BP神经网络原理及应用(最新知识点)

合集下载

bp使用方法

bp使用方法

bp使用方法
BP(Back Propagation)是一种常用的神经网络训练算法,用于训练多层感知器(MLP)等神经网络。

以下是BP的用方法:
1.初始化神经网络:首先,需要初始化一个神经网络,包括输入层、隐藏层和输出层。

每个层包含一定数量的神经元,每个神经元都通过权重与其他神经元相连。

权重初始化为随机值。

2.前向传播:输入数据通过输入层进入神经网络,然后依次经过隐藏层和输出层,最终得到输出结果。

在前向传播过程中,每个神经元将输入值与其权重相乘,加上偏置项,然后通过激活函数得到输出值。

3.计算误差:根据实际标签和神经网络的输出结果,计算误差。

误差是实际标签与输出结果之间的差异,通常使用平方误差或交叉熵误差等函数计算。

4.反向传播:根据计算出的误差,通过反向传播算法更新神经网络的权重。

反向传播算法将误差从输出层逐层反向传播到输入层,并根据梯度下降法更新权重。

5.迭代训练:重复步骤2-4多次,直到神经网络的输出结果收敛或达到预设的训练轮数。

在每次迭代中,权重都会被更新以减小误差。

6.测试与预测:训练完成后,可以使用测试数据对神经网络进行测试或进行预测。

将测试数据输入神经网络,得到输出结果,并根据输出结果进行评估和比较。

BP算法是一种监督学习算法,需要使用已知标签的数据进行训练。

在训练过程中,需要注意选择合适的激活函数、学习率和迭代次数等参数,以获得最佳的训练效果。

同时,为了避免过拟合和欠拟合等问题,可以使用正则化、Dropout 等技术来优化神经网络的性能。

BP神经网络算法

BP神经网络算法

BP神经网络算法一、算法原理在BP神经网络中,每个神经元都与上一层的所有神经元以及下一层的所有神经元相连。

每个连接都有一个权重,表示信息传递的强度或权重。

算法流程:1.初始化权重和阈值:通过随机初始化权重和阈值,为网络赋予初值。

2.前向传播:从输入层开始,通过激活函数计算每个神经元的输出值,并将输出传递到下一层。

重复该过程,直到达到输出层。

3.计算误差:将输出层的输出值与期望输出进行比较,计算输出误差。

4.反向传播:根据误差反向传播,调整网络参数。

通过链式求导法则,计算每层的误差并更新对应的权重和阈值。

5.重复训练:不断重复前向传播和反向传播的过程,直到达到预设的训练次数或误差限度。

优缺点:1.优点:(1)非线性建模能力强:BP神经网络能够很好地处理非线性问题,具有较强的拟合能力。

(2)自适应性:网络参数可以在训练过程中自动调整,逐渐逼近期望输出。

(3)灵活性:可以通过调整网络结构和参数来适应不同的问题和任务。

(4)并行计算:网络中的神经元之间存在并行计算的特点,能够提高训练速度。

2.缺点:(1)容易陷入局部最优点:由于BP神经网络使用梯度下降算法进行权重调整,容易陷入局部最优点,导致模型精度不高。

(2)训练耗时:BP神经网络的训练过程需要大量的计算资源和耗时,特别是对于较大规模的网络和复杂的输入数据。

(3)需要大量样本:BP神经网络对于训练样本的要求较高,需要足够多的训练样本以避免过拟合或欠拟合的情况。

三、应用领域1.模式识别:BP神经网络可以用于图像识别、手写字符识别、语音识别等方面,具有优秀的分类能力。

2.预测与回归:BP神经网络可以应用于股票预测、销量预测、房价预测等问题,进行趋势预测和数据拟合。

3.控制系统:BP神经网络可以用于自适应控制、智能控制、机器人运动控制等方面,提高系统的稳定性和精度。

4.数据挖掘:BP神经网络可以应用于聚类分析、异常检测、关联规则挖掘等方面,发现数据中的隐藏信息和规律。

bp人工神经网络的原理及其应用

bp人工神经网络的原理及其应用

廷塑签凰.B P人工神经网络的原理及其应用焦志钦(华南理工大学,广东广州510000)f}商鞫人工神经网络是计算智能和机器学习研究中最活跃的分交之一。

本文对神经网络中的BP算法的原理做了详尽的阐述,并用M a da b 程序对其进行了应用。

表明它具有强大的拟合功能。

房;建闭B P算法;M adab1人工神经网络的发展人工神经网络是一个由多个简单神经元相互关联构成的能够实现某种特定功能的并行分布式处理器。

单个神经元由杈值、偏置值、净输^和传输函数组成。

多输入单神经元模型如图1—1所示。

岛见:●仇图1—1多输入单神经元模型其中P为输入值,w.为连接权值,b为偏置值,f似o√为传输函数。

神经元值n=w p+b,输出值为a=f M。

人工神经网络的第一个应用是感知机网络和联想学习规则。

不幸的是,后来研究表明基本的感知机网络只能解决有限的几类问题。

单层感知机只能解决线性分类问题。

不能解决异或问题,也不能解决非线性问题,因此就有单层感知机发展为多层感知机。

多层神经网络中—个重要的方法是B P算法。

BP网络属于多层前向网络,如图1—2所示:卫咒鼍旬k图卜2卵网络模型2B P算法B P网络计算方法如式(2—1)所示,为简化,将神经元的阈值8视为连接权值来处理,并令xo=go=ho=一1,故式(5-1)可以改写为式(2—2)。

92‘i互%蕾一8少j=I,2,…,,17也=,f∑峭一日.J j卢7,22,…,n2(2,1)^=,f2郴一日。

Jj卢7,,…,(2—1)心y,--f凭峭叫i j=1,2,…,n29=7i互w刚∥j=1,2,..’,几7^-f嚷郴一日小』=7,2,…,n2(2—2)M=f f三峭一日,Jj j=l,2,…,n2,=,B P算法是一种有导师的学习算法,这种算法通常是应用最速下降法。

图2—1描述了B P网络的一部分,其中包括工作信号(实线)和误差信号(虚线)两部分。

2002。

10。

1。

0。

’。

年。

bp神经网络的原理

bp神经网络的原理

bp神经网络的原理BP神经网络(也称为反向传播神经网络)是一种基于多层前馈网络的强大机器学习模型。

它可以用于分类、回归和其他许多任务。

BP神经网络的原理基于反向传播算法,通过反向传播误差来调整神经网络的权重和偏差,从而使网络能够学习和适应输入数据。

BP神经网络的基本结构包括输入层、隐藏层和输出层。

每个层都由神经元组成,每个神经元都与上一层的所有神经元连接,并具有一个权重值。

神经元的输入是上一层的输出,通过加权和和激活函数后得到输出。

通过网络中的连接和权重,每层的输出被传递到下一层,最终得到输出层的结果。

BP神经网络的训练包括两个关键步骤:前向传播和反向传播。

前向传播是指通过网络将输入数据从输入层传递到输出层,计算网络的输出结果。

反向传播是基于网络输出结果与真实标签的误差,从输出层向输入层逆向传播误差,并根据误差调整权重和偏差。

在反向传播过程中,通过计算每个神经元的误差梯度,我们可以使用梯度下降算法更新网络中的权重和偏差。

误差梯度是指误差对权重和偏差的偏导数,衡量了误差对于权重和偏差的影响程度。

利用误差梯度,我们可以将误差从输出层反向传播到隐藏层和输入层,同时更新每层的权重和偏差,从而不断优化网络的性能。

通过多次迭代训练,BP神经网络可以逐渐减少误差,并提高对输入数据的泛化能力。

然而,BP神经网络也存在一些问题,如容易陷入局部最优解、过拟合等。

为了克服这些问题,可以采用一些技巧,如正则化、随机初始权重、早停等方法。

总结而言,BP神经网络的原理是通过前向传播和反向传播算法来训练网络,实现对输入数据的学习和预测。

通过调整权重和偏差,网络可以逐渐减少误差,提高准确性。

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究-综述(最新整理)

BP神经网络及深度学习研究摘要:人工神经网络是一门交叉性学科,已广泛于医学、生物学、生理学、哲学、信息学、计算机科学、认知学等多学科交叉技术领域,并取得了重要成果。

BP(Back Propagation)神经网络是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

本文将主要介绍神经网络结构,重点研究BP神经网络原理、BP神经网络算法分析及改进和深度学习的研究。

关键词:BP神经网络、算法分析、应用1 引言人工神经网络(Artificial Neural Network,即ANN ),作为对人脑最简单的一种抽象和模拟,是人们模仿人的大脑神经系统信息处理功能的一个智能化系统,是20世纪80 年代以来人工智能领域兴起的研究热点。

人工神经网络以数学和物理方法以及信息处理的角度对人脑神经网络进行抽象,并建立某种简化模型,旨在模仿人脑结构及其功能的信息处理系统。

人工神经网络最有吸引力的特点就是它的学习能力。

因此从20世纪40年代人工神经网络萌芽开始,历经两个高潮期及一个反思期至1991年后进入再认识与应用研究期,涌现出无数的相关研究理论及成果,包括理论研究及应用研究。

最富有成果的研究工作是多层网络BP算法,Hopfield网络模型,自适应共振理论,自组织特征映射理论等。

因为其应用价值,该研究呈愈演愈烈的趋势,学者们在多领域中应用[1]人工神经网络模型对问题进行研究优化解决。

人工神经网络是由多个神经元连接构成,因此欲建立人工神经网络模型必先建立人工神经元模型,再根据神经元的连接方式及控制方式不同建立不同类型的人工神经网络模型。

现在分别介绍人工神经元模型及人工神经网络模型。

1.1 人工神经元模型仿生学在科技发展中起着重要作用,人工神经元模型的建立来源于生物神经元结构的仿生模拟,用来模拟人工神经网络[2]。

人们提出的神经元模型有很多,其中最早提出并且影响较大的是1943年心理学家McCulloch和数学家W. Pitts在分析总结神经元基本特性的基础上首先提出的MP模型。

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。

它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。

1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。

输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。

线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。

非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。

激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。

2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。

常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。

3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。

反向传播算法的核心思想是使用链式法则。

首先计算输出层的梯度,即损失函数对输出层输出的导数。

然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。

接着继续向输入层传播,直到更新输入层的权重和偏置。

在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。

4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。

权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。

梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。

bp算法原理

bp算法原理

bp算法原理BP算法原理BP算法是神经网络中应用最广泛的一种学习算法,它的全称是“反向传播算法”,用于训练多层前馈神经网络。

BP算法基于误差反向传播原理,即先通过前向传播计算网络输出值,再通过反向传播来调整各个神经元的权重,使误差函数最小化。

BP算法的步骤如下:1. 初始化:随机初始化网络每个神经元的权重,包括输入层、隐藏层和输出层的神经元的权重。

2. 前向传播:将训练样本输送到输入层,通过乘积和运算得到每个隐藏层神经元的输出,再通过激活函数得到隐藏层神经元的实际输出值。

然后,将隐藏层的输出值输送到输出层,按照同样的方法计算输出层神经元的输出值。

3. 反向传播:通过误差函数计算输出层神经元的误差值,然后反向传播计算隐藏层神经元的误差值。

4. 权值调整:按照梯度下降法,计算误差对每个神经元的权重的偏导数,根据偏导数的大小来调整各个神经元的权重,使误差逐渐减小。

5. 重复步骤2~4,直到误差小到一定程度或者训练次数达到预定值。

其中,误差函数可以选择MSE(Mean Squared Error)函数,也可以选择交叉熵函数等其他函数,不同的函数对应不同的优化目标。

BP算法原理的理解需要理解以下几个方面:1. 神经元的输入和输出:神经元的输入是由上一层神经元的输出和它们之间的权重乘积的和,加上神经元的偏置值(常数)。

神经元的输出是通过激活函数把输入值转化为输出值。

2. 前向传播和反向传播:前向传播是按照输入层到输出层的顺序计算神经元的输出值。

反向传播是一种误差反向传播的过程,它把误差从输出层往回传递,计算出每个神经元的误差,然后调整各个神经元的权重来使误差逐渐减小。

3. 梯度下降法:梯度下降法是一种优化算法,根据误差函数的梯度方向来寻找误差最小的点。

BP算法就是基于梯度下降法来优化误差函数的值,使神经网络的输出结果逼近实际值。

综上所述,BP算法是一种常用的神经网络学习算法,它利用前向传播和反向传播的过程来调整神经元的权重,不断优化误差函数的值,从而使神经网络的输出结果更加准确。

bp神经网络

bp神经网络

BP神经网络框架BP(Back Propagation)网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。

它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hide layer)和输出层(output layer)。

1BP神经网络基本原理BP神经网络的基本原理可以分为如下几个步骤:(1)输入信号Xi→中间节点(隐层点)→输出节点→输出信号Yk;(2)网络训练的每个样本包括输入向量X和期望输出量t,网络输出值Y 和期望输出值t之间的偏差。

(3)通过调整输入节点与隐层节点的联接强度取值Wij和隐层节点与输出节点之间的联接强度取值Tjk,以及阈值,使误差沿梯度方向下降。

(4)经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练到此停止。

(5)经过上述训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线性转换的信息。

2BP神经网络涉及的主要模型和函数BP神经网络模型包括输入输出模型、作用函数模型、误差计算模型和自学习模型。

输出模型又分为:隐节点输出模型和输出节点输出模型。

下面将逐个介绍。

(1)作用函数模型作用函数模型,又称刺激函数,反映下层输入对上层节点刺激脉冲强度的函数。

一般取(0,1)内的连续取值函数Sigmoid函数:f x=11+e^(−x)(2)误差计算模型误差计算模型反映神经网络期望输出与计算输出之间误差大小的函数:Ep=12(tpi−Opi)2其中,tpi为i节点的期望输出值;Opi为i节点的计算输出值。

(3)自学习模型自学习模型是连接下层节点和上层节点之间的权重矩阵Wij的设定和修正过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

BP神经网络原理及应用1 人工神经网络简介1。

1生物神经元模型神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。

据神经生物学家研究的结果表明,人的大脑一般有1011个神经元。

每个神经1010元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支--树突组成。

轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。

其末端的许多神经末梢使得兴奋可以同时送给多个神经元。

树突的功能是接受来自其它神经元的兴奋.神经元细胞体将接受到的所有信号进行简单地处理后由轴突输出.神经元的树突与另外的神经元的神经末梢相连的部分称为突触....感谢聆听...1.2人工神经元模型神经网络是由许多相互连接的处理单元组成。

这些处理单元通常线性排列成组,称为层。

每一个处理单元有许多输入量,而对每一个输入量都相应有一个相关联的权重。

处理单元将输入量经过加权求和,并通过传递函数的作用得到输出量,再传给下一层的神经元。

目前人们提出的神经元模型已有很多,其中提出最早且影响最大的是1943年心理学家McCulloch和数学家Pitts在分析总结神经元基本特性的基础上首先提出的M—P模型,它是大多数神经网络模型的基础。

)()(1∑=-=n i j i ji j x w f t Y θ(1。

1)式(1。

1)中,j为神经元单元的偏置(阈值),ji w为连接权系数(对于激发状态,ji w 取正值,对于抑制状态,ji w 取负值),n 为输入信号数目,jY 为神经元输出,t 为时间,f ()为输出变换函数,有时叫做激发或激励函数,往往采用0和1二值函数或S形函数.1.3人工神经网络的基本特性人工神经网络由神经元模型构成;这种由许多神经元组成的信息处理网络具有并行分布结构.每个神经元具有单一输出,并且能够与其它神经元连接;存在许多(多重)输出连接方法,每种连接方法对应一个连接权系数。

严格地说,人工神经网络是一种具有下列特性的有向图:...感谢聆听...(1)对于每个节点存在一个状态变量xi ;(2)从节点i 至节点j ,存在一个连接权系数wji;(3)对于每个节点,存在一个阈值j;(4)对于每个节点,定义一个变换函数(,,),j i ji j f x w i j θ≠,对于最一般的情况,此函数取()jji i j i f w x θ-∑形式。

1.4 人工神经网络的主要学习算法神经网络主要通过两种学习算法进行训练,即指导式(有师)学习算法和非指导式(无师)学习算法。

此外,还存在第三种学习算法,即强化学习算法;可把它看做有师学习的一种特例。

(1)有师学习 有师学习算法能够根据期望的和实际的网络输出(对应于给定输入)间的差来调整神经元间连接的强度或权。

因此,有师学习需要有个老师或导师来提供期望或目标输出信号。

有师学习算法的例子包括 规则、广义规则或反向传播算法以及LVQ 算法等。

...感谢聆听...(2)无师学习 无师学习算法不需要知道期望输出。

在训练过程中,只要向神经网络提供输入模式,神经网络就能够自动地适应连接权,以便按相似特征把输入模式分组聚集。

无师学习算法的例子包括Kohonen 算法和Carp ente r-Gross berg 自适应共振理论(A RT )等。

...感谢聆听...(3)强化学习 如前所述,强化学习是有师学习的特例。

它不需要老师给出目标输出。

强化学习算法采用一个“评论员”来评价与给定输入相对应的神。

2 BP 神经网络原理2.1 基本BP 算法公式推导基本BP 算法包括两个方面:信号的前向传播和误差的反向传播.即计算实际输出时按从输入到输出的方向进行,而权值和阈值的修正从输出到输入的方向进行.图2—1 BP 网络结构Fi g。

2—1 Stru ctur e of BP ne twork 图中:jx 表示输入层第j 个节点的输入,j =1,…,M; ij w 表示隐含层第i 个节点到输入层第j 个节点之间的权值;i θ表示隐含层第i 个节点的阈值; 1a1θ ki w ij wL ak a q θ i θ … … … …… … 1x j x M x 1o k o L o 输出变量 输入变量 输入层 隐含层 输出层 φ φ φ ψψψ()x φ表示隐含层的激励函数;ki w 表示输出层第k 个节点到隐含层第i 个节点之间的权值,i =1,…,q ;k a 表示输出层第k 个节点的阈值,k=1,…,L ;()x ψ表示输出层的激励函数;ko 表示输出层第k 个节点的输出. (1)信号的前向传播过程隐含层第i 个节点的输入net i :1M i ij j ij net w x θ==+∑(3—1)隐含层第i 个节点的输出y i :1()()M i i ij j i j y net w x φφθ===+∑(3-2)输出层第k 个节点的输入net k :111()q q M k ki i k ki ij j i ki i j net w y a w w x a φθ====+=++∑∑∑(3—3)输出层第k个节点的输出o k :111()()()qq M k k ki i k ki ij j i k i i j o net w y a w w x a ψψψφθ===⎛⎫==+=++ ⎪⎝⎭∑∑∑ (3-4)(2)误差的反向传播过程误差的反向传播,即首先由输出层开始逐层计算各层神经元的输出误差,然后根据误差梯度下降法来调节各层的权值和阈值,使修改后的网络的最终输出能接近期望值。

对于每一个样本p 的二次型误差准则函数为E p : 211()2Lp k k k E T o ==-∑ (3—5) 系统对P 个训练样本的总误差准则函数为:2111()2P Lp p k k p k E T o ===-∑∑ (3-6)根据误差梯度下降法依次修正输出层权值的修正量Δw ki ,输出层阈值的修正量Δak ,隐含层权值的修正量Δw ij,隐含层阈值的修正量iθ∆. ki ki w Ew ∂∂-=∆η;k k Ea a η∂∆=-∂;ij ij E w w η∂∆=-∂;i i Eθηθ∂∆=-∂ (3-7)输出层权值调整公式:ki k k k k ki k k ki ki w net net o o E w net net E w E w ∂∂∂∂∂∂-=∂∂∂∂-=∂∂-=∆ηηη (3-8)输出层阈值调整公式:k k k k k k k k k k net o net E E E a a net a o net a ηηη∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3—9)隐含层权值调整公式:i i i ij ij i ij i i ij net y net E E E w w net w y net w ηηη∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3—10) 隐含层阈值调整公式:i i i i i i i i i i net y net E E E net y net θηηηθθθ∂∂∂∂∂∂∆=-=-=-∂∂∂∂∂∂ (3-11) 又因为:11()P L p p k k p k k E T o o ==∂=--∂∑∑ (3-12)i ki k y w net =∂∂,1k k net a ∂=∂,i j ij net x w ∂=∂,1i i net θ∂=∂(3-13) 11()'()P L p p k k k ki p k i E T o net w y ψ==∂=--⋅⋅∂∑∑ (3-14) )(i i i net net y φ'=∂∂ (3—15)'()k k k o net net ψ∂=∂(3-16) 所以最后得到以下公式:()11()'P L p p ki k k k ip k w T o net y ηψ==∆=-⋅⋅∑∑ (3-17)()11()'P L p p k k k k p k a T o net ηψ==∆=-⋅∑∑ (3—18)()11()'()P L p p ij k k k ki i j p k w T o net w net x ηψφ=='∆=-⋅⋅⋅⋅∑∑ (3-19)()11()'()P L p p i k k k ki i p k T o net w net θηψφ=='∆=-⋅⋅⋅∑∑ (3-20)图2-2 BP 算法程序流程图Fig.2—2 The flowchart of t he BP alg orithm progr am2。

2 基本BP算法的缺陷BP 算法因其简单、易行、计算量小、并行性强等优点,目前是神经网络训练采用最多也是最成熟的训练算法之一.其算法的实质是求解误结 束参数初始化:最大训练次数,学习精度,隐节点数,初始权值、阈值,初始学习速率等批量输入学习样本并且对输入和输出量进行归一化处理计算各层的输入和输出值计算输出层误差E (q )E (q )<ε修正权值和阈值Yes NYes开 始差函数的最小值问题,由于它采用非线性规划中的最速下降方法,按误差函数的负梯度方向修改权值,因而通常存在以下问题:(1) 学习效率低,收敛速度慢(2) 易陷入局部极小状态2。

3 BP 算法的改进2.3.1附加动量法附加动量法使网络在修正其权值时,不仅考虑误差在梯度上的作用,而且考虑在误差曲面上变化趋势的影响。

在没有附加动量的作用下,网络可能陷入浅的局部极小值,利用附加动量的作用有可能滑过这些极小值.该方法是在反向传播法的基础上在每一个权值(或阈值)的变化上加上一项正比于前次权值(或阈值)变化量的值,并根据反向传播法来产生新的权值(或阈值)变化。

带有附加动量因子的权值和阈值调节公式为:)()1()1(k w mc p mc k w ij j i ij ∆+-=+∆ηδ)()1()1(k b mc mc k b i i i ∆+-=+∆ηδ其中k为训练次数,mc 为动量因子,一般取0.95左右。

附加动量法的实质是将最后一次权值(或阈值)变化的影响,通过一个动量因子来传递。

当动量因子取值为零时,权值(或阈值)的变化仅是根据梯度下降法产生;当动量因子取值为1时,新的权值(或阈值)变化则是设置为最后一次权值(或阈值)的变化,而依梯度法产生的变化部分则被忽略掉了.以此方式,当增加了动量项后,促使权值的调节向着误差曲面底部的平均方向变化,当网络权值进入误差曲面底部的平坦区时,i 将变得很小,于是)()1(k w k w ij ij ∆=+∆,从而防止了0=∆ijw 的出现,有助于使网络从误差曲面的局部极小值中跳出....感谢聆听...根据附加动量法的设计原则,当修正的权值在误差中导致太大的增长结果时,新的权值应被取消而不被采用,并使动量作用停止下来,以使网络不进入较大误差曲面;当新的误差变化率对其旧值超过一个事先设定的最大误差变化率时,也得取消所计算的权值变化。

相关文档
最新文档