实验十二、交换机标准堆叠实验
CISCO交换机堆叠原理

Cisco交换机堆叠连接方式及原理在与读者朋友的一些交流中,发现有许多读者对Cisco交换机中的堆叠连接及两种连接方式还是搞不清,特别是它们的连接原理,所以在此把我在中介绍的最新Cisco交换机堆叠技术摘选如下:IOS交换机堆叠电缆的选择与连接在可堆叠的IOS交换机中,可选择米、1米和3米这三种规格的StackWise堆叠电缆,用于不同堆叠类型的交换机连接。
如图7-3所示的是一条米的StackWise堆叠电缆,如图7-4所示的是堆叠电缆与交换机上StackWise端口的连接示意图。
图7-3 StackWise堆叠电缆图7-4 堆叠电缆与堆叠端口的连接示意图Cisco之所以要准备三种不同长度规格的堆叠电缆,就是为了满足不同堆叠连接方式中不同连接距离的需求。
图7-5是使用米规格StackWise堆叠专用电缆的一种建议连接方式。
在这种连接方式中,电缆连接的是两台交换机的相同序号 STACK 1—STACK 1,STACK 2--STACK2 SATCK接口除了最下面两台的连接外 ,而且每两台连接的交换机中间是间隔了一台交换机的除了第一台和第二台之间,以及最后两台之间 ,但它通过两组连接从一个堆叠端口出发,依自向下连接即可画出两组连接就实现了所有交换机的堆叠连接,并最终形成一个封闭的连接环路,实现连接的冗余性。
在在这种堆叠连接中全部是使用米规格的堆叠电缆的。
图7-6是使用米和3米两种规格StackWise堆叠电缆进行的两种堆叠连接方式。
左右两种连接方式都提供了一个封闭的环形连接,实现连接的冗余性。
左边连接方式的环是这样形成的米电缆连接的都是不同交换机上相同序号的堆叠接口,3米的电缆连接的是上、下级交换机中不同序号的STACK 接口:首先从最上面那台交换机的STACK 2接口用一条米的堆叠电缆连接到第二台交换机上的STACK 2接口,然后从第二台交换机的STACK 1接口用一条米的堆叠电缆连接到第三台交换机上的STACK 1接口,再从第三台交换机的STACK 2接口用一条米的堆叠电缆连接到第四台交换机上的STACK 2接口,依此类推,直到最后一台,用一条3米的堆叠电缆从STACK 2接口连接到最上面第一台交换机的STACK 1接口,实现一个全封闭的连接环,实现连接的冗余性。
H3C交换机-堆叠操作

H3C交换机—堆叠操作堆叠的先决条件:交换机的软件版本与交换机的名字必须一致交换机堆叠管理(使用交叉线在百兆口上堆叠)1.在其他被管理的交换机上指定管理VLAN[Quidway]management-vlan vlan-id 默认是VLAN12.将其他被管理的交换机上连接到管理交换机的连接线配置为trunk模式,并仅允许管理VLAN通过[Quidway]interface Ethernet 1/0/n[Quidway – Ethernet 1/0/n]port link-type trunk[Quidway – Ethernet 1/0/n]port trunk permit vlan vlan-id(之前指定的管理VLAN)3.在管理交换机上配置管理VLAN。
4.在连接各个被管理交换机的线上使用Trunk模式,并仅允许管理VLAN通过。
5.指定堆叠管理地址池[SwitchA]stacking ip-pool 10.10.10.1 36.使能堆叠,几秒钟后两个从交换机加入[SwitchA]stacking enable验证命令:[SwitchA]display stackH3C堆叠操作(S3600)由于建立IRF系统时对各设备配置一致性要求较高,在开启Fabric端口功能前,请不要在该端口下进行任何配置,并且不能在全局或其他端口配置某些影响IRF工作的特性,否则将不能开启Fabric端口。
[H3C]fabric-port interface-type interface-number enable 配置交换机的Fabric端口[H3C]ftm fabric-vlan vlan-id(可选)配置交换机用于IRF Fabric的VLAN,默认4093,必须使用系统尚未创建的VLAN作为IRF Fabric使用的VLAN,否则系统会输出错误信息提示配置失败。
建议不配置使用默认VLAN。
[H3C]change unit-id unit-id to {unit-id2 | auto-numbering } 配置交换机的Unit-ID 示例:[H3C]change unit-id 1 to 2[H3C]change unit-id 1 to 3(关键)指定交换机序列号2||3[H3C]fabric save-unit-id(未见该命令)保存Fabric的各Unit的Unit ID信息[H3C]set unit unit-id name unit-name(以此参数区别各个交换机)配置交换机的Unit name 各个参与堆叠的交换机的sysname和软件版本必须一样配置IRF Fabric的Fabric name[H3C]sysname name 必须一致验证命令:[H3C]display irf-fabric [ port | status ] 查看整个Fabric的信息[H3C]display ftm information 查看Fabric的状态信息[H3C]reset ftm statistics 清除FTM的统计信息配置堆叠步骤(使用确定的方式决定交换机的主从关系)1.各个交换机在堆叠之前不要连接起来2.在主交换机上配置a)[H3C]sysname name(各个交换机的名字必须一致)b)[H3C]set unit 1 name Unit1 (为各个交换机起一个Unit name,便于管理识别)3.在从交换机上配置a)[H3C]sysname name(各个交换机的名字必须一致)b)[H3C]set unit 1 name Unit2 (为各个交换机起一个Unit name,便于管理识别)c)[H3C]change unit-id 1 to 2 关键步骤主交换机是unit-id为1,从交换机应该从2开始4.分别在主/从交换机将配置成Fabric端口形成聚合a)[Sysname] fabric-port GigabitEthernet1/1/1 enable 配置Fabric端口b)[Sysname] fabric-port GigabitEthernet1/1/2 enable 配置Fabric端口5.将各个交换机连接起来,注意应该使用交叉方式连接起来6.保存使用save命令。
交换机堆叠故障恢复实验报告

交换机堆叠故障恢复实验报告实验目的:通过模拟交换机堆叠故障,探索恢复堆叠功能的方法与策略,进一步提高网络系统的可靠性和稳定性。
实验装备与材料:1. 三台交换机设备(型号:XXX)2. 网线3. 计算机4. 实验工具箱实验步骤:1. 搭建交换机堆叠网络a. 将三台交换机设备连接成堆叠网络拓扑,使用网线连接设备的堆叠接口。
b. 打开计算机,连接到堆叠网络。
2. 模拟交换机堆叠故障a. 在一台交换机上断开堆叠链路,并等待一段时间,观察网络状况。
b. 观察其他两台交换机的堆叠状态,确认是否出现故障。
3. 故障恢复方法与策略a. 检查故障交换机的物理连接,确认连接是否松脱或受损。
b. 使用实验工具箱中的工具进行故障排查,包括检查堆叠模块、堆叠链路状态等。
c. 如果故障无法修复,考虑替换故障交换机,并重新进行堆叠配置。
d. 如果故障可以修复,重新连接堆叠链路,等待堆叠恢复。
4. 完成故障恢复并验证a. 确认故障交换机已经修复或替换,并重新连接至堆叠链路。
b. 观察堆叠链路状态,确认是否恢复正常。
c. 使用网络工具或计算机进行网络通信测试,验证堆叠功能是否正常。
实验结果:在模拟交换机堆叠故障的实验中,通过对故障交换机的排查与修复,成功恢复了堆叠网络的功能。
观察堆叠链路状态,确认链路恢复正常,并通过网络通信测试验证了堆叠功能的可用性和稳定性。
讨论与总结:交换机堆叠技术可以提高网络的可靠性和可管理性,但在实际应用中,仍可能遇到故障导致堆叠功能失效。
本实验通过模拟堆叠故障,探索了故障恢复的方法与策略,并验证了恢复后的堆叠功能的正常运行。
在实际故障排查中,重要的是能够快速定位故障的具体原因,进行有效的修复措施。
通过实验我们可以总结以下几点经验:1. 首先要检查物理连接,确保堆叠链路连接良好,没有松脱或损坏的情况。
2. 使用适当工具进行故障排查,例如堆叠模块状态的检查,以及相关日志信息的查看等,可以帮助我们快速定位故障点。
H3C交换机-堆叠操作(一类特选)

H3C交换机—堆叠操作堆叠的先决条件:交换机的软件版本与交换机的名字必须一致交换机堆叠管理(使用交叉线在百兆口上堆叠)1.在其他被管理的交换机上指定管理VLAN[Quidway]management-vlan vlan-id 默认是VLAN12.将其他被管理的交换机上连接到管理交换机的连接线配置为trunk模式,并仅允许管理VLAN通过[Quidway]interface Ethernet 1/0/n[Quidway – Ethernet 1/0/n]port link-type trunk[Quidway – Ethernet 1/0/n]port trunk permit vlan vlan-id(之前指定的管理VLAN)3.在管理交换机上配置管理VLAN。
4.在连接各个被管理交换机的线上使用Trunk模式,并仅允许管理VLAN通过。
5.指定堆叠管理地址池[SwitchA]stacking ip-pool 10.10.10.1 36.使能堆叠,几秒钟后两个从交换机加入[SwitchA]stacking enable验证命令:[SwitchA]display stackH3C堆叠操作(S3600)由于建立IRF系统时对各设备配置一致性要求较高,在开启Fabric端口功能前,请不要在该端口下进行任何配置,并且不能在全局或其他端口配置某些影响IRF工作的特性,否则将不能开启Fabric端口。
[H3C]fabric-port interface-type interface-number enable 配置交换机的Fabric端口[H3C]ftm fabric-vlan vlan-id(可选)配置交换机用于IRF Fabric的VLAN,默认4093,必须使用系统尚未创建的VLAN作为IRF Fabric使用的VLAN,否则系统会输出错误信息提示配置失败。
建议不配置使用默认VLAN。
[H3C]change unit-id unit-id to {unit-id2 | auto-numbering } 配置交换机的Unit-ID 示例:[H3C]change unit-id 1 to 2[H3C]change unit-id 1 to 3(关键)指定交换机序列号2||3[H3C]fabric save-unit-id(未见该命令)保存Fabric的各Unit的Unit ID信息[H3C]set unit unit-id name unit-name(以此参数区别各个交换机)配置交换机的Unit name各个参与堆叠的交换机的sysname和软件版本必须一样配置IRF Fabric的Fabric name[H3C]sysname name 必须一致验证命令:[H3C]display irf-fabric [ port | status ] 查看整个Fabric的信息[H3C]display ftm information 查看Fabric的状态信息[H3C]reset ftm statistics 清除FTM的统计信息配置堆叠步骤(使用确定的方式决定交换机的主从关系)1.各个交换机在堆叠之前不要连接起来2.在主交换机上配置a)[H3C]sysname name(各个交换机的名字必须一致)b)[H3C]set unit 1 name Unit1 (为各个交换机起一个Unit name,便于管理识别)3.在从交换机上配置a)[H3C]sysname name(各个交换机的名字必须一致)b)[H3C]set unit 1 name Unit2 (为各个交换机起一个Unit name,便于管理识别)c)[H3C]change unit-id 1 to 2 关键步骤主交换机是unit-id为1,从交换机应该从2开始4.分别在主/从交换机将配置成Fabric端口形成聚合。
交换机堆叠模式

交换机堆叠模式堆叠是指将一台以上的交换机组合起来共同工作,以便在有限的空间内提供尽可能多的端口。
多台交换机经过堆叠形成一个堆叠单元。
可堆叠的交换机性能指标中有一个“最大可堆叠数”的参数,它是指一个堆叠单元中所能堆叠的最大交换机数,代表一个堆叠单元中所能提供的最大端口密度。
堆叠与级联这两个概念既有区别又有联系。
堆叠可以看作是级联的一种特殊形式。
它们的不同地地方在于:级联的交换机之间可以相距很远(在媒体许可范围以内),而一个堆叠单元内的多台交换机之间的距离非常近,一般不超过几米;级联一般采用普通端口,而堆叠一般采用专用的堆叠模块和堆叠电缆。
堆叠模式1、菊花链堆叠模式菊花链堆叠模式是利用专用的堆叠电缆,将多台交换机以环路方式串接起来,组建成一个交换机堆叠组。
菊花链堆叠模式中的冗余电缆只是冗余备份作用,也可以不连接。
采用菊花链堆叠模式,从主交换机到最后一台从交换机之间,数据包要历经中间所有交换机,传输效率较低,因此堆叠层数不宜太多。
菊花链堆叠模式虽然保证了每个交换机端口的带宽,但是并没有使多交换机之间数据的转发效率得到提升,而且堆叠电缆往往距离较短,因此采用菊花链堆叠模式时,主要适用于有大量计算机的机房。
2、星形堆叠模式星形堆叠要求主交换机有足够的背板带宽,并且有多个堆叠模块,然后使用高速堆叠电缆将交换机的内部总线连接成为一条高速链路。
星形堆叠的优点是传输速度要远远超过交换机的级联模式,而且可以显著地提高堆叠交换机之间数据的转发速率。
一个堆叠的若干台交换机可以视为一台交换机进行管理,只需赋予1个IP地址,即可通过该IP地址对所有的交换机进行管理,从而大大减少了管理的难度。
原理1、堆叠的建立两台交换机启动时,通过相互竞争,其中一台成为堆叠主机,另一台成为堆叠备机。
竞争的规则如下:第一,系统的运转状态:已启动并正常运转的交换机优先级高于正在启动的交换机,前者成为CSS主机。
第二,堆叠的优先级:如果运转状态相同,则优先级高的交换机成为CSS主机。
交换机层叠和堆叠实验报告

交换机层叠和堆叠实验报告一、实验目的1.了解交换机层叠和堆叠的原理和应用。
2.对比交换机层叠和堆叠的优缺点。
3.搭建实验环境,验证交换机层叠和堆叠的性能。
二、实验原理1.交换机层叠2.交换机堆叠交换机堆叠是将多台交换机通过特定的物理链路连接在一起,并通过集中式的管理模块将它们视为一个统一的设备。
堆叠交换机具有共享转发表和可靠性特性,可以提供更高的性能和可靠性。
三、实验步骤1.搭建实验环境:通过连接多台交换机的物理链路,形成层叠或堆叠拓扑结构。
2.配置交换机:根据实验需求,配置交换机的端口和VLAN信息。
3.测试网络性能:通过发送大量数据包进行测试,比较层叠和堆叠结构下的网络性能。
四、实验结果和分析1.交换机层叠通过层叠结构连接的交换机具有冗余备份的能力,在一些交换机失效时可以快速切换到备用交换机。
但当层叠链路发生故障时,整个系统的可用性会降低。
2.交换机堆叠通过堆叠结构连接的交换机具有共享转发表的特点,可以提供更高的性能和可靠性。
由于堆叠交换机被视为一个整体,管理和维护也更加方便。
但一旦堆叠链路发生故障,整个系统将无法正常工作。
通过测试网络性能,我们可以对比层叠和堆叠结构下的性能表现。
在正常工作状态下,两者的性能差异不大。
但当出现故障或链路拥塞时,堆叠结构下的恢复速度更快,性能更稳定。
五、实验总结交换机层叠和堆叠是提高网络性能和可靠性的重要手段。
通过搭建实验环境,我们对它们的原理和应用有了更深入的了解。
通过对比,我们发现交换机堆叠更适用于对性能要求较高的场景,而交换机层叠则更适用于对可靠性要求较高的场景。
在实验过程中,我们还需要注意层叠和堆叠链路的可靠性,以及管理和维护的便利性。
同时,为了更好地提高网络的性能和可靠性,我们还可以考虑其他拓扑结构和技术手段的应用,如网络聚合和冗余路由等。
实验的结果和结论有助于我们更好地理解和应用交换机层叠和堆叠技术,提高网络的运行效果和用户体验。
同时,也为我们深入研究和探索网络拓扑结构和技术手段提供了一个良好的实验基础。
交换机级联与堆叠技术

交换机级联与堆叠技术随着网络规模的不断扩大和复杂性的增加,企业和组织对于网络交换机的需求也越来越高。
为了满足这一需求,交换机级联和堆叠技术应运而生。
本文将介绍交换机级联和堆叠技术的原理、特点和应用。
一、交换机级联技术1. 原理交换机级联技术是通过将多个交换机连接在一起形成一个逻辑上的大型交换机,扩展网络规模和端口数量。
它利用交换机的多个端口之间的链路进行数据转发,将数据从源端口发送到目标端口。
2. 特点交换机级联技术具有以下特点:(1)扩展性强:通过级联多个交换机,可以扩展网络的规模和容量。
(2)灵活性高:可以根据需求灵活地增加或减少级联的交换机数量。
(3)降低成本:相比于购买一台大型交换机,级联多台小型交换机的成本更低。
(4)容错性好:级联多台交换机可以提高网络的冗余性和可靠性,一台交换机故障时不会影响整个网络的正常运行。
3. 应用交换机级联技术广泛应用于大型企业、数据中心和校园网络等环境中。
通过级联多个交换机,可以实现大规模网络的构建和管理,满足高带宽、低延迟的数据传输需求。
二、交换机堆叠技术1. 原理交换机堆叠技术是将多个交换机通过堆叠模块或堆叠线缆连接在一起,形成一个逻辑上的大型交换机。
在堆叠后的交换机中,所有的交换机被视为一个整体,由主交换机负责管理和控制。
2. 特点交换机堆叠技术具有以下特点:(1)一体化管理:堆叠后的交换机可以被视为一个整体进行管理,简化了网络管理和配置。
(2)高可用性:主交换机故障时,备用交换机可以自动接管,实现无缝切换,提高网络的可用性。
(3)灵活的端口扩展:堆叠后的交换机可以通过插拔模块或线缆来扩展端口数量,满足不同规模网络的需求。
(4)高性能:堆叠后的交换机可以实现内部端口的全双工通信,提供更高的带宽和更低的延迟。
3. 应用交换机堆叠技术被广泛应用于企业和组织的核心交换机部署。
通过堆叠多个交换机,可以实现高可用性、高性能的核心交换机架构,提供稳定可靠的网络服务。
cisco思科交换机试验手册之-实验12交换机标准堆叠实验

DCS-3926S-A(Config)#stacking priority 80 !设置该交换机的优先级,缺省是50
Please reload to take effect
验证配置 DCS-3926S-A#show stacking Stand alone mode Running:
!本实验成功,堆叠组已经建立
4. PC1 ping 192.168.1.33,不通。
5. PC2 ping 192.168.1.33,不通。
请大家思考为什么4、5不通。
第五步:验证冗余。
1 、 在 PC1 上使用
ping 192.168.1.101 ?t 命令
2、
将其中一根堆叠线拔掉,观察ping窗口和超级终端窗口现象
协议状态机都在MASTER上计算和维护。SLAVE交换机接收到协议报文后,通 过RDP 协议转发至MASTER交换机处理,MASTER交换机把计算结果分发至相 关SLAVE交换 机。 5. MASTER交换机把所有SLAVE交换机的物理端口均映射至MASTER的系统。堆叠交换 机的端口位置信息分为三段(如Ethernet1/0/5),第一段表示端口所在交换机 的 SWITCH ID,第二段表示端口所在插槽的位置,第三段表示端口所在的物理 位置。
态。
命令模式:特权用户配置模式
使用指南:
MASTER
分发配置参数至
SLAVE交换机时,首先把
参数通过 RPC 协议封装为
RPC 报文格式,然后再调用 RDP
协议转发参数。堆叠协议
为每种参数设置了
RPC ID,调试
RPC 信息,可以获知
MASTER
分发参数的执行状况;调试 DDP信息,可
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十二、交换机标准堆叠实验一、 实验目的1、了解取消堆叠的方法;2、熟练掌握标准堆叠的实现方法。
二、 应用环境堆叠是目前应用比较广泛的一种技术,堆叠与级联都可以实现网络端口密度的扩充,扩充之后,堆叠组的所有设备都可以通过一个控制端口进行管理,堆叠组可以看作是一个整体,看成一台设备;而级联的设备从管理上依然是各个独立的设备,必须进行独立控制。
由于堆叠线缆的限制,堆叠组的设备必须安装在紧邻的位置,一般不超过一个机柜,这样才能保证一定的堆叠带宽。
因此在区域信息点数密集的场所,譬如:机房、实验室、网吧等在接入交换机的选择上都优先选择可堆叠交换机,使用堆叠技术进行端口密度扩充。
标准堆叠也是堆叠的一种方式,和经济堆叠相比,堆叠带宽较大,费用比经济堆叠高,满足高性能堆叠的需求。
标准堆叠提供了堆叠冗余,当有一条线路出现问题的时候,堆叠组重新启动后仍然可以保持堆叠状态。
三、 实验设备1、DCS-3926S交换机3台2、堆叠模块4-6个3、标准堆叠线缆3根或者经济堆叠线缆6根4、PC机2台5、Console线1-3根四、 实验拓扑和经济堆叠不同,标准堆叠中间的交换机必须使用两个堆叠模块,第一台交换机和最后一台交换机可以只安装一个堆叠模块。
那么此时堆叠组不提供冗余。
如果也安装两个,那么就成为图中虚线的部分,这两条虚线代表标准堆叠组的冗余部分。
五、 实验要求1、按照拓扑图连接网络;2、交换机A的管理IP为192.168.1.11/24,标示符为DCS-3926S-A;3、交换机B的管理IP为192.168.1.22/24,标示符为DCS-3926S-B;4、交换机C的管理IP为192.168.1.33/24,标示符为DCS-3926S-C;5、PC1网卡的IP地址为192.168.1.101/24;6、PC2网卡的IP地址为192.168.1.102/24;7、堆叠成功后,处在不同交换机的两台PC之间可以ping通。
六、 实验步骤第一步:交换机全部恢复出厂设置,取消原来配置的堆叠信息。
在MASTER交换机中取消堆叠配置DCS-3926S-A(Config)#stacking disablePlease reload to take effectDCS-3926S-A(Config)#exitDCS-3926S-A#reload按照拓扑图正确连线后,虚线也连接,三台交换机的M1、M2灯应该是橙色常亮,link 和act灯不亮,Power灯和D./M./S.灯绿色常亮。
第一次ping命令验证:1、PC1 ping 192.168.1.11 ,通。
2、PC2 ping 192.168.1.33 ,通。
3、PC1 ping PC2 ,不通。
第二步:配置交换机标准堆叠。
交换机A:DCS-3926S-A#configDCS-3926S-A(Config)#stacking enable duplex interface ethernet0/1/1interface ethernet 0/2/1All running configuration except those on stacking interface will be saved...Please reload to take effectDCS-3926S-A(Config)#stacking priority 80 !设置该交换机的优先级,缺省是50 Please reload to take effect验证配置DCS-3926S-A#show stackingStand alone modeRunning:Mode: stacking disabledFlash config:Priority: 50Port: Ethernet0/1/1 Ethernet0/2/1DCS-3926S-A#交换机B和交换机C的配置:switch(Config)#stacking enable duplex interface ethernet 0/1/1 interface ethernet 0/2/1All running configuration except those on stacking interface will be saved...Please reload to take effectswitch(Config)#验证配置switch#show stackingStand alone modeRunning:Mode: stacking disabledFlash config:Mode: duplexPriority: 50Port: Ethernet0/1/1 Ethernet0/2/1第三步:重新启动交换机A、B、C。
每台交换机都会自动再启动一次,互相发送堆叠信息,建立堆叠组。
分别察看各个交换机的标示符和管理IP。
交换机A:DCS-3926S-A#show stacking !标示符没有改变Running:Mode: duplex !标准堆叠Priority: 80 !优先级80Flash config:Mode: duplexPriority: 80Port: Ethernet0/1/1 Ethernet0/2/1DDP state : HB STATE, stack unit : 0Advertise: send 1, rcvd 2. Advertise ACK: send 0, rcvd 2Heart Beat: send 13, rcvd 0. Heart Beat ACK: send 0, rcvd 13Total number of switchs in stack : 3My switch ID : 0 (master is 0)……交换机B、C的显示类似:Slave1#show stacking !标示符已经改变Running:Mode: duplexFlash config:Mode: duplexPriority: 50Port: Ethernet0/1/1 Ethernet0/2/1DDP state : HB STATE, stack unit : 0Advertise: send 1, rcvd 2. Advertise ACK: send 2, rcvd 0Heart Beat: send 0, rcvd 12. Heart Beat ACK: send 12, rcvd 0Total number of switchs in stack : 3My switch ID : 1 (master is 0)……(省略下面显示)第四步:实验验证。
在堆叠组稳定之后,观察堆叠灯的状态,堆叠灯(D./M./S.)一直点亮的交换机就是MASTER,其他均为SLAVE。
第二次ping命令验证:1、PC1 ping 192.168.1.11 ,通。
2、PC2 ping 192.168.1.11 ,通。
3、PC1 ping PC2 ,通。
!本实验成功,堆叠组已经建立4、PC1 ping 192.168.1.33,不通。
5、PC2 ping 192.168.1.33,不通。
请大家思考为什么4、5不通。
第五步:验证冗余。
1、在PC1上使用ping 192.168.1.101 –t 命令2、将其中一根堆叠线拔掉,观察ping窗口和超级终端窗口现象3、堆叠组出现重新启动的现象,ping窗口会出现十多条“request time out”或“hardwareerror”或“destination host unreachable”信息之后,又重新显示ping通的提示。
4、表明虽然有一根堆叠线出现故障,堆叠组在重新启动后会重新生成堆叠,提供了冗余。
5、再把拔掉的堆叠线插回原处,观察现象。
七、 注意事项和排错1、切忌带电插拔堆叠模块。
一定要先给交换机断电,然后再插拔堆叠模块。
2、在堆叠组稳定之后,在MASTER交换机上作set default命令取消不了堆叠,该命令的含义是对整个堆叠组作初始化。
3、堆叠组出现变化就会全部重新启动,属于正常现象。
4、堆叠交换机采用集中管理的方式,所有配置参数必须通过MASTER进行分发,所有协议状态机都在MASTER上计算和维护。
SLAVE交换机接收到协议报文后,通过RDP 协议转发至MASTER交换机处理,MASTER交换机把计算结果分发至相关SLAVE交换机。
5、MASTER交换机把所有SLAVE交换机的物理端口均映射至MASTER的系统。
堆叠交换机的端口位置信息分为三段(如Ethernet1/0/5),第一段表示端口所在交换机的SWITCH ID,第二段表示端口所在插槽的位置,第三段表示端口所在的物理位置。
如端口Ethernet1/0/5表示,此端口为SLAVE 1的第一个端口插槽上的第五个端口在MASTER上的映射端口。
八、 配置序列略九、 共同思考如果按照标准堆叠的拓扑图连接硬件,而按照经济堆叠的方式配置交换机,会出现什么现象?十、 课后练习画出两台交换机堆叠的拓扑图,并对两台交换机进行堆叠操作。
十一、 相关配置命令详解debug stacking命令:debug stacking {rpc|ddp|rdp|mdp}no debug stacking {rpc|ddp|rdp|mdp}功能:打开堆叠的调试信息;本命令的no操作为关闭堆叠的调试信息。
参数:rpc为MASTE通过RPC(Remote Process Call)调用管理SLA VE交换机的运行状态;ddp为MASTER通过DDP(Duplex Discovery Protocol)监测Duplex堆叠组的拓扑状态;rdp为MASTER交换机和SLA VE交换机之间通过RDP(Reliable Datagram Protocol)进行通讯;mdp为MASTER通过MDP(Master Discovery Protocol)监测Simplex堆叠组的拓扑状态。
命令模式:特权用户配置模式使用指南:MASTER分发配置参数至SLA VE交换机时,首先把参数通过RPC协议封装为RPC报文格式,然后再调用RDP协议转发参数。
堆叠协议为每种参数设置了RPC ID,调试RPC信息,可以获知MASTER分发参数的执行状况;调试DDP信息,可以获知Duplex堆叠交换机发送和接收心跳报文的数量和时间;调试RDP信息,可以获知堆叠交换机发送RDP 报文的数量,以及接收到ACK报文的数量;调试MDP信息,可以获知Simplex堆叠交换机发送和接收心跳报文的数量和时间。