高中数学选修2-3《1.2.排列(第二课时)》课件
高中数学选修2-3-排列与组合

排列与组合知识集结知识元排列与排列数公式知识讲解1.排列及排列数公式【考点归纳】1.定义(1)排列:一般地,从n个不同的元素中任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.(其中被取的对象叫做元素)(2)排列数:从n个不同的元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号表示.2.相关定义:(1)全排列:一般地,n个不同元素全部取出的一个排列,叫做n个不同元素的一个全排列.(2)n的阶乘:正整数由1到n的连乘积,叫做n的阶乘,用n!表示.(规定0!=1)3.排列数公式(1)排列计算公式:=.m,n∈N+,且m≤n.(2)全排列公式:=n•(n﹣1)•(n﹣2)•…•3•2•1=n!.例题精讲排列与排列数公式例1.(x-2)(x-3)(x-4)…(x-15)(x∈N+,x>15)可表示为()A.A B.A C.A D.A例2.若=12,则n=()A.8B.7C.6D.4例3.已知=15,那么=()A.20B.30C.42D.72组合与组合数公式知识讲解1.组合及组合数公式【考点归纳】1.定义(1)组合:一般地,从n个不同元素中,任意取出m(m≤n)个元素并成一组,叫做从n个元素中任取m个元素的一个组合.(2)组合数:从n个不同元素中,任意取出m(m≤n)个元素的所有组合的个数,叫做从n 个不同元素中,任意取出m个元素的组合数,用符号表示.2.组合数公式:=.m,n∈N+,且m≤n.3.组合数的性质:性质1性质2.例题精讲组合与组合数公式例1.'排球单循环赛南方球队比北方球队多9支南方球队总得分是北方球队的9倍求证冠军是一支南方球队(胜得1分败得0分).'例2.'一个袋子里装有大小相同且标有数字1~5的若干个小球,其中标有数字1的小球有1个,标有数字2的小球有2个,…,标有数字5的小球有5个.(Ⅰ)从中任意取出1个小球,求取出的小球标有数字3的概率;(Ⅱ)从中任意取出3个小球,求其中至少有1个小球标有奇数数字的概率;(Ⅲ)从中任意取出2个小球,求小球上所标数字之和为6的概率.'例3.'求C3n38-n+C21+n3n的值.'排列组合的简单计数问题知识讲解1.排列、组合及简单计数问题【知识点的知识】1、排列组合问题的一些解题技巧:①特殊元素优先安排;②合理分类与准确分步;③排列、组合混合问题先选后排;④相邻问题捆绑处理;⑤不相邻问题插空处理;⑥定序问题除法处理;⑦分排问题直排处理;⑧“小集团”排列问题先整体后局部;⑨构造模型;⑩正难则反、等价转化.对于无限制条件的排列组合问题应遵循两个原则:一是按元素的性质分类,二是按时间发生的过程进行分步.对于有限制条件的排列组合问题,通常从以下三个途径考虑:①以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;②以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;③先不考虑限制条件,计算出排列或组合数,再减去不符合要求的排列或组合数.2、排列、组合问题几大解题方法:(1)直接法;(2)排除法;(3)捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”;(4)插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”;(5)占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则;(6)调序法:当某些元素次序一定时,可用此法;(7)平均法:若把kn个不同元素平均分成k组,每组n个,共有;(8)隔板法:常用于解正整数解组数的问题;(9)定位问题:从n个不同元素中每次取出k个不同元素作排列规定某r个元素都包含在内,并且都排在某r个指定位置则有;(10)指定元素排列组合问题:①从n个不同元素中每次取出k个不同的元素作排列(或组合),规定某r个元素都包含在内.先C后A策略,排列;组合;②从n个不同元素中每次取出k个不同元素作排列(或组合),规定某r个元素都不包含在内.先C后A策略,排列;组合;③从n个不同元素中每次取出k个不同元素作排列(或组合),规定每个排列(或组合)都只包含某r个元素中的s个元素.先C后A策略,排列;组合.例题精讲排列组合的简单计数问题例1.的展开式中,x的系数为___(用数字作答)例2.在的展开式中,x4的系数是____.例3.若,则n的展开式中,含x2项的系数为_______.当堂练习单选题练习1.计算2+3的值是()A.72B.102C.5070D.5100练习2.=()A.30B.24C.20D.15练习3.6本不同的书在书桌上摆成一排,要求甲,乙两本书必须放在两端,丙、丁两本书必须相邻,则不同的摆放方法有()种。
高中数学新人教A版选修2-3课件:第一章计数原理本章整合

组,使得每组中都至少有一个元素,求一共有多少种不同的分法的问题.
首 页
专题一
专题二
J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
S 随堂练习
UITANG LIANXI
专题三
应用 1 设 4 名同学报名参加同一时间安排的三种课外活动的方案有 a
的方法都有 n 种,由分步乘法计数原理得,从 n 个不同元素里有放回地取出
m 个元素(允许重复出现)的排列数为:N=n·
n·
n·
…·
n=nm(m,n∈N*,m≤n).
(2)“隔板法”是解决组合问题中关于若干个相同元素的分组问题的一
种常用方法,用这种方法解决此类问题,过程简捷明了,富有创意性和趣味性.
提示:本题既有相邻问题也有不相邻问题,故是捆绑法与插空法的综合
应用.
解析:先将甲乙捆绑,看作一个元素,有A22 种排法,然后将除甲乙丙之外
的 4 名学生全排列,有A44 种不同的排法,再将甲乙丙插入 5 个空中的两个,有
A25 种不同的排法,所以一共有A22 A44 A25=960 种不同排法.
答案:960
答案:B
首 页
S 随堂练习
J 基础知识 Z 重点难点
ICHU ZHISHI
1
2
UITANG LIANXI
HONGDIAN NANDIAN
3
4
5
6
7
8
2.(2013·福建高考)满足 a,b∈{-1,0,1,2},且关于 x 的方程 ax2+2x+b=0 有实
河北省抚宁县第六中学人教A版高中数学选修2-3课件:1.2排列组合综合应用问题

说明:对不相邻元素的排列问题,一般采用“插空 法”对反面明了的,可用“排除法”
第二十一页,编辑于星期日:十四点 三十七分。
② Ab-------------Ba
③ Bb-------------Aa
④ Ba-------------Ab
显然: ①与③; ②与④在搭配
上是一样的。所以只有2种方法,
所以总的搭配方法有2 C82.C72种。
第十四页,编辑于星期日:十四点 三十七分。
排列组合综合问题
练习3 高二某班要从7名运动员出4名组成
第十二页,编辑于星期日:十四点 三十七分。
排列组合综合问题
例2 求不同的排法种数.
(4)4男4女排成一排,同性者不能相邻.
解:(1)先把男生全排列,再选择必须插空的位 置∴总排列数为 A44.A43.A21
(2)同性不相邻必须男女都排好,即男奇数位, 女偶数位,或者对调.∴总排列数为A22.A44.A44种.
注意:若是3个元素按一定顺序,
则必须除以排列数 A33.
点评:排列应用题是实际问题的一种,其指导思想:
弄清题意,联系实际,合理设计,调动相关知识和方
法.本例是排列的典型问题,解题方法可借鉴.排列
问题思考比较抽象,“具体排”是一种把抽象转化具
体的好方法.
第二十二页,编辑于星期日:十四点 三十七分。
有条件限制的组合问题
排列数.
部分平均分组问题中,先考虑不平均分组,剩下的就是 平均分组。这样分组问题就解决了.
人教A版高中数学选修2-3全册ppt课件

[一题多变] 1.[变条件]若本例条件变为个位数字小于十位数字且为偶数, 那么这样的两位数有多少个.
解:当个位数字是 8 时,十位数字取 9,只有 1 个. 当个位数字是 6 时,十位数字可取 7,8,9,共 3 个. 当个位数字是 4 时,十位数字可取 5,6,7,8,9,共 5 个. 同理可知,当个位数字是 2 时,共 7 个, 当个位数字是 0 时,共 9 个. 由分类加法计数原理知,符合条件的两位数共有 1+3+5 +7+9=25(个).
用计数原理解决涂色(种植)问题
[ 典例 ] 如图所示,要给“优”、
“化”、“指”、“导”四个区域分别涂上 3 种不同颜色中的某一种,允许同一种颜色 使用多次,但相邻区域必须涂不同的颜色, 有多少种不同的涂色方法?
[解] 优、化、指、导四个区域依次涂色,分四步.
第 1 步,涂“优”区域,有 3 种选择. 第 2 步,涂“化”区域,有 2 种选择.
利用分类加法计数原理计数时的解题流程
分步乘法计数原理的应用
[典例]
从 1,2,3,4 中选三个数字,组成无重复数字的整
数,则分别满足下列条件的数有多少个? (1)三位数; (2)三位数的偶数.
[解] (1)三位数有三个数位, 百位 十位 个位
故可分三个步骤完成: 第 1 步,排个位,从 1,2,3,4 中选 1 个数字,有 4 种方法; 第 2 步, 排十位, 从剩下的 3 个数字中选 1 个, 有 3 种方法;
2.如果一个三位正整数如“a1a2a3”满足 a1<a2 且 a3<a2,则称这样的 三位数为凸数(如 120,342,275 等),那么所有凸数个数是多少? 解:分 8 类,当中间数为 2 时,百位只能选 1,个位可选 1、0, 由分步乘法计数原理,有 1×2=2 个; 当中间数为 3 时,百位可选 1,2,个位可选 0,1,2,由分步乘法计 数原理,有 2×3=6 个;同理可得: 当中间数为 4 时,有 3×4=12 个; 当中间数为 5 时,有 4×5=20 个; 当中间数为 6 时,有 5×6=30 个; 当中间数为 7 时,有 6×7=42 个; 当中间数为 8 时,有 7×8=56 个; 当中间数为 9 时,有 8×9=72 个. 故共有 2+6+12+20+30+42+56+72=240 个.
人教高中数学选修2-3第一章121排列(优质公开课教案)

1.2.1排列上课班别:高二授课教师:教材:人教版选修2—3教学目标:1、知识与技能:了解排列数的意义,掌握排列数公式及推导方法,从中体会“化归”的数学思想,并能运用排列数公式进行计算。
2、过程与方法:能运用所学的排列知识,正确地解决的实际问题3、情感、态度与价值观:能运用所学的排列知识,正确地解决的实际问题.教学重点:排列数公式的理解与运用;排列应用题常用的方法有直接法,间接法教学难点:排列数公式的推导授课类型:新授课课时安排:1课时教具:多媒体内容分析:分类计数原理是对完成一件事的所有方法的一个划分,依分类计数原理解题,首先明确要做的这件事是什么,其次分类时要根据问题的特点确定分类的标准,最后在确定的标准下进行分类.分类要注意不重复、不遗漏,保证每类办法都能完成这件事.分步计数原理是指完成一件事的任何方法要按照一定的标准分成几个步骤,必须且只需连续完成这几个步骤后才算完成这件事,每步中的任何一种方法都不能完成这件事.分类计数原理和分步计数原理的地位是有区别的,分类计数原理更具有一般性,解决复杂问题时往往需要先分类,每类中再分成几步.在排列、组合教学的起始阶段,不能嫌罗嗦,教师一定要先做出表率并要求学生严格按原理去分析问题.只有这样才能使学生认识深刻、理解到位、思路清晰,才会做到分类有据、分步有方,为排列、组合的学习奠定坚实的基础分类计数原理和分步计数原理既是推导排列数公式、组合数公式的基础,也是解决排列、组合问题的主要依据,并且还常需要直接运用它们去解决问题,这两个原理贯穿排列、组合学习过程的始终.搞好排列、组合问题的教学从这两个原理入手带有根本性.排列与组合都是研究从一些不同元素中任取元素,或排成一排或并成一组,并求有多少种不同方法的问题.排列与组合的区别在于问题是否与顺序有关.与顺序有关的是排列问题,与顺序无关是组合问题,顺序对排列、组合问题的求解特别重要.排列与组合的区别,从定义上来说是简单的,但在具体求解过程中学生往往感到困惑,分不清到底与顺序有无关系.教学过程:一、复习引入:1分类加法计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法2.分步乘法计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法二、讲解新课:问题1.从甲、乙、丙3名同学中选取2名同学参加某一天的一项活动,其中一名同学参加上午的活动,一名同学参加下午的活动,有多少种不同的方法?图 1.2一1把上面问题中被取的对象叫做元素,于是问题可叙述为:从3个不同的元素 a , b ,。
高中数学人教A版选修2-3第一章1.2排列组合的综合应用(习题课)课件

课堂小结:
处理排列组合应用题的规律
(1)两种思路:直接法,间接法
(2)两种途径:元素分析法,位置分析法。 例3、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有
捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列。
种选法。
29
弄清要完成什么样的事件是前提。
00|0 00 0|0 0 00 0|0 0 00 0|0 0 00 0|0 0 00 00 00 捆绑法:相邻元素的排列,可以采用“整体到局部”的排法,即将相邻的元素当成“一个”元素进行排列,然后再局部排列。
解法一:先组队后分校(先分堆后分配) 特殊优先法:对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法。
即 2,1,1,有 C =6(种),再分配给 3 个人,有 A =6(种),所以不同的 例3、对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有
2 3 处理排列组合应用题的规律 4 3 解:采用先组后排方法:
种。
安排方式共有 6×6=36(种). 例4、 从6个学校中选出30名学生参加数学竞赛,每校至少有1人,
解:对 5 个只会跳舞的人选几人进行分类: 第一类:跳舞的人从 5 个只会跳舞的人选 4 人,共有C54C84 350 (种); 第二类:跳舞的人从 5 个只会跳舞的人选 3 人,共有C53C31C74 1050 (种); 第三类:跳舞的人从 5 个只会跳舞的人选 2 人,共有C52C32C64 450 (种); 第四类:跳舞的人从 5 个只会跳舞的人选 1 人,共有C51C33C54 25 (种); 所以一共有 50+1050+450+25=1875(种).
2019-2020年人教A版高中数学选修2-3:1.2排列与组合1.2.1排列课件 (共29张PPT)

[自主梳理] 1.排列的有关概念 (1)定义:一般地,从 n 个 不同 元素中取出 m(m≤n)个元素,按照一定的顺序 排成一列,叫作从 n 个 不同 元素中取出 m 个元素的一个排列. (2)相同排列:两个排列相同,当且仅当两个排列的元素 完全相同 ,且元素的 排列顺序 也相同.
2.排列数与排列数公式
后面,则他可选的密码个数共有( )
A.A66
B.A68
C.A35+A33
D.A35·A33
解析:分两步.第一步选 3 个数字安排在后三位,有 A35种方法,第二步把 3 个字母
安排在前三位,有 A33种方法,故共有 A35·A33个密码.
答案:D
探究三 “在”与“不在”的问题 [典例 3] 7 位同学站成一排. (1)若甲站在中间的位置,则共有多少种不同的排法? (2)甲、乙只能站在两端的排法共有多少种? (3)甲、乙不能站在排头和排尾的排法共有多少种? (4)甲不能站排头、乙不能站排尾的排法共有多少种? [解析] (1)先考虑甲站在中间,有 1 种排法,再在余下的 6 个位置排另外 6 位同学, 共 A66=720 种排法. (2)先考虑甲、乙站在两端,有 A22种排法,再在余下的 5 个位置排另外 5 位同学,有 A55种排法,共 A22A55=240 种排法.
1.2 排列与组合 1.2.1 排 列重点:排列的概念;排列数公
2.了解排列数的概念.
式;用排列知识解决简单的实
3.掌握排列数公式的推导方法.
际问题.
4.能用排列知识解决简单的实际问题. 难点:排列数公式的推导方法.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
排列问题的实质是“元素”占“位子”问题,有限制条件的排列问题的限制条件主要 表现在某元素不排在某个位子上或某个位子不排某些元素,解决该类排列问题的方法 主要是按“优先”原则,即优先排特殊元素或优先满足特殊位子.
【全程复习方略】高中数学 1.2.1.1 排列的概念及简单排列问题课件 新人教A版选修2-3

列出这6种分法,如下:
甲
玫瑰花
乙
月季花
丙
莲花
玫瑰花
月季花 月季花 莲花 莲花
莲花
玫瑰花 莲花 玫瑰花 月季花
月季花
莲花 玫瑰花 月季花 玫瑰花
【补偿训练】从0,1,2,3这四个数字中,每次取出三个不同 数字排成一个三位数,若组成的这些三位数中,1不在百位,2 不在十位,3不在个位.则这样的三位数共有多少个?并写出这 些三位数.
2.做一做(请把正确的答案写在横线上) (1)从5个人中选取甲、乙2个人去完成某项工作,这_______排 列问题.(填“是”或“不是”) (2)从1,2,3中任取两个数字可组成不同的两位数有______个. (3)从3,5,7中任选两个数相减,可得到________个不同的结果.
【解析】(1)甲和乙与乙和甲去完成这项工作是同一种方法, 故不是排列问题. 答案:不是 (2)12,13,21,23,31,32,共6个. 答案:6 (3)从3,5,7中任选两个数相减的所有情况是3-5=-2,3-7=-4, 5-7=-2,5-3=2,7-3=4,7-5=2,故共有4个不同的结果.
然后再按树形图写出排列.
【变式训练】将玫瑰花、月季花、莲花各一束分别送给甲、乙、 丙三人,每人一束,共有多少种不同的分法?请将它们列出来 .
【解析】按分步乘法计数原理的步骤: 第一步,分给甲,有3种分法; 第二步,分给乙,有2种分法; 第三步,分给丙,有1种分法. 故共有3×2×1=6种不同的分法.
不同的选法是一个排列问题.( )
【解析】(1)错误.排列与元素的顺序有关, 所以1,2,3与3,2,1不是同一排列. (2)正确.由定义易知,取出的元素各不相同, 因此不能重复出现同一元素. (3)错误.由排列的定义知,取出元素后,再按顺序排成一列才 组成一个排列,只取不排不是排列 . (4)正确.选出的两个同学参加竞赛的学科不同,所以是排列问 题. 答案:(1)×(2)√(3)×(4) √