综合布线中如何选择多模光纤和单模光纤

合集下载

在综合布线设计中如何选择多模光纤和单模光纤

在综合布线设计中如何选择多模光纤和单模光纤
维普资讯
■ C
删 ;
在综合布线设计中如何选择
多模光纤和单模光纤
文 I 国康 普 国 际控 股 有 限 公 司 美
1 光纤 分类
光纤按 光在其 中的传输模 式可 分 为单模和 多模 。 多模光纤的纤芯 直径为5 或6 .p 包层外 径 15m 。 2 5m 2p 表 示为 5 / 5m 或 6 / p 01 p 2 2 5 15 m。单模 光纤的纤芯 直 2 径 为 83 m.包层外径 15 m 表示 为 8 3 5 m。 .p 2u /1 p 2 光纤 的工 作波 长有短 波 8 0 m、长 波 1 1n 和 5n m 30 15n 0 m。光纤 损耗一般 是 随波 长增 加而减 小 . 5 n 5 8 0m 的 损耗 一 般 为 2 d / m 1 1 n 的 损耗 一 般 为 5 B k m 30 0. 5 B k 3 d / m.1 5 n 的损耗 一般 为 0 2 d / m 这 0m 5 .0 B k 是 光纤 的最低 损耗 .波 长 1 5 n 以上的 损耗趋 向 加 0m 6 大 。由于 O H ( 水峰 )的吸收作 用 9 0 0 n 0 ~1 0 m和 3 14n 0 m~ 12 n 3 0 m范 围 内都有 损耗高 峰 . 两个 范 围 5 这 未 能充分 利用 。
传 输光信 号 时 . 不开 光收发 器和 光纤 。因传统 多模 离 光纤 只能 支持万兆 传输 几十 米 为配合 万兆应 用而 采
表 1
定前 瞻性 水平部 分应考 虑 6 类布线 主 干部分应 考
虑 万兆 多模 光缆 特 别是现在 6 类铜缆 加万 兆 多模 光
最小模式带宽 ( MHz・ m ) k 光 纤 类 型

的速率 带 宽。 目前 网络应 用正 在 以每 年5% 左右 的速 0 度增 长 . 计未来 5 千兆到 桌面 . 变得和 目前百 预 年 将

综合布线中如何选择多模光纤和单模光纤

综合布线中如何选择多模光纤和单模光纤

综合布线中如何选择多模光纤和单模光纤【文章摘要】光纤按光在其中的传输模式可分为单模和多模。

多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。

单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。

1、光纤分类光纤按光在其中的传输模式可分为单模和多模。

多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。

单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。

光纤的工作波长有短波850nm、长波1310nm和1550nm。

光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

由于OHˉ(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。

2、多模光缆多模光纤(Multi Mode Fiber) -芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

因此,多模光纤传输的距离就比较近,一般只有几公里。

如下表,为多模光缆的带宽的比较:1提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤。

因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC 11801制定了新的多模光纤标准等级,即OM3类别,并在2002年9月正式颁布。

OM3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的DMD测试认证。

采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550nm更可支持40公里传输)。

光纤等级(OM1 OM2 OM3)选型参考方案

光纤等级(OM1 OM2 OM3)选型参考方案

光纤等级(OM1 OM2 OM3)选型参考方案随着以太网设备成本的下降,万兆以太网的应用已经成为一种趋势。

基本上,综合布线系统的水平和垂直主干的速率之比都是1:10,以避免在垂直主干处形成瓶颈。

现在水平线缆已发展到六类,可以实现1000Mbps到桌面,为了继续保持网络传输的通畅,垂直主干就应采用万兆光纤了。

光纤凭借其质量小、容量大、传输频带高等特点而成为万兆以太网应用的首选。

光收发器主要有两大类:使用多模光纤的发光二极管(LED)和使用单模光纤的激光发光器(Laser)。

单模光纤虽然可以满足万兆应用的要求,但是激光发光器成本非常高,而传统的多模光纤只能在几十米的距离内支持万兆传输,无法满足网络主干的应用。

为了支持万兆以太网应用,业界开发出VCSEL光源,VCSEL 兼具了激光发光器件的性能(如响应速度高、传输光谱窄)和发光二极管的优势(如藕合效率高及成本低廉)。

通过优化改进50/125微米光纤与VCSEL配套,可以在850nm波长上10Gb/s应用时支持300米的传输距离,同时在支持千兆应用时,传输距离可以达到900米,而成本相比普通多模光纤增加不多。

因此IEEE 在2002 年6 月批准了万兆以太网标准。

ISO/IEC 11801也在2002年9月正式颁布了新的多模光纤标准等级,将多模光纤重新分为OM1、OM2和OM3三类,其中OM1指目前传统62.5μm多模光纤,OM2指目前传统50μm多模光纤,OM3就是新增的50μm万兆光纤。

传统的62.5μm多模光纤在850nm的带宽只有200MHz,即使在1300nm的带宽也只有500MHz,根本就无法真正进行万兆传输,而OM3万兆50μm多模光纤在850nm的带宽可以高达2000MHz。

对于不同的10Gbps网络需求,10Gb/s万兆光纤系统应符合IEC-60793-2-10和TIA-492AAAC激光带宽差模延迟(DMD)规范的50/125μm OM3多模和单模光纤,OM3多模光纤系统可以支持在300米的距离内传输10Gbps的数据速率,与VCSEL配套使用,符合ISO/IEC11801-2nd的OM-3光纤规范。

综合布线项目中如何选择单模或多模光纤

综合布线项目中如何选择单模或多模光纤

综合布线项目中如何选择单模或多模光纤随着时代的发展,铜缆会逐渐退出市场,光纤将会慢慢成为主导。

但是光纤的种类分别是单模光纤和多模光纤,它们共同拥有光纤优势的同时也有一定的差异。

它们各种有什么优势和劣势呢?在进行综合布线的同时,我们会选择哪一类光纤呢?下面就带大家了解一下。

一般情况下,综合布线项目中选择多模光缆会从以下两点点进行考虑:1、从投资角度考虑,在至少10年内不会用到10G的地方,选用OptiSPEED(普通多模62.5/125);由于OM3光缆使用低价的VCSEL 和850nm 光源设备,使万兆传输造价大大降低。

如果距离不超过150米,选用LazrSPEED 150(OM2 50/125 支持万兆150米);LazrSPEED 300是300米万兆传输最好的选择;LazrSPEED 550是550米万兆传输最好的选择;如超过550米的万兆传输要求,需要选择TeraSPEED,即单模光缆系统。

2、从未来的发展趋势来讲,水平布线网络速率需要1 Gb/s带宽到桌面,大楼主干网需要升级到10 Gb/s 速率带宽,园区骨干网需要升级到10 Gb/s或100Gb/s的速率带宽。

目前网络应用正在以每年50%左右的速度增长,预计未来5年千兆到桌面,将变得和目前百兆到桌面一样普遍,因此在目前系统规划上要具有一定前瞻性,水平部分应考虑6类布线,主干部分应考虑万兆多模光缆,特别是现在6类铜缆加万兆多模光缆和超5类铜缆加千兆多模光缆的造价上大约只有不到10~20%左右的差别,从长期应用的角度,如造价允许应考虑采用6类铜缆加万兆光缆。

综合布线项目中选择单模光缆会从以下几点进行考虑:单模光纤(Single Mode Fiber):中心纤芯很细(芯径一般为9或10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

综合布线中如何选择多模光纤和单模光纤[详细]

综合布线中如何选择多模光纤和单模光纤[详细]

综合布线中如何选择多模光纤和单模光纤【文章摘要】光纤按光在其中的传输模式可分为单模和多模.多模光纤的纤芯直径为50或62.5μ米,包层外径125μ米,表示为50/125μ米或62.5/125μ米.单模光纤的纤芯直径为8.3μ米,包层外径125μ米,表示为8.3/125μ米.1、光纤分类光纤按光在其中的传输模式可分为单模和多模.多模光纤的纤芯直径为50或62.5μ米,包层外径125μ米,表示为50/125μ米或62.5/125μ米.单模光纤的纤芯直径为8.3μ米,包层外径125μ米,表示为8.3/125μ米.光纤的工作波长有短波850n米、长波1310n米和1550n米.光纤损耗一般是随波长增加而减小,850n米的损耗一般为2.5dB/千米,1.31μ米的损耗一般为0.35dB/千米,1.55μ米的损耗一般为0.20dB/千米,这是光纤的最低损耗,波长1.65μ米以上的损耗趋向加大.由于OHˉ(水峰)的吸收作用,900~1300n米和1340n米~1520n米范围内都有损耗高峰,这两个范围未能充分利用.2、多模光缆多模光纤(米ulti 米ode Fiber) -芯较粗(50或62.5μ米),可传多种模式的光.但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重.因此,多模光纤传输的距离就比较近,一般只有几公里.如下表,为多模光缆的带宽的比较:提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤.因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC 11801制定了新的多模光纤标准等级,即O米3类别,并在2002年9月正式颁布.O米3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的D米D测试认证.采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550n米更可支持40公里传输).美国康普公司的多模光缆分为多模OptiSPEEDreg;解决方案(62.5/125μ米)和万兆多模LazrSPEEDreg; 解决方案(激光优化万兆50/125μ米).LazrSPEED分成三个系列,即LazrSPEED 150、300、550系列,且LazrSPEED万兆多模光缆均通过UL D米D认证.具体传输指标请看下表:通过上表,对比标准可知,康普公司提供的光缆远远超出标准中定义的指标.因此,如果要选择多模光缆应从以下几点进行考虑:A.从未来的发展趋势来讲,水平布线网络速率需要1 Gb/s带宽到桌面,大楼主干网需要升级到10 Gb/s 速率带宽,园区骨干网需要升级到10 Gb/s或100Gb/s的速率带宽.目前网络应用正在以每年50%左右的速度增长,预计未来5年千兆到桌面,将变得和目前百兆到桌面一样普遍,因此在目前系统规划上要具有一定前瞻性,水平部分应考虑6类布线,主干部分应考虑万兆多模光缆,特别是现在6类铜缆加万兆多模光缆和超5类铜缆加千兆多模光缆的造价上大约只有不到10~20%左右的差别,从长期应用的角度,如造价允许应考虑采用6类铜缆加万兆光缆.B.从投资角度考虑,在至少10年内不会用到10G的地方,选用OptiSPEED(普通多模62.5/125);由于O米3光缆使用低价的 VCSEL 和850n米光源设备,使万兆传输造价大大降低.如果距离不超过150米,选用LazrSPEED 150(O米2 50/125 支持万兆150米);LazrSPEED 300是300米万兆传输最好的选择;LazrSPEED 550是550米万兆传输最好的选择;如超过550米的万兆传输要求,需要选择TeraSPEED,即单模光缆系统.3、单模光缆单模光纤(Single 米ode Fiber):中心纤芯很细(芯径一般为9或10μ米),只能传一种模式的光.因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好.后来发现在1310n米波长处,单模光纤的总色散为零.从光纤的损耗特性来看,1310n米正好是光纤的一个低损耗窗口.这样,1310n米波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段.1310n米常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤.上面提到由于OHˉ(水峰)的吸收作用,900~1300n米和1340n米~1520n米范围内都有损耗高峰,该现象称为水峰.目前美国康普公司提供的TeraSPEEDT米零水峰单模光缆,正解决了此问题,TeraSPEED 系统通过消除了 1400n米水峰的影响因素, 从而为用户提供了更广泛的传输带宽, 用户可以自由使用从1260n米到1620n米的所有波段, 因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWD米粗波分复用技术打下了坚实的基础,TeraSPEED 解决方案为园区/城市级理想的主干光纤系统.同时,由于G.652.D 是单模光纤的最新的指标,是所有G.652级别中指标最严格的并且完全向下兼容的.如果,仅指明G.652意味着 G.652.A 的性能规范,这一点应特别注意.TeraSPEED 光纤超过所有的指标均满足 G.652.A, .B, .C和.D 的性能规范,如下表:而我们对于单模光缆的选型建议如下:A.从传输距离的角度,如果希望今后支持万兆传输,而距离较远应考虑采用单模光缆.B.从造价的角度,零水峰光缆提供比单模光纤多50%带宽,而造价上又相差不多,事实上美国康普公司目前已经不提供普通单模光纤,只提供零水峰光纤这样的更高性能的产品给用户.4、结论:单模还是多模?综合以上的分析,我们认为,用户应从应用的角度、传输距离的角度、前瞻性的角度、造价的角度,综合以上因素,以最低的价格投资最好的性能!。

单模光纤与多模光纤的比较分析

单模光纤与多模光纤的比较分析

单模光纤与多模光纤的比较分析光纤通信是一种以光信号传输信息的高速通信技术,而光纤则是其中最为关键的组成部分。

根据光在光纤中传播的方式不同,可以将光纤分为单模光纤和多模光纤。

本文将对单模光纤和多模光纤进行比较分析,从而更好地理解它们的特点和适用场景。

1. 光纤结构单模光纤和多模光纤在结构上存在一些差异。

单模光纤的纤芯(核心部分)较细,通常为9/125μm(直径/折射率),而多模光纤的纤芯较粗,通常为50/125μm或62.5/125μm。

另外,单模光纤的覆层(纤芯外的绝缘层)也较细,而多模光纤的覆层较厚。

2. 传输模式单模光纤和多模光纤在信号传输时采用的光模式不同。

单模光纤只传输一条光线,光信号沿直线传播,因此可以实现更远距离的传输,信号衰减较小。

而多模光纤则传输多条光线,光信号呈现多个模式,容易受到色散和衰减的影响,因此传输距离较短。

3. 传输速度由于传输模式的差异,单模光纤和多模光纤在传输速度上也存在一定的差异。

单模光纤的传输速度较高,可以达到几个Tbps(每秒百万兆位)级别,适用于高速通信和长距离传输。

而多模光纤的传输速度较低,一般在几个Gbps(每秒十亿位)级别,适用于短距离和低速通信。

4. 插入损耗插入损耗是指信号在光纤传输过程中发生的损耗,是评估光纤质量的重要指标。

单模光纤的插入损耗较低,一般在0.2dB/km以下,而多模光纤的插入损耗较高,一般在3dB/km左右。

因此,在长距离传输和高要求的应用中,单模光纤更能保证信号质量。

5. 适用场景基于以上的特点比较,单模光纤和多模光纤适用于不同的场景。

单模光纤适用于需要高速、长距离传输的应用,如国际通信、长距离电话线路和光纤到户等。

多模光纤适用于短距离和低速通信,如局域网、智能家居和电视信号传输等。

6. 总结综上所述,单模光纤和多模光纤在结构、传输模式、传输速度、插入损耗和适用场景等方面存在差异。

单模光纤适合用于高速、长距离传输,具有较低的插入损耗和较高的传输速度;而多模光纤适用于短距离和低速通信,适合一些家庭和办公场所的应用。

浅谈综合布线中的光纤光缆选型

浅谈综合布线中的光纤光缆选型

自从1977年世界上第一条光纤通信系统在美国芝加哥市投入商用以来,光纤通信的应用发展极为迅速,而光纤光缆一直是光纤通信系统中最重要的组成部分。

如今,不仅国际及国家级的通信干线均采用光缆,伴随着IP业务的高速发展以及HDTV等新兴业务对网络容量的巨大需求,在建筑内部的综合布线系统(GCS)中,光缆也得到了越来越广泛的应用。

众所周知,综合布线系统本身是一个前瞻性系统,而且有着复杂的应用环境,因此,如何综合各个方面的需求,选择合适的光缆型号,也越来越受到综合布线设计者们的重视。

光纤的选型一、光纤的选型光缆不同于铜缆,最大的区别在于,光缆中的光纤本身就是独立的传输介质,而光缆中所有其它元件只是对光纤起到保护作用,在增强各种机械物理及环境性能的同时保证对内部的光纤传输性能影响最小。

所以对于光缆的传输性能,取决于内部的光纤类型。

光纤实际是由折射率较高的纤芯(core)和折射率较低的包层(cladding)组成,射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进,按照光在光纤中的传输模式可分为单模和多模。

典型多模光纤的纤芯直径为50或62.5μm,包层外径125μm,通常表示为50/125μm或62.5/125μm。

62.5μm芯径多模光纤比50μm芯径多模光纤芯径大、数值孔径高,能从LED 光源耦合入更多的光功率,因此在光纤发展初期,62.5/125μm多模光纤首先被美国采用为多家行业标准。

而50/125μm多模光纤主要在日本、德国作为数据通信标准使用。

由于北美光纤用量大和美国光纤制造及应用技术的先导作用,包括我国在内的多数国家均将62.5/125μm多模光纤作为局域网传输介质和室内配线使用。

上述形势一直维持到九十年代中后期。

随着局域网传输速率不断升级,50μm芯径多模光纤越来越引起人们的重视。

50/125μm光纤数值孔径和芯径较小,带宽比62.5/125μm光纤高,制作成本也可降低1/3。

因此,各国业界纷纷提出重新启用50/125μm多模光纤。

单模光纤和多模光纤的辨别方法

单模光纤和多模光纤的辨别方法

单模光纤和多模光纤的辨别方法
如何辨别单模和多模光纤
前几天去一个五星级宾馆设计规划数字化改造方案,在机房里看到了二种室内光缆,一种是桔色的,另一种是黄色的,经了解这些光缆都是7、8年前布置的,估计一部分可能是多模的,那设计方案与单模的有很大差别了。

我们知道,在光纤通信理论中,光纤有单模、多模之分,初步整理了一下二者的区别:
1. 单模光纤芯径小(10m m左右),仅允许一个模式传输,色散小,工作在长波长(1310nm和1550nm);多模光纤芯径大(6
2.5m m或50m m),允许上百个模式传输,色散大,工作在850nm或1310nm,。

2、单模光纤多用于传输距离长,传输速率相对较高的线路中,如长途干线传输,城域网建设等;多模光纤多用于传输速率相对较低,传输距离相对较短的网络中,如局域网等,这类网络中通常具有节点多,接头多,弯路多,而且连接器、耦合器的用量大,单位光纤长度使用光源个数多等特点,使用多模光纤可以有效的降低网络成本。

那么如何通过肉眼区分?
1、可以根据颜色来区分:室内单模光缆为黄色,室内多模光缆为橙色;
2、可以根据标识来区分:外套标识-9/125(g652),SM为单模;外套标识- 50/125, 62.5/125,MM为多模。

最为常见的单模光缆是B1光纤制造的光缆,最常见的多模光缆是A1b光纤制造的光缆(现在国外正在用A1a代替A1b多模光纤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

综合布线中如何选择多模光纤和单模光纤
1、光纤分类
光纤按光在其中的传输模式可分为单模和多模。

多模光纤的纤芯直径为50或62.5μm,包层外径125μm,表示为50/125μm或62.5/125μm。

单模光纤的纤芯直径为8.3μm,包层外径125μm,表示为8.3/125μm。

光纤的工作波长有短波850nm、长波1310nm和1550nm。

光纤损耗一般是随波长增加而减小,850nm的损耗一般为2.5dB/km,1.31μm的损耗一般为0.35dB/km,1.55μm的损耗一般为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

由于OH¯(水峰)的吸收作用,900~1300nm和1340nm~1520nm范围内都有损耗高峰,这两个范围未能充分利用。

2、多模光缆
多模光纤(Multi Mode Fiber) -芯较粗(50或62.5μm),可传多种模式的光。

但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

因此,多模光纤传输的距离就比较近,一般只有几公里。

提到万兆多模光缆,需要作些说明,光纤系统在传输光信号时,离不开光收发器和光纤。

因传统多模光纤只能支持万兆传输几十米,为配合万兆应用而采用的新型光收发器,ISO/IEC 11801制定了新的多模光纤标准等级,即OM3类别,并在2002年9月正式颁布。

OM3光纤对LED和激光两种带宽模式都进行了优化,同时需经严格的DMD测试认证。

采用新标准的光纤布线系统能够在多模方式下至少支持万兆传输至300米,而在单模方式下能够达到10公里以上(1550nm更可支持40公里传输)。

美国康普公司的多模光缆分为多模OptiSPEED®解决方案
(62.5/125μm)和万兆多模LazrSPEED® 解决方案(激光优化万兆
50/125μm)。

LazrSPEED分成三个系列,即LazrSPEED 150、300、550系列,且LazrSPEED万兆多模光缆均通过UL DMD认证。

因此,如果要选择多模光缆应从以下几点进行考虑:
A. 从未来的发展趋势来讲,水平布线网络速率需要1 Gb/s带宽到桌面,大楼主干网需要升级到10 Gb/s 速率带宽,园区骨干网需要升级到10 Gb/s或100Gb/s的速率带宽。

目前网络应用正在以每年50%左右的速度增长,预计未来5年千兆到桌面,将变得和目前百兆到桌面一样普遍,因此在目前系统规划上要具有一定前瞻性,水平部分应考虑6类布
线,主干部分应考虑万兆多模光缆,特别是现在6类铜缆加万兆多模光缆和超5类铜缆加千兆多模光缆的造价上大约只有不到10~20%左右的差别,从长期应用的角度,如造价允许应考虑采用6类铜缆加万兆光缆。

B. 从投资角度考虑,在至少10年内不会用到10G的地方,选用OptiSPEED(普通多模62.5/125);由于OM3光缆使用低价的 VCSEL 和850nm 光源设备,使万兆传输造价大大降低。

如果距离不超过150米,选用LazrSPEED 150(OM2 50/125 支持万兆150米);LazrSPEED 300是300米万兆传输最好的选择;LazrSPEED 550是550米万兆传输最好的选择;如超过550米的万兆传输要求,需要选择TeraSPEED,即单模光缆系统。

3、单模光缆
单模光纤(Single Mode Fiber):中心纤芯很细(芯径一般为9或
10μm),只能传一种模式的光。

因此,其模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

后来发现在1310nm波长处,单模光纤的总色散为零。

从光纤的损耗特性来看,1310nm正好是光纤的一个低损耗窗口。

这样,1310nm波长区就成了光纤通信的一个很理想的工作窗口,也是现在实用光纤通信系统的主要工作波段。

1310nm常规单模光纤的主要参数是由国际电信联盟ITU-T在G652建议中确定的,因此这种光纤又称G652光纤。

上面提到由于OH¯(水峰)的吸收作用,900~1300nm和
1340nm~1520nm范围内都有损耗高峰,该现象称为水峰。

目前美国康普公司提供的TeraSPEEDTM零水峰单模光缆,正解决了此问题,TeraSPEED 系统通过消除了1400nm 水峰的影响因素, 从而为用户提供了更广泛的传输带宽, 用户可以自由使用从1260nm 到1620nm 的所有波段, 因此传输通道从以前的240增加到400,性能比传统单模光纤多50%的可用带宽,为将来升级为100G带宽的CWDM 粗波分复用技术打下了坚实的基础,TeraSPEED 解决方案为园区/城市级理想的主干光纤系统。

同时,由于G.652.D 是单模光纤的最新的指标,是所有G.652级别中指标最严格的并且完全向下兼容的。

如果,仅指明G.652意味着 G.652.A 的性能规范,这一点应特别注意。

TeraSPEED 光纤超过所有的指标均满
A.从传输距离的角度,如果希望今后支持万兆传输,而距离较远应考虑采用单模光缆。

B.从造价的角度,零水峰光缆提供比单模光纤多50%带宽,而造价上又相差不多,事实上美国康普公司目前已经不提供普通单模光纤,只提供零水峰光纤这样的更高性能的产品给用户。

4、结论:单模还是多模?
综合以上的分析,我们认为,用户应从应用的角度、传输距离的角度、前瞻性的角度、造价的角度,综合以上因素,以最低的价格投资最
* 需要模式适配跳线。

相关文档
最新文档