任何向量都平行,所以②是错误的.2.①③④解析 ∵四边形ABCD 是矩形,∴AB ∥CD 且AB =CD ,故①④正确;AC =BD ,但AC →与BD →方向不相同,故②不正确;AD =CB 且AD ∥CB ,AD →与CB →方向相反,故③正确.3.解 (1)AF →=BE →=CD →,AE →=BD →.(2)DA →,CF →,FC →.4.解 所求向量及其向量的终点坐标如图所示:5.证明 ∵AB →=DC →,∴四边形ABCD 为平行四边形,∴AD ,BC 平行且相等.又∵CN →=MA →,∴四边形CNAM 为平行四边形,∴AN ,MC 平行且相等,∴DN ,MB 平行且相等,∴四边形DNBM 是平行四边形.。

高中数学新苏教版精品教案《苏教版高中数学必修4 2.1.1 向量的概念及表示》07

高中数学新苏教版精品教案《苏教版高中数学必修4 2.1.1 向量的概念及表示》07

§向量的概念及表示【教学目标】1、知识与技能1通过教学,使学生了解向量的实际背景,理解平面向量的概念和几何表示;2通过教学,使学生理解数学文化(向量的发展史、向量的类型),进一步激发学习兴趣;3通过教学,使学生理解向量的模、零向量、单位向量、平行向量(共线向量)、相等向量、相反向量的概念;4通过教学,使学生理解平行(共线)向量、相等向量、相反向量之间的关系2、过程与方法经历向量学习的过程,能体会出向量来自客观现实,领会到数学与物理学的联系,培养概括的能力3、情感、态度与价值观通过对向量和数量的比较,培养认识客观事物的数学本质的能力,体现数形结合、类比、分类讨论、建模的数学思想,体会数学的价值,激发学习数学兴趣【重点难点】重点:理解向量、相等向量等相关的概念,向量的几何表示;难点:对向量、共线向量的概念的理解【教学方法】引导发现与讨论相结合设计问题引导学生积极主动探究;讲练结合,加深对概念的理解;师生讨论,辨析概念【教学过程】一、问题情境问题情境1脑筋急转弯:高速公路上,警察开着速度可达250公里/小时的宝马,逃犯开着一辆时速不超过12021/小时的破桑塔纳,为什么警察没有能抓到逃犯?问题情境2湖面上有三个景点O,A,B,一游艇将游客从景点O送至景点A,半小时后,有一个位移,从景点A到景点B也有一个位移位移和距离这两个量有什么不同?问题情境3请给下面的量分类,分类标准自定:面积 距离 位移 身高 速度 质量 加速度 体积 力 密度 路程问题引入 二、问题引入那么我们用什么样的数学模型来刻画位移、速度、加速度、力这样的量? (介绍数学文化:向量的发展史) 三、建构数学 1.向量的定义: 2.向量的表示方法:(1)几何表示: (2)字母表示: 3.向量的长度(或称为模):(1)表示: (2)两个特殊向量: 反思1:1向量可以用有向线段来表示,向量和有向线段有区别吗? 2向量能比较大小吗?向量的模可以比较大小吗? 合作探究:1平面直角坐标系内,起点在原点的单位向量,它们终点的轨迹是什么图形? 2两个不重合的点能确定几个非零向量? 4、向量之间的关系:(1)平行向量( 向量): (2)相等向量: (3)相反向量: 反思2:1-(-)a 的意义是什么?2 将一向量平移后所得的向量与原向量有什么关系? (介绍数学文化:向量的三种类型) 练习:1在下列结论中,正确的是____1若两个向量相等,则它们的起点和终点分别重合; 2模相等的两个平行向量是相等的向量; 3若与a b 都是单位向量,则a b;4两个相等向量的模相等是正ABC 的中心,则向量,,AO BO CO 是( ) A 相等向量 B 模相等的向量 C 平行向量 D 共起点的向量 3三个不重合的点能确定 个非零向量? 概念辨析:1若//AB CD ,则//AB CD 2若//AB CD ,则//AB CD3非零向量与a b 平行,则向量与a b 的方向相同或者相反 4两个向量共线,若起点不同,则终点也不同 5若与a b 共线,与b c 共线,则与a c 也共线6向量与AB CD 是共线向量,则点A 、B 、C 、D 一定共线 7任一向量与它的相反向量都不相等 8长度相等的共线向量,是相等向量四、例题讲解的中心, 在图中所标出的向量中:1试找出与FE 共线的向量; 2确定FE 与相等的向量;3OA 与BC 相等吗?变式训练:OA 与BC 什么关系例2在如图的4×5方格纸中有一个向量AB , 分别以图中的格点为起点和终点作向量, 其中与AB 相等的向量有多少个 与AB 长度相等的共线向量有多少个 AB 除外变式探究:如图,以1×3方格纸中(设小正方形的边长为1)的格点为起点和终点的所有非零向量中,有多少种大小不同的模?有多少种不同的方向?反思小结:五、课堂小结:1、本节课你学习了哪些新知识?1向量的概念:定义、模、零向量、单位向量、表示方法(四个定义,两种表示)2向量的关系:平行向量共线向量、相等向量、相反向量(三个关系)2、本节课你体会到了哪些数学思想方法?1数学建模2数形结合3类比4分类讨论六、结束语:与大家共勉:不忘初心,砥砺前行七、课后作业:P62 练习3,4,5,8。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一课时向量的概念及表示
教学目标:
理解向量的概念,掌握向量的几何表示,了解零向量、单位向量、平行向量、相等向量等概念,并会辨认图形中的相等向量或作出与某一已知向量相等的向量.
教学重点:
向量概念、相等向量概念、向量几何表示.
教学难点:
向量概念的理解.
教学过程:
Ⅰ.课题导入
在现实生活中,我们会遇到很多量,其中一些量在取定单位后用一个实数就可以表示出来,如长度、质量等.
还有一些量,如我们在物理中所学习的位移,是一个既有大小又有方向的量,这种量就是我们本章所要研究的向量.
向量是数学中的重要概念之一,向量和数一样也能进行运算,而且用向量的有关知识还能有效地解决数学、物理等学科中的很多问题,在这一章,我们将学习向量的概念、运算及其简单应用.
而这一节课,我们将学习向量的有关概念.
Ⅱ.讲授新课
这一节,大家通过自学来熟悉相关内容,然后我们通过概念辨析例题来检验大家自学的效果.
1.向量的概念:
(我们把既有大小又有方向的量叫向量)
2.向量的表示方法:
1用有向线段表示;
2用字母a、b等表示;
3用有向线段的起点与终点字母:错误!.
3.零向量、单位向量概念:
1长度为0的向量叫零向量,记作0;
2长度为1个单位长度的向量,叫单位向量.
说明:零向量、单位向量的定义都是只限制大小,不确定方向.
4.平行向量定义:
1方向相同或相反的非零向量叫平行向量;
2我们规定0与任一向量平行.
说明:(1)综合1、2才是平行向量的完整定义;
(2)向量a、b、c平行,记作a∥b∥c.
5.相等向量定义:
长度相等且方向相同的向量叫相等向量.
说明:(1)向量a与b相等,记作a=b;
(2)零向量与零向量相等;
.(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关
..........6.共线向量与平行向量关系:
平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上.
说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;
(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.
[例1]判断下列命题是否正确,若不正确,请简述理由.
1向量错误!与错误!是共线向量,则A、B、C、D四点必在一直线上;
2单位向量都相等;
3任一向量与它的相反向量不相等;
4四边形ABCD是平行四边形的充要条件是错误!=错误!;
5模为0是一个向量方向不确定的充要条件;
⑥共线的向量,若起点不同,则终点一定不同.
分析:1不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求两个向量错误!、错误!在同一直线上.
2不正确.单位向量模均相等且为1,但方向并不确定.
3不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的.
4、5正确.
⑥不正确.如图,错误!与错误!共线,虽起点不同,但其终点却相同.
评述:本题考查基本概念,对于零向量、单位向量、平行向量、共线向量的概念特征及相互关系必须把握好.
[例2]下列命题正确的是()
A.a与b共线,b与c共线,则a与c也共线
B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点
C.向量a与b不共线,则a与b都是非零向量
D.有相同起点的两个非零向量不平行
分析:由于零向量与任一向量都共线,所以A不正确,由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确.向量的平行只要方向相同或相反即可,与起点是否相同无关,所以D不正确.对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若a与b不都是非零向量,即a与b至少有一个是零向量,而由零向量与任一向量都共线,可有a与b共线,不符合已知条件,所以有a与b都是非
零向量,所以应选C.
评述:对于有关向量基本概念的考查,可以从概念的特征入手,也可以从反面进行考虑,要启发学生注意这两方面的结合.
几点说明:
1.向量有三个要素:起点、方向、长度.
2.向量不能比较大小,但向量的长度(或模)可以比较大小
3.实数与向量不能相加减,但实数与向量可以相乘.
4.向量a与实数a.
5.零向量0与实数0
6.注意下列写法是错误的:
1a—a=0; 2错误!+错误!+错误!=0;
3a+0=a; 4|a|—|a|=0.
7.平行向量与相等向量
方向相同或相反的非零向量叫平行向量,也即共线向量,并且规定0与任一向量平行.长度相等且方向相同的向量叫相等向量,规定零向量与零向量相等.
平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要条件.
为巩固大家对向量有关概念的理解,我们进行下面的课堂训练.
Ⅲ.课堂练习
课本P59练习1,2,3,4.
Ⅳ.课时小结
通过本节学习,要求大家能理解向量的概念,掌握向量的几何表示,了解零向量、单位向量、平行向量、相等向量等概念,并能进行简单的应用.
Ⅴ.课后作业
课本P59习题1,2,3,4。

相关文档
最新文档