高中数学教学设计.doc
高中数学教案【优秀10篇】

高中数学教案【优秀10篇】高中数学课教案篇一一、教学目标【知识与技能】在掌握圆的标准方程的基础上,理解记忆圆的一般方程的代数特征,由圆的一般方程确定圆的圆心半径,掌握方程x+y+Dx+Ey+F=0表示圆的条件。
【过程与方法】通过对方程x+y+Dx+Ey+F=0表示圆的的条件的探究,学生探索发现及分析解决问题的实际能力得到提高。
【情感态度与价值观】渗透数形结合、化归与转化等数学思想方法,提高学生的整体素质,激励学生创新,勇于探索。
二、教学重难点【重点】掌握圆的一般方程,以及用待定系数法求圆的一般方程。
【难点】二元二次方程与圆的一般方程及标准圆方程的`关系。
三、教学过程(一)复习旧知,引出课题1、复习圆的标准方程,圆心、半径。
2、提问已知圆心为(1,—2)、半径为2的圆的方程是什么?高中数学教案篇二教材分析:前面已学习了向量的概念及向量的线性运算,这里引入一种新的向量运算——向量的数量积。
教科书以物体受力做功为背景引入向量数量积的概念,既使向量数量积运算与学生已有知识建立了联系,又使学生看到向量数量积与向量模的大小及夹角有关,同时与前面的向量运算不同,其计算结果不是向量而是数量。
在定义了数量积的概念后,进一步探究了两个向量夹角对数量积符号的影响;然后由投影的概念得出了数量积的几何意义;并由数量积的定义推导出一些数量积的重要性质;最后“探究”研究了运算律。
教学目标:(一)知识与技能1.掌握数量积的定义、重要性质及运算律;2.能应用数量积的重要性质及运算律解决问题;3.了解用平面向量数量积可以解决长度、角度、垂直共线等问题,为下节课灵活运用平面向量数量积解决问题打好基础。
(二)过程与方法以物体受力做功为背景引入向量数量积的概念,从数与形两方面引导学生对向量数量积定义进行探究,通过例题分析,使学生明确向量的数量积与数的乘法的联系与区别。
(三)情感、态度与价值观创设适当的问题情境,从物理学中“功”这个概念引入课题,开始就激发学生的学习兴趣,让学生容易切入课题,培养学生用数学的意识,加强数学与其它学科及生活实践的联系。
高中数学教学设计(4篇)

高中数学教学设计(4篇)高中数学教学设计篇一一、教学目标1.知识与技能(1)掌握斜二测画法画水平设置的平面图形的直观图。
(2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。
2.过程与方法学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。
3.情感态度与价值观(1)提高空间想象力与直观感受。
(2)体会对比在学习中的作用。
(3)感受几何作图在生产活动中的应用。
二、教学重点、难点重点、难点:用斜二测画法画空间几何值的直观图。
三、学法与教学用具1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。
2.教学用具:三角板、圆规四、教学思路(一)创设情景,揭示课题1.我们都学过画画,这节课我们画一物体:圆柱把实物圆柱放在讲台上让学生画。
2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。
(二)研探新知1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。
画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。
强调斜二测画法的步骤。
练习反馈根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。
2.例2,用斜二测画法画水平放置的圆的直观图教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。
教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。
3.探求空间几何体的直观图的画法(1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。
高中数学教学设计案例(优秀4篇)

高中数学教学设计案例(优秀4篇)高中数学教学设计案例篇一一、指导思想:贯彻教育部的有关教育教学计划,在学校、年级组的直接领导下,认真执行学校的各项教育教学制度和要求,认真完成各项任务。
教学的宗旨是使学生在获得作为一个现代公民所必须的基本数学知识和技能的同时,在情感、态度、价值观和一般能力等方面都能获得充分的发展,为学生的终身学习、终身受益奠定良好的基础。
二。
学情分析:上学期期末考学生的数学成绩相对于高一期末考有进步,但还不是很理想,理科生数学学习的难度本学期将增大,加上学业水平考试,所以本学期学生面临的压力将更大,任务艰巨。
三。
教学目的任务要求分析:本学期教学的主要任务是数学选修2-2,2-3和学考复习。
(1)认真把握“标准”的教学要求。
(2)通过建立相关知识的联系,渗透“数形结合”等思想方法。
(3)关注现代信息技术的运用。
(4)把握学考大纲复习标准四、主要措施1、明确一个观念:高考好才是真的好。
平时不好高考肯定不好,但平时红旗飘飘高考时未必红旗不倒。
这就要求我们在日常工作中在照顾到学生实际的前提下起点要高,注意培养后劲,从整体上把握好的自己的教学。
2、以老师的精心备课与充满激情的教学,换取学生学习高效率。
3.将学校和教研组安排的有关工作落到实处。
高中数学教学设计案例篇二以现代教育理论,教学大纲和考纲为指导,以课本和大纲为依据,全面贯彻党的教育方针,积极实施和推进素质教育,提高学生的学习能力。
不仅使学生掌握高中数学基础知识与能力,而且要从全方位培养学生的创新意识,创新精神。
本学期执教班次是高二6班的文科班的数学教学,基础好的学生较少,绝大多数学生数学基础极差。
且成绩参次不齐,针对这种情况,必须要因材施教,充分调动学生学习积极性,提高学生的学习兴趣,力争本学期数学教学上新台阶。
1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。
高中数学教案教学设计10篇

高中数学教案教学设计10篇高中数学教案教学设计篇1一、教材分析1、教材地位和作用:二面角是我们日常生活中经常见到的、很普通的一个空间图形。
“二面角”是人教版《数学》第二册(下B)中9.7的内容。
它是在学生学过两条异面直线所成的角、直线和平面所成角、又要重点研究的一种空间的角,它是为了研究两个平面的垂直而提出的一个概念,也是学生进一步研究多面体的基础。
因此,它起着承上启下的作用。
通过本节课的学习还对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有十分重要的意义。
2、教学目标:知识目标:(1)正确理解二面角及其平面角的概念,并能初步运用它们解决实际问题。
(2)进一步培养学生把空间问题转化为平面问题的化归思想。
能力目标:(1)突出对类比、直觉、发散等探索性思维的培养,从而提高学生的创新能力。
(2)通过对图形的观察、分析、比较和操作来强化学生的动手操作能力。
德育目标:(1)使学生认识到数学知识来自实践,并服务于实践,增强学生应用数学的意识(2)通过揭示线线、线面、面面之间的内在联系,进一步培养学生联系的辩证唯物主义观点。
情感目标:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,拉近学生之间、师生之间的情感距离。
3、重点、难点:重点:“二面角”和“二面角的平面角”的概念难点:“二面角的平面角”概念的形成过程二、教法分析1、教学方法:在引入课题时,我采用多媒体、实物演示法,在新课探究中采用问题启导、活动探究和类比发现法,在形成技能时以训练法、探究研讨法为主。
2、教学控制与调节的措施:本节课由于充分运用了多媒体和实物教具,预计学生对二面角及二面角平面角的概念能够理解,根据学生及教学的实际情况,估计二面角的具体求法一节课内完成有一定的困难,所以将其放在下节课。
3、教学手段:教学手段的现代化有利于提高课堂效益,有利于创新人才的培养,根据本节课的教学需要,确定利用多媒体课件来辅助教学;此外,为加强直观教学,还要预先做好一些二面角的模型。
高中数学教案(15篇)

高中数学教案(15篇)高中数学教案1教学目标1.了解映射的概念,象与原象的概念,和一一映射的概念.(1)明确映射是特殊的对应即由集合,集合和对应法则f三者构成的一个整体,知道映射的特殊之处在于必须是多对一和一对一的对应;(2)能准确使用数学符号表示映射,把握映射与一一映射的区别;(3)会求给定映射的指定元素的象与原象,了解求象与原象的方法.2.在概念形成过程中,培养学生的观察,比较和归纳的能力.3.通过映射概念的学习,逐步提高学生对知识的探究能力.教学建议教材分析(1)知识结构映射是一种特殊的对应,一一映射又是一种特殊的映射,而且函数也是特殊的映射,它们之间的关系可以通过下图表示出来,如图:由此我们可从集合的包含关系中帮助我们把握相关概念间的区别与联系.(2)重点,难点分析本节的教学重点和难点是映射和一一映射概念的形成与认识.①映射的概念是比较抽象的概念,它是在初中所学对应的基础上发展而来.教学中应特别强调对应集合 B中的唯一这点要求的理解;映射是学生在初中所学的对应的基础上学习的,对应本身就是由三部分构成的整体,包括集合A和集合B及对应法则f,由于法则的不同,对应可分为一对一,多对一,一对多和多对多.其中只有一对一和多对一的能构成映射,由此可以看到映射必是“对B中之唯一”,而只要是对应就必须保证让A中之任一与B中元素相对应,所以满足一对一和多对一的对应就能体现出“任一对唯一”.②而一一映射又在映射的基础上增加新的要求,决定了它在学习中是比较困难的.教法建议(1)在映射概念引入时,可先从学生熟悉的对应入手,选择一些具体的生活例子,然后再举一些数学例子,分为一对多、多对一、多对一、一对一四种情况,让学生认真观察,比较,再引导学生发现其中一对一和多对一的对应是映射,逐步归纳概括出映射的基本特征,让学生的认识从感性认识到理性认识.(2)在刚开始学习映射时,为了能让学生看清映射的构成,可以选择用图形表示映射,在集合的选择上可选择能用列举法表示的有限集,法则尽量用语言描述,这样的表示方法让学生可以比较直观的认识映射,而后再选择用抽象的数学符号表示映射,比如:(3)对于学生层次较高的学校可以在给出定义后让学生根据自己的理解举出映射的例子,教师也给出一些映射的例子,让学生从中发现映射的特点,并用自己的语言描述出来,最后教师加以概括,再从中引出一一映射概念;对于学生层次较低的学校,则可以由教师给出一些例子让学生观察,教师引导学生发现映射的特点,一起概括.最后再让学生举例,并逐步增加要求向一一映射靠拢,引出一一映射概念.(4)关于求象和原象的问题,应在计算的过程中总结方法,特别是求原象的方法是解方程或方程组,还可以通过方程组解的不同情况(有唯一解,无解或有无数解)加深对映射的认识.(5)在教学方法上可以采用启发,讨论的形式,让学生在实例中去观察,比较,启发学生寻找共性,共同讨论映射的特点,共同举例,计算,最后进行小结,教师要起到点拨和深化的作用.教学设计方案2.1映射教学目标(1)了解映射的概念,象与原象及一一映射的概念.(2)在概念形成过程中,培养学生的观察,分析对比,归纳的能力.(3)通过映射概念的学习,逐步提高学生的探究能力.教学重点难点::映射概念的形成与认识.教学用具:实物投影仪教学方法:启发讨论式教学过程:一、引入在初中,我们已经初步探讨了函数的定义并研究了几类简单的常见函数.在高中,将利用前面集合有关知识,利用映射的观点给出函数的定义.那么映射是什么呢?这就是我们今天要详细的概念.二、新课在前一章集合的初步知识中,我们学习了元素与集合及集合与集合之间的关系,而映射是重点研究两个集合的元素与元素之间的对应关系.这要先从我们熟悉的对应说起(用投影仪打出一些对应关系,共6个)我们今天要研究的是一类特殊的对应,特殊在什么地方呢?提问1:在这些对应中有哪些是让A中元素就对应B中唯一一个元素?让学生仔细观察后由学生回答,对有争议的,或漏选,多选的可详细说明理由进行讨论.最后得出(1),(2),(5),(6)是符合条件的(用投影仪将这几个集中在一起)提问2:能用自己的语言描述一下这几个对应的共性吗?经过师生共同推敲,将映射的定义引出.(主体内容由学生完成,教师做必要的补充)高中数学教案2教学目标:(1)了解坐标法和解析几何的意义,了解解析几何的基本问题.(2)进一步理解曲线的方程和方程的曲线.(3)初步掌握求曲线方程的方法.(4)通过本节内容的教学,培养学生分析问题和转化的能力.教学重点、难点:求曲线的方程.教学用具:计算机.教学方法:启发引导法,讨论法.教学过程:【引入】1.提问:什么是曲线的方程和方程的曲线.学生思考并回答.教师强调.2.坐标法和解析几何的意义、基本问题.对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:(1)根据已知条件,求出表示平面曲线的方程.(2)通过方程,研究平面曲线的性质.事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.【问题】如何根据已知条件,求出曲线的方程.【实例分析】例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.首先由学生分析:根据直线方程的知识,运用点斜式即可解决.解法一:易求线段的中点坐标为(1,3),由斜率关系可求得l的斜率为于是有即l的方程为①分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?(通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).证明:(1)曲线上的点的坐标都是这个方程的解.设是线段的垂直平分线上任意一点,则即将上式两边平方,整理得这说明点的坐标是方程的解.(2)以这个方程的解为坐标的点都是曲线上的点.设点的坐标是方程①的任意一解,则到、的距离分别为所以,即点在直线上.综合(1)、(2),①是所求直线的方程.至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:解法二:设是线段的垂直平分线上任意一点,也就是点属于集合由两点间的距离公式,点所适合的条件可表示为将上式两边平方,整理得果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.让我们用这个方法试解如下问题:例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.求解过程略.【概括总结】通过学生讨论,师生共同总结:分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:(1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;(2)写出适合条件的点的集合;(3)用坐标表示条件,列出方程;(4)化方程为最简形式;(5)证明以化简后的方程的解为坐标的点都是曲线上的点.一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.下面再看一个问题:例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合由距离公式,点适合的条件可表示为①将①式移项后再两边平方,得化简得由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.【练习巩固】题目:在正三角形内有一动点,已知到三个顶点的距离分别为、、,且有,求点轨迹方程.分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.根据条件,代入坐标可得化简得①由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为【小结】师生共同总结:(1)解析几何研究研究问题的方法是什么?(2)如何求曲线的方程?(3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?【作业】课本第72页练习1,2,3;高中数学教案3[学习目标](1)会用坐标法及距离公式证明Cα+β;(2)会用替代法、诱导公式、同角三角函数关系式,由C α+β推导Cα—β、Sα±β、Tα±β,切实理解上述公式间的关系与相互转化;(3)掌握公式Cα±β、Sα±β、Tα±β,并利用简单的三角变换,解决求值、化简三角式、证明三角恒等式等问题。
高数教学设计(共8篇)

高数教学设计〔共8篇〕第1篇:高数教案设计教案设计教材:《高等数学》〔第三版〕上册,第一章函数与极限,第三节函数的极限。
一、方案学时本小节分为两个局部,对于初学者来说有一定的难度,所以也就分为两个学时进展教学。
第一学时:自变量趋于有限值时函数的极限。
第二学时:自变量趋于无穷大时函数的极限。
〔本次教案主要说明第一学时的内容。
〕二、教材处理通过第一节关于函数根本知识的学习,以及高中时已经对函数极限有过一定的学习理解与铺垫,所以就要通过一些根本的例如,来一步步引导学生接触本节的内容,并进一步学习与研究。
来扩展同学们的知识面,并易于承受新内容。
三、教学目的知识和才能目的:1、通过教学过程培养学生的思维才能、运算才能、以及数学创新意识。
让你给同学们积极考虑、敢于提出自己的想法。
2、让同学们掌握一些本节教学中所涉及的技能技巧。
3、通过数学知识为载体,增强学生们的逻辑思维才能,进步学习的兴趣和才能。
传达出数学的人文价值。
四、教学难点和重点1、如何让学生较快的承受新的理念与知识,而改掉以前类似的学习中的定势与习惯性思维。
2、让学生们纯熟的运用书中所涉及的公式与理解一些重要的定理,从而更好的做题。
五、教学设计1、总体思路先通过在黑板上写一些以前学过的相关知识的例题,让同学们到黑板上去做。
然后,对题目做一些变形,就成了本小节所学的知识,此时,就要通过一步步的引导,让同学们呢理解步骤的方法技巧。
最后,就是先要学生们自己总结本节的内容与规律技巧,之后,再告诉同学们本节所需要重点掌握的知识。
2、教学过程〔1〕先让同学们大致看一下本小节内容,对本节内容有一定的理解。
〔4分钟〕设计说明:通过让同学们进展自主学习,对本小节内容有大志的理解,以便于学生更易于承受新知识。
〔2〕通过小例子让大家熟悉并初步认识一下极限的概念。
如:问题:当x无限接近于1的时候,函数f(x)=2x-1的取值。
解析:问题可转化成|f(x)-1|最小取值,因为|f(x)-1|可以无限变小,也就是无限趋近于0,所以当x无限接近于1的时候,函数f(x)=2x-1的取值就是0.〔5分钟〕设计说明:通过引导学生们的思维,带到新的内容,培养学生们的逻辑思维才能以及发撒思维才能。
数学高中教学设计(优秀5篇)

数学高中教学设计(优秀5篇)高中数学教学设计篇一教学目标1.掌握等比数列前项和公式,并能运用公式解决简单的问题。
(1)理解公式的推导过程,体会转化的思想;(2)用方程的思想认识等比数列前项和公式,利用公式知三求一;与通项公式结合知三求二;2.通过公式的灵活运用,进一步渗透方程的思想、分类讨论的思想、等价转化的思想。
3.通过公式推导的教学,对学生进行思维的严谨性的训练,培养他们实事求是的科学态度。
教学建议教材分析(1)知识结构先用错位相减法推出等比数列前项和公式,而后运用公式解决一些问题,并将通项公式与前项和公式结合解决问题,还要用错位相减法求一些数列的`前项和。
(2)重点、难点分析教学重点、难点是等比数列前项和公式的推导与应用。
公式的推导中蕴含了丰富的数学思想、方法(如分类讨论思想,错位相减法等),这些思想方法在其他数列求和问题中多有涉及,所以对等比数列前项和公式的要求,不单是要记住公式,更重要的是掌握推导公式的方法。
等比数列前项和公式是分情况讨论的,在运用中要特别注意和两种情况。
教学建议(1)本节内容分为两课时,一节为等比数列前项和公式的推导与应用,一节为通项公式与前项和公式的综合运用,另外应补充一节数列求和问题。
(2)等比数列前项和公式的推导是重点内容,引导学生观察实例,发现规律,归纳总结,证明结论。
(3)等比数列前项和公式的推导的其他方法可以给出,提高学生学习的兴趣。
(4)编拟例题时要全面,不要忽略的情况。
(5)通项公式与前项和公式的综合运用涉及五个量,已知其中三个量可求另两个量,但解指数方程难度大。
(6)补充可以化为等差数列、等比数列的数列求和问题。
教学设计示例课题:等比数列前项和的公式教学目标(1)通过教学使学生掌握等比数列前项和公式的推导过程,并能初步运用这一方法求一些数列的前项和。
(2)通过公式的推导过程,培养学生猜想、分析、综合能力,提高学生的数学素质。
(3)通过教学进一步渗透从特殊到一般,再从一般到特殊的辩证观点,培养学生严谨的学习态度。
高中数学教学设计(精选7篇)

高中数学教学设计(精选7篇)高中数学教学设计精选篇1一、指导思想:使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。
具体目标如下。
1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学中的作用。
通过不同形式的自主学、探究活动,体验数学发现和创造的历程。
2.提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。
3.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。
4.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出判断。
5.提高学数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。
6.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。
二、教材特点:我们所使用的教材是人教版《普通高中课程标准实验教科书?数学(A版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可接受性等到,具有如下特点:1.“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学_。
2.“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。
3.“科学性”与“思想性”:通过不同数学内容的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学数学地思考问题的方式,提高数学思维能力,培育理性精神。
4.“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。
三、教法分析:1.选取与内容密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以达到培养其兴趣的目的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
23(2)
(1)
(3)
log0.489
0.489
log70
.6
70.6
比、分析、
归纳的能
力。最后,
将学生归纳
的结论进行
授
新
思考:你发现了什么?
logN
对数恒等式:aN
a
小结,从而
得到对数的
课基本性质。
探究活动4
求下列各式的值:
4
log334(2)
(1)
8
(3)
lne8
5
log00.95
.9
讲
授
新
课
思考:你发现了什么?
n
对数恒等式:logan
a
3
3求下列各式的值:
(1)log64
2(2)log927
些问题。培
养学生严谨
的思维品
质。
四、对数的性质(12分钟)
探究活动由探究活动1
讲
授
新
课
求下列各式的值:
(1)log310(2)lg10
(3)log0.510(4)ln10
学生独立完
成后,通过
思考,然后
分小组进行
思考:你发现了什么?
讨论,最后
“1”的对数等于零,即log10
三、设计思想
学生是教学的主体,本节课要给学生提供各种参与机会。为了调动学生学习
的积极性,使学生化被动为主动。本节课我利用多媒体辅助教学,教学中我引导
学生从实例出发,从中认识对数的模型,体会引入对数的必要性。在教学重难点
上,我步步设问、启发学生的思维,通过课堂练习、探究活动,学生讨论的方式来
加深理解,很好地突破难点和提高教学效率。让学生在教师的引导下,充分地动
手、动口、动脑,掌握学习的主动权。
四、教学目标
1、理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;
理解对数的性质,掌握以上知识并形成技能。
2、通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观
察分析得出对数的概念及对数式与指数式的互化。
3、通过学生分组探究进行活动,掌握对数的重要性质。通过做练习,使学
中起十分重要的作用。通过本节课的学习,可以让学生理解对数的概念,从而进
一步深化对对数模型的认识与理解,为学习对数函数作好准备。同时,通过对数
概念的学习,对培养学生对立统一,相互联系、相互转化的思想,培养学生的逻
辑思维能力都具有重要的意义。
二、学生学习情况分析
现阶段大部分学生学习的自主性较差,主动性不够,学习有依赖性,且学习
生感受到理论与实践的统一。
4、培养学生的类比、分析、归纳能力,严谨的思维品质以及在学习过程中培
养学生探究的意识。
五、教学重点与难点
重点:(1)对数的概念;(2)对数式与指数式的相互转化。
难点:(1)对数概念的理解;(2)对数性质的理解。
六、教学过程设计
教
学
环
节
教学程序及设计设计意图
引例(3分钟)
1、一尺之棰,日取其半,万世不竭。
的信心不足,对数学存在或多或少的恐惧感。通过对指数与指数幂的运算的学习,
学生已多次体会了对立统一、相互联系、相互转化的思想,并且探究能力、逻辑
思维能力得到了一定的锻炼。因此,学生已具备了探索发现研究对数定义的认识
基础,故应通过指导,教会学生独立思考、大胆探索和灵活运用类比、转化、归
纳等数学思想的学习方法。
a类比:
得出结论。
通过练习与
0
a1
探究活动2
求下列各式的值:
(1)log331(2)lg101
01(4)lne1
.5
(3)log0.5
讨论的方
式,让学生
自己得出结
论,从而更
能好地理解
思考:你发现了什么?
和掌握对数
底数的对数等于“1”,即loga1
a类比:
1
aa
的性质。培
养学生类
讲
探究活动3
求下列各式的值:
以10为底的对数log10N,简记为: lgN
对数一定要
掌握,为以②自然对数:
以无理数e=2.71828⋯为底的对数的对数logN
e
后的解题以
及换底公式简记为: lnN . (在科学技术中,常常使用以e为底的
做准备。对数)
注意:两个重要对数的书写
课堂练习(7分钟)
本练习让学
1将下列指数式写成对数式:
数定义中底
是
b
a=N那么数b叫做a为底N的对数,记作
数的限制,
为以后对数
logNb,a叫做对数的底数,N叫做真数。
a
函数定义域
的确定作准
注意:①底数的限制:a>0且a≠1
备。同时注
②对数的书写格式意对数的书
写,避免因
logaN
书写不规范
而产生的错
误。
二、对数式与指数式的互化:(5分钟)
让学生了解
对数与指数
的关系,明
确对数式与
讲指数式形式
授的区别,a、
新b和N位置
课幂底数←a→对数底数
的不同,及
指数←b→对数
它们的含
幂←N→真数
义。互化体
思考:现了等价转
①为什么对数的定义中要求底数a>0且a≠1?
化这个重要
②是否是所有的实数都有对数呢?的数学思
负数和零没有对数想。
三、两个重要对数(2分钟)
①常用对数:这两个重要
让学生根据
(1)取5次,还有多长?
题意,设未
(2)取多少次,还有0.125尺?
知数,列出
分析:
方程。这两
(1)为同学们熟悉的指数函数的模型,易得
个例子都出
创
设
情
1
2
5
1
32
现指数是未
知数x的情
况,让学生
境
引
x
1
(2)可设取x次,则有0.125
2
思考如何表
示x,激发
其对对数的
入
新
课
x
1
抽象出:0.125
4
(1)216
(2)
3
3
1
27
生独立阅读
课本P69例
1和例2后
思考完成,
b
1
a
(3)520
(4)0.45
2
2将下列对数式写成指数式:
从而熟悉对
数式与指数
式的相互转
化,加深对
对数的概念
(1)log1253
5(2)log32
1
的理解。并
要求学生指
出对数式与
指数式互化
时应注意哪
(3)log1.069
10a
2
x?
兴趣,培养
学生的探究
意识。生活
2、2002年我国GPD为a亿元,如果每年平均增
及科研中还
长8%,那么经过多少年GPD是2002年的2倍?
有很多这样
x
分析:设经过x年,则有(18%)2
的例子,因
此引入对数
xx?
抽象出:(18%)2
是必要的。
一、对数的概念(3分钟)
正确理解对
一般地,如果a(a>0且a≠1)的b次幂等于N,就
高中数学教学设计:对数的概念
四川省中江城北中学
一、教学内容分析
本节课是新课标高中数学A版必修①中第பைடு நூலகம்章对数函数内容的第一课时,
也就是对数函数的入门。对数函数对于学生来说是一个全新的函数模型,学习起
来比较困难。而对数函数又是本章的重要内容,在高考中占有一定的分量,它是
在指数函数的基础上,对函数类型的拓广,同时在解决一些日常生活问题及科研