七年级上册数学期末复习教案
人教版数学七年级上册《复习题4》教学设计

人教版数学七年级上册《复习题4》教学设计一. 教材分析人教版数学七年级上册《复习题4》主要包括了分数、小数的运算,以及它们在实际问题中的应用。
本节课的内容是对前面所学知识的巩固和复习,通过解决一些实际问题,让学生掌握分数、小数运算的规律和方法。
教材内容由浅入深,逐步提高学生的运算能力和解决问题的能力。
二. 学情分析学生在之前的学习中已经掌握了分数、小数的基本运算方法,但对于一些复杂的问题,可能会存在理解困难和运算错误的情况。
因此,在教学过程中,需要关注学生的学习情况,及时发现并解决问题。
同时,学生应该具备一定的解决问题的能力,能够将实际问题转化为数学问题,并运用所学的知识进行解决。
三. 教学目标1.知识与技能:使学生掌握分数、小数的运算方法,能够解决相关的实际问题。
2.过程与方法:通过复习题目的练习,提高学生的运算速度和准确性,培养学生的解决问题的能力。
3.情感态度与价值观:激发学生学习数学的兴趣,培养学生的团队合作意识和自主学习能力。
四. 教学重难点1.重点:分数、小数的运算方法及实际应用。
2.难点:解决一些复杂实际问题时,如何正确转化问题和运用所学的知识。
五. 教学方法采用问题驱动的教学方法,引导学生通过自主学习、合作交流的方式,解决问题。
在教学过程中,注重启发式教学,让学生在思考中掌握知识,提高能力。
同时,运用巩固式教学法,通过对复习题目的练习,加深学生对知识的理解和运用。
六. 教学准备1.教师准备:熟悉教材内容,了解学生的学习情况,设计好教学过程和问题。
2.学生准备:完成前置学习任务,了解分数、小数的运算方法。
七. 教学过程1.导入(5分钟)教师通过一个实际问题,引发学生对分数、小数运算的兴趣,进而引入本节课的内容。
2.呈现(10分钟)教师展示复习题目,让学生明确学习目标。
题目包括简单和复杂的实际问题,涉及分数、小数的运算。
3.操练(10分钟)学生分组进行讨论和练习,解决呈现的题目。
教师巡回指导,解答学生的疑问,纠正错误。
初一数学复习教案

初一数学复习教案初一数学复习教案作为一无名无私奉献的教育工作者,就有可能用到教案,教案有助于顺利而有效地开展教学活动。
那么你有了解过教案吗?以下是店铺收集整理的初一数学复习教案,仅供参考,欢迎大家阅读。
初一数学复习教案篇1一、等式的概念和性质1等式的概念,用等号“=”表示相等关系的式子,叫做等式在等式中,等号左、右两边的式子,分别叫做这个等式的左边、右边等式可以是数字算式,可以是公式、方程,也可以是用式子表示的运算律、运算法则2等式的类型(1)恒等式:无论用什么数值代替等式中的字母,等式总能成立如:数字算式(2)条等式:只能用某些数值代替等式中的字母,等式才能成立方程需要才成立(3)矛盾等式:无论用什么数值代替等式中的字母,等式都不能成立如,注意:等式由代数式构成,但不是代数式代数式没有等号体3等式的性质等式的性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式若,则;等式的性质2:等式两边都乘以(或除以)同一个数(除数不能是0)或同一个整式,所得结果仍是等式若,则,注意:(1)在对等式变形过程中,等式两边必须同时进行即:同时加或同时减,同时乘以或同时除以,不能漏掉某一边(2)等式变形过程中,两边同加或同减,同乘或同除以的数或整式必须相同(3)在等式变形中,以下两个性质也经常用到:①等式具有对称性,②等式具有传递性,二、方程的相关概念1方程,含有未知数的等式叫作方程注意:定义中含有两层含义,即:方程必定是等式,即是用等号连接而成的式子;方程中必定有一个待确定的数即未知的字母二者缺一不可2方程的次和元方程中未知数的最高次数称为方程的次,方程中不同未知数的个数称为元3方程的已知数和未知数已知数:一般是具体的数值,如中(的系数是1,是已知数但可以不说)5和0是已知数,如果方程中的已知数需要用字母表示的话,习惯上有、、、、等表示未知数:是指要求的数,未知数通常用、、等字母表示如:关于、的方程中,、、是已知数,、是未知数4方程的解使方程左、右两边相等的未知数的值,叫做方程的解5解方程求得方程的解的过程注意:解方程与方程的解是两个不同的概念,后者是求得的结果,前者是求出这个结果的过程6方程解的检验楷体要验证某个数是不是一个方程的解,只需将这个数分别代入方程的左边和右边,如果左、右两边数值相等,那么这个数就是方程的解,否则就不是三、一元一次方程的定义1一元一次方程的概念只含有一个未知数,并且未知数的最高次数是1,系数不等于0的方程叫做一元一次方程,这里的“元”是指未知数,“次”是指含未知数的项的最高次数2一元一次方程的形式标准形式:(其中,,是已知数)的形式叫一元一次方程的标准形式最简形式:方程(,,为已知数)叫一元一次方程的最简形式注意:(1)任何一元一次方程都可以转化为最简形式或标准形式,所以判断一个方程是不是一元一次方程,可以通过变形为最简形式或标准形式验证如方程是一元一次方程如果不变形,直接判断就出会现错误(2)方程与方程是不同的,方程的解需要分类讨论完成四、一元一次方程的解法1解一元一次方程的一般步骤(1)去分母:在方程的两边都乘以各分母的最小公倍数注意:不要漏乘不含分母的项,分子是个整体,含有多项式时应加上括号(2)去括号:一般地,先去小括号,再去中括号,最后去大括号注意:不要漏乘括号里的项,不要弄错符号(3)移项:把含有未知数的项都移到方程的一边,不含未知数的项移到方程的另一边注意:①移项要变号;②不要丢项(4)合并同类项:把方程化成的形式注意:字母和其指数不变(5)系数化为1:在方程的两边都除以未知数的系数(),得到方程的解注意:不要把分子、分母搞颠倒体2解一元一次方程常用的方法技巧解一元一次方程常用的方法技巧有:整体思想、换元法、裂项、拆添项以及运用分式的恒等变形等3关于x的方程 ax b 解的情况⑴当a 0时,x⑵当a ,b 0时,方程有无数多个解⑶当a 0,b 0时,方程无解练习1、等式的概念和性质1.下列说法不正确的是()A等式两边都加上一个数或一个等式,所得结果仍是等式B等式两边都乘以一个数,所得结果仍是等式C等式两边都除以一个数,所得结果仍是等式D一个等式的左、右两边与另一个等式的左、右两边分别相加,所得结果仍是等式2.根据等式的性质填空(1),则;(2),则;(3),则;(4),则练习2、方程的相关概念1.列各式中,哪些是等式?哪些是代数式,哪些是方程?2.判断题(1)所有的方程一定是等式()(2)所有的等式一定是方程()(3)是方程()(4)不是方程()(5)不是等式,因为与不是相等关系()(6)是等式,也是方程()(7)“某数的3倍与6的差”的含义是,它是一个代数式,而不是方程()练习3、一元一次方程的定义1.在下列方程中哪些是一元一次方程?哪些不是?说明理由:(1)3x+5=12;(2) + =5;(3)2x+y=3;(4)y2+5y-6=0;(5) =2.2.已知是关于的一元一次方程,求的值3.已知方程是关于x的一元一次方程,则m=_________4.已知方程是一元一次方程,则;练习4、一元一次方程的解与解法1)一元一次方程的解一)、根据方程解的具体数值确定1.若关于x的方程的解是,则代数式的值是_________。
初中数学复习课教案15篇

初中数学复习课教案15篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作报告、工作计划、活动方案、规章制度、演讲致辞、合同协议、条据文书、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as work reports, work plans, activity plans, rules and regulations, speeches, contract agreements, documentary evidence, teaching materials, complete essays, and other sample essays. If you would like to learn about different sample formats and writing methods, please pay attention!初中数学复习课教案15篇初中数学复习课教案大全15篇教案是教师为了有效地组织和安排教学活动而制定的计划。
七年级数学上册有理数及其运算复习教案9篇

七年级数学上册有理数及其运算复习教案9篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!七年级数学上册有理数及其运算复习教案9篇七年级数学上册有理数及其运算复习教案篇1【教学目标】知识与技能:了解并掌握数据收集的基本方法。
新北区第一中学七年级数学上册第二章有理数及其运算章末复习教案新版北师大版0

第二章有理数及其运算【知识与技能】掌握本章主要知识,会求一个数的相反数和绝对值、倒数,会比较有理数的大小,能灵活运用计算法则和运算律进行有理数的运算.【过程与方法】通过梳理本章知识,回顾解决问题中所涉及的数形结合思想、分类讨论思想、转化思想,加深对本章知识的理解【情感态度】在运用本章知识解决具体问题过程中,进一步体会数学与生活的密切联系,增强数学应用意识,激发学生学习兴趣.【教学重点】回顾本章知识点,构建知识体系.【教学难点】利用有理数的相关知识解决实际问题.一、知识框图,整体把握【教学说明】引导学生回顾本章知识点,展示本章知识结构框图,使学生系统地了解本章知识及它们之间的关系.教学时,边回顾边建立结构框图.二、释疑解感,加深理解1.相反数、绝对值、倒数相反数:如果一两个数只有符号不同,那么称其中一个数为另一个数的相反数,也称这两个数互为相反数,数a的相反数为-a.绝对值:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,数a的绝对值为|a|.绝对值的性质:正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0.用字母表示是倒数:乘积为1的两个数互为倒数,数a的倒数为1a(a≠0).2.科学记数法一般地,一个大于10的数可以表示成a×10n的形式,其中1≤a<10,n是正整数,这种记数方法叫做科学记数法.3.有理数的混合运算法则有理数的混合运算,先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的.4.有理数的运算律加法的交换律:a+b=b+a加法的结合律:(a+b)+c=a+(b+c)乘法的交换律:a·b=b·a乘法的结合律:(ab)c=a(bc)乘法的分配律:a(b+c)=ab+ac三、典例精析,复习新知例1在给出的数轴上,标出以下各数及它们的相反数:-1,2,0,52,-4.观察以上各数在数轴上的位置,解答下列问题:(1)写出以上各数和它们的相反数的绝对值.(2)比较表示在原点左边的各数的大小,并说明这些数的大小与其绝对值的关系. (3)若|x|=2,则x= .(4)若整数x满足1<|x|≤4,求x的值.解:(1)|-4|=4,|4|=4;|-52|=52,|52|=52;|-2|=2,|2|=2;|-1|=1,|1|=1;|0|=0.(2)-4<-52<-2<-1.负数的绝对值越大,其值越小.(3)由于|-2|=2,|2|=2,所以当|x|=2时,x=±2. (4)-4,-3,-2,2,3,4.×1011×109元×1010×109元【分析】科学记数法的表示形式为a×10n,表示时关键要正确确定a的值以及n的值,其中1≤a<10,n为整数的位数减1,故选C.例3计算(1)(-3-13)÷(-127)×2(2)-10+8÷(-2)2-(-4)×(-3)【分析】有理数混合运算要注意运算的顺序,确定先算什么,后算什么. 例4简算【分析】运用加法、乘法的运算律进行简算.例5小红爸爸上星期五买进某公司股票1000股,每股26元,下表为本周内每日股票的涨跌情况:(单位:元)(1)星期四收盘时,每股是多少元?(2)本周内每股最高是多少元?(3)如果小红爸爸在星期五收盘时将全部股票卖出,你对他的收益情况怎样评价?(不考虑手续费和交易税)解:(1)26+[(+4)+(+4.5)+(-1)+(-2.5)]=26+5=31(元)(2)26+(+4)+(+4.5)=34.5(元)(3)(+4)+(+4.5)+(-1)+(-2.5)+(-6)=-1每股亏1元,所以共亏损1000元.四、复习训练,巩固提高1.把下列各数填到相应的大括号内:-4,整数集合……正分数集合…非负整数集合…2.-13的相反数是,绝对值是,倒数是 .3.若|m|=4,|n|=3.且m+n<0,则m-n= .4.已知(x-3)2+|y+5|=0,则xy-y2= .5.根据如图所示的程序计算,若输入x的值为1,则输出y的值为 .6.据某市统计局公布的第六次人口普查数据,该市常住人口760.57万人,其中760.57万人用科学记数法表示为()×105人×106人×107人×107人7.计算(1)-32-(-8)×(-1)5÷(-1)4;(2)[312-(79-1112+16)×36]÷58.现抽查10袋精盐,每代精盐的标准重量是100克,超过部分记为正,不足部分记为负,统计如下表:9.小明在玩“二十四点”游戏时抽到的四个数字是-9,6,2,3,你能写出三种不同的版式凑成24或-24吗?【教学说明】加强本章知识的应用,加深知识的理解,前几题由学生自主完成,第9题可由学生交流合作得出结论.【答案】1.整数集合{-4,+5,0,-1…}负有理数集合-9.(-9+2+3)×6=-246×2+3-(-9)=246×(-9)÷2+3=-24五、师生互动,课堂小结本节课你能完整地回顾本章所学的知识吗?你有哪些收获?还有哪些困惑与疑问?【教学说明】教师引导学生回顾本章知识,让学生自主交流与反思,对于学生的困惑和疑问,教师应及时指导.1.布置作业:从教材“复习题2”中选取.2.完成练习册中本章复习课的练习.本节课通过复习归纳本章内容,加深对本章知识的理解.通过例题与复习题训练,使学生解决问题的能力得到进一步的提高.检测内容:第二章 有理数及其运算得分________ 卷后分________ 评价________一、选择题(每小题3分,共30分)1.如果向北走6步记作+6,那么向南走8步记作( B ) A .+8步 B .-8步 C .+14步 D .-2步2.在2,-3,0,-1这四个数中,最小的数是( B ) A .2 B .-3 C .0 D .-13.下列说法中,正确的是( A )A .相反数等于它本身的数只有零B .倒数等于它本身的数只有1C .绝对值等于它本身的数只有零D .平方等于它本身的数只有14.(2019·攀枝花)用四舍五入法将130 542精确到千位,正确的是 (C)A .131 000B .0.131×104C .1.31×105D .13.1×1045.下列运算错误的是( D )A .-8-2×6=-20B .(-1)2 020+(-1)2 019=0 C .-(-3)2=-9 D .2÷43×34=26.若数轴上点A 表示的数是-3,则与点A 相距4个单位长度的点表示的数是( D ) A .±4 B .±1 C .-1或7 D .-7或17.纽约、悉尼与北京的时差如下表(正数表示同一时刻比北京时间早的时数,负数表示同一时刻比北京时间晚的时数),当北京时间是6月15日23时时,悉尼、纽约时间分别是( A )A .6月16日1时;6月15日10时B .6月16日1时;6月14日10时C .6月15日21时;6月15日10时D .6月15日21时;6月16日12时城市 悉尼 纽约 时差/时 +2 -13,第7题表),第9题图) ,第10题图)8.已知有理数a ,b ,c 均不为0,且abc >0,a >c ,ab <0,则下列结论正确的是( C )A .a <0,b <0,c <0B .a >0,b >0,c <0C .a >0,b <0,c <0D .a <0,b >0,c >09.有理数a ,b 在数轴上的位置如图所示,则下列关系式:①|a|>|b|;②a -b >0;③a +b >0;④1a +1b>0;⑤-a >-b.其中正确的个数有( C )A .1个B .2个C .3个D .4个10.一个自然数的3次方可以分裂成若干个连续数的和,例如:23,33和43分别可以按如图所示的方式“分裂”成2个、3个和4个连续奇数的和,即23=3+5;33=7+9+11;43=13+15+17+19;….若63也按照此规律来进行“分裂”,则63“分裂”出的奇数中,最大的那个奇数是(C)A .37B .39C .41D .43二、填空题(每小题3分,共24分) 11.计算5+(-3)的结果为__2__.12.大于-4小于5的所有整数的和等于__4__.13.一个点沿着数轴的正方向从原点起移动2个单位长度后,又向反方向移动6个单位长度,此时这个点表示的数是__-4__.14.某日中午,气温由早晨的零下2 ℃上升了9 ℃,傍晚又下降了4 ℃,则这天傍晚的气温是__3__℃___.15.已知|x|=4,|y|=0.5,且xy <0,则xy的值为__-8__.16.对于任意有理数a ,b ,规定“*”是一种新的运算符号,且a*b =a 2+ab -a ,例如:2*3=22+2×3-2=8,根据上面的规定,则[(-3)*2]*(-5)的值为0.17.如图,在一条可以折叠的数轴上,A ,B 两点表示的数分别是-9,4,以点C 为折点,将此数轴向右对折,若点A 在点B 的右边,且A ,B 两点相距1,则C 点表示的数是-2.18.(2018·泰安)观察“田”字中各数之间的关系如下,则c 的值为270.1 2 2 33 64 75 12 8 137 22 16 239 40 32 4111 74 64 7515 c a b三、解答题(共66分)19.(8分)计算:(能简算的要简算)(1)9+5×(-3)-(-2)2÷4;解:原式=-7 (2)75719+|(-81521)+67719|-73521;解:原式=16(3)-22+8÷(-2)3-2×(18-12);解:原式=-414 (4)(-134)×15+212÷5+15×(-114).解:原式=-11020.(8分)将下列各数在数轴上表示出来,并用“<”连接: -(-1.5),0,-|-23|,-22,|-212|.解:-22<-|-23|<0<-(-1.5)<|-212|,数轴图略21.(9分)某铁矿码头将运进铁矿石记为正,运出铁矿石记为负,某天的记录如下:(单位:t )+100,-80,+300,+160,-200,-180,+80,-160.(1)当天铁矿石库存是增加了还是减少了?增加或减少了多少吨?(2)码头用载重量为20 t 的大卡车运送铁矿石,每次运费100元,问这一天共需运费多少元?解:(1)(+100)+(-80)+300+160+(-200)+(-180)+80+(-160)=20(t ).故当天铁矿石是增加了,增加了20 t(2)(|+100|+|-80|+|+300|+|+160|+|-200|+|-180|+|+80|+|-160|)÷20=63(次),故这天共需运费63×100=6 300(元)22.(9分)仔细分析右图,请你参考图中老师的讲解,用运算律简便运算:(1)997172×(-36); (2)(-115132)×(-4). 解:(1)原式=(100-172)×(-36)=100×(-36)-172×(-36)=-3 600+12=-3 59912(2)原式=(-115-132)×(-4)=(-115)×(-4)-132×(-4)=460+18=4601823.(10分)小明的妈妈在某玩具厂工作,厂里规定每个工人每周要生产某种玩具140个,平均每天生产20个,但由于种种原因,实际每天生产量与计划量相比有出入.下表是小明妈妈某周的生产情况(超产记为正,减产记为负):星期 一 二 三 四 五 六 日增减产值/个 +10 -12 -4 +8 -1 +6 0(1)根据记录的数据可知小明妈妈本周实际生产玩具147个;(2)该厂实行每日计件工资制,每生产一个玩具可得工资5元,若超额完成任务,则超过部分每个另奖3元;少生产一个则倒扣3元,那么小明妈妈这一周的工资总额是多少元?(3)若将上面第(2)问中“实行每日计件工资制”改为“实行每周计件工资制”,其他条件不变,在此方式下小明妈妈这一周的工资与按日计件的工资哪一个更多?请说明理由.解:(2)147×5+(10+8+6)×3-(12+4+1)×3=756(元),故小明妈妈这一周的工资总额是756元(3)因为实行每周计件工资制时小明妈妈这一周的工资总额为147×5+7×3=756(元),所以在此方式下小明妈妈这一周的工资与按日计件的工资一样多24.(10分)观察下列各式的计算结果:①1-122=1-14=34=12×32 ;②1-132=1-19=89=23×43; ③1-142=1-116=1516=34×54;④ 1-152=1-125=2425=45×65; …(1)用你发现的规律填写下列式子的结果:①1-162=56×76;②1-1102=910×1110; (2)用你发现的规律计算:(1-122)×(1-132)×(1-142)×…×(1-12 0182)×(1-12 0192). 解:(2)原式=(12×32)×(23×43)×(34×54)×…×(2 0172 018×2 0192 018)×(2 0182 019×2 0202 019) = 12×32×23×43×…×2 0172 018×2 0192 018×2 0182 019×2 0202 019= 12×2 0202 019=1 0102 01925.(12分)【阅读理解】已知A ,B ,C 为数轴上的三点,若点C 在A ,B 两点之间,且它到点A 的距离是它到点B 的距离的3倍,那么我们就称点C 是{A ,B}的“奇点”.例如,如图①,点A 表示的数为-3,点B 表示的数为1,表示0的点C 到点A 的距离是3,到点B 的距离是1,那么点C 是{ A ,B }的“奇点”;又如,表示-2的点D 到点A 的距离是1,到点B 的距离是3,那么点D 就不是{A ,B }的“奇点”,但点D 是{B ,A}的“奇点”.【知识运用】(1)如图②,点M ,N 在数轴上的位置如图所示,则数__3__所表示的点是{M ,N }的“奇点”;数__-1__所表示的点是{N ,M }的“奇点”;(2)如图③,A ,B 为数轴上的两点,点A 所表示的数为-50,点B 所表示的数为30.现有一动点P 从点B 出发向左运动,则点P 运动到数轴上的什么位置时,P ,A ,B 三点中恰有一个点为其余两点的“奇点”?解:(2)点A 到点B 的距离为30-(-50)=80,当点P 为{A ,B }的“奇点”时,则点P 到点B 的距离为80÷(3+1)=20,所以此时点P 表示的数为30-20=10;当点P 为{B ,A }的“奇点”时,则点P 到点A 的距离为80÷(3+1)=20,所以此时点P 表示的数为-50+20=-30;当点A 为{B ,P }的“奇点”时,则点P 到点A 的距离为80÷3=803,此时点P 表示的数为-50-803=-2303; 当点A 为{P ,B }的“奇点”时,则点P 到点A 的距离为80×3=240,此时点P 表示的数为-50-240=-290.故点P 运动到数轴上表示数10或-30或-2303或-290的点所在的位置时,P ,A ,B 三点中恰有一个点为其余两点的“奇点”3.3 解一元一次方程(二)——去括号与去分母第1课时去括号【知识与技能】1.通过运用算术和列方程两种方法解决实际问题的过程,使学生体会到列方程解应用题更为简洁明了,省时省力.2.掌握去括号解方程的方法.【过程与方法】培养学生分析问题、解决问题的能力.【情感态度】通过列方程解决实际问题,使学生感受到数学的应用价值,激发学生学习数学的信心.【教学重点】在小学根深蒂固用算术方法解应用题的基础上,让学生逐步树立列方程解应用题的思想.【教学难点】弄清列方程解应用题的思想方法;用去括号解一元一次方程.一、情境导入,初步认识问题1我手中有6、x、30三张卡片,请同学们用他们编个一元一次方程,比一比看谁编得又快又对.学生思考,根据自己对一元一次方程的理解程度自由编题.问题2解方程5(x-2)=8解:5x=8+2,x=2,看一下这位同学的解法对吗?相信学完本节内容后,就知道其中的奥秘.问题3某工厂加强节能措施,去年下半年与上半年相比,月平均用电减少2000kW·h (千瓦·时),全年用电15万kW·h,这个工厂去年上半年每月平均用电是多少?(教材第93页问题1)【教学说明】给学生充分的交流空间,在学习过程中体会“取长补短”的含义,以求在共同学习中得到进步,同时提高语言组织能力及逻辑推理能力.二、思考探究,获取新知【教学说明】上面栏目一中的问题3为教材中的问题,教师先提出上面的问题,让学生产生疑问,然后提出下面几个问题,对其进行分析和探究,以归纳出最后的结论.设问1:设上半年每月平均用电xkW·h,则下半年每月平均用电____kW·h;上半年共用电_____kW·h,下半年共用电______kW·h.【教学说明】教师引导学生寻找相等关系,列出方程.根据全年用电15万kW·h,列方程,得6x+6(x-2000)=150000.设问2:怎样使这个方程向x=a的形式转化呢?6x+6(x-2000)=150000↓去括号6x+6x-12000=150000↓移项6x+6x=150000+12000↓合并同类项12x=162000↓系数化为1x=13500设问3:本题还有其他列方程的方法吗?用其他方法列出的方程应怎样解?设下半年每月平均用电x度,则6x+6(x+2000)=150000.(学生自己进行解答)【归纳结论】方程中有带括号的式子时,根据乘法分配律和去括号法则化简.(括号前面是“+”号,把“+”号和括号去掉,括号内各项都不改变符号;括号前面是“-”号,把“-”号和括号去掉,括号内各项都改变符号.)去括号时要注意:(1)不要漏乘括号内的任何一项;(2)若括号前面是“-”号,记住去括号后括号内各项都变号.三、典例精析,掌握新知例1教材第94页例1.【教学说明】这道例题为教材中的例题,教师先讲解第(1)小题,教师在讲解过程中注意与学生互动,让学生说出每个步骤中应怎样计算.第(2)题可让学生上台板演,教师注意指导学生写的步骤是否完整.例2教材第94~95页例2.【分析】若设船在静水中的平均速度为x千米/时,则顺流的速度为___千米/时;逆流的速度为___千米/时.顺流的路程=___,逆流的路程___.相等关系为____________.思考:1.在设未知数时,为什么首选船在静水中的平均速度作为未知数x?2.怎样求甲乙两个码头之间的距离?【教学说明】这道题解答时通过空白部分的填写,给学生更多的思考空间,促进学生积极思考,发展学生的思维.同时通过空白部分的引导,降低问题的难度,从而将难点锁定在找相等关系上,避免难点太多,造成无从下手,重点、难点不突出的情况.通过对问题1的交流讨论,使学生认识到将船在静水中的平均速度设为未知数x是最简洁、最优的情况,向学生渗透最优化思想.问题2是对例2的延伸和拓展,将问题设置在例2之后,利于学生形成正确的思维过程.教学时,教师先让学生自主完成空白部分,完成后组内交流.教师巡视指导,关注学生能否找准相等关系.请学生展示,并讲解解答思路.学生独立列方程并解方程,然后教师找部分学生板演并讲解思路,在这个过程中,教师应重点关注学生能否正确解方程.学生解答完方程后,教师采用追问的形式引导学生思考问题1、问题2.学生通过小组交流、讨论、质疑、分析设船在静水中的平均速度为x的理由.教师找学生口述思考2,关注学生能否用两种方法求距离.四、运用新知,深化理解1.教材第95页练习.2.解方程:3x-2[3(x-1)-2(x+2)]=3(18-x).3.某班40名同学去划船游湖,一共租了8条小船,其中有可坐4人的小船和可坐6人的小船,40名同学刚好坐满8条小船,问这两种小船各租了几条?4.一艘轮船往返于A、B两地之间,由A到B是顺水航行,由B到A是逆水航行.已知船在静水中的速度是每小时20km,由A到B用了6小时,由B到A所用的时间是由A到B 所用时间的1.5倍,求水流速度.【教学说明】以上几题一方面让学生掌握去括号解一元一次方程的方法,另一方面可锻炼学生解决问题的能力,其中1~3题都可让学生独立思考后上台板演.教师注意提醒学生应严格按教材步骤进行.(等学生熟练掌握之后可放松要求)在做第3题时提示学生可结合小学所学的“鸡兔同笼”问题进行思考.第4题与例2有些类似,可让学生比照后独立思考并解答.【答案】1.(1)x=2.(2)x=17 11.(3)x=6.(4)x=0.2.解:去中括号,得3x-6(x-1)+4(x+2)=3(18-x). 去小括号,得3x-6x+6+4x+8=54-3x.移项,得3x-6x+4x+3x=54-6-8.合并同类项,得4x=40.系数化为1,得x=10.3.解:设可坐4人的小船租了x条,则可坐6人的小船租了(8-x)条.根据题意,可列得方程:4x+6(8-x)=40.去括号,得4x+48-6x=40.移项,得4x-6x=40-48.合并同类项,得-2x=-8.系数化为1,得x=4.8-4=4(条)答:可坐4人的小船租了4条,可坐6人的小船也租了4条.4.解:设水的流速为xkm/h,可列出方程:(20+x)×6=(20-x)×6×1.5.去括号,得120+6x=180-9x.移项,得9x+6x=180-120.合并同类项,得15x=60.系数化为1,得x=4.答:水流速度为4km/h.五、师生互动,课堂小结通过以下问题引导学生回顾、小结:(1)通过这节课,你在用一元一次方程解决实际问题方面又获得了哪些收获?(2)去括号解一元一次方程要注意什么?1.布置作业::从教材习题3.3中选取.2.完成练习册中本课时的练习.本课时教学可先让学生通过尝试和合作,归纳出去括号解方程的方法,鼓励学生探寻一题多解,然后比较找到最好方式,巩固去括号的认识.教学中突出应用意识,利用实际问题引出本节要学的知识点,用不同的问题为学生指明思考方向,时时提醒学生互相探讨寻找实际问题中等量关系的体会.。
七年级上册数学期末复习教案

第一章?有理数?总复习教学目标1.复习整理有理数有关概念和有理数运算法那么,运算律以及近似计算等有关知识; 2.培养学生综合运用知识解决问 3.渗透数形结合的思想. 教学重点和难点 重点:有理数概念和有理数运算. 难点:负数和有理数法那么的理解. 教学手段 引导——活动论 教学方法 启发式教学教学过程 一、根本概念 1、正数与负数 ①表示大小②在实际中表示意义相反的量 ③带“-〞号的数并不都是负数 2、数轴原点①三要素正方向度 ②如何画数轴③数轴上的点与有理数 3、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0 ②a 的相反数-a③a 与b 互为相反数a+b=0 4、绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |。
a 〔a ≥0〕②|a |=-a 〔a ≤0〕5、倒数①乘积是1的两个数叫作互为倒数。
②a 的倒数是1 a〔a ≠0〕③a 与b 互为倒数ab=1 6、相反数是它本身的数是0①倒数是它本身③平方等于它本身的数是0,1④立方等于经本身的数是±1,0 7、乘方共16页①求几个一样因数的积的运算叫做乘方na2a2,2a=a ②底数、指数、幂 8、科学记数法①把一个绝对值大于10的数表示成a310n 〔其中1≤|a |<10,n 为正整数〕 ②指数n 与原数的整数位数之间的关系。
9、近似数与有效数字 ①准确数、近似数、准确度准确到万位②准确度准确到0.001保存三个有效数字③近似数的最后一位是什么位,这个数就准确到哪位。
④有效数字⑤如何求较大数的近似数,有两种方法,一种用单位,一种用科学记数法 二、有理数的分类 1、按整数与分数分正整数整数0负整数有理数正分数分数负分数2、按正负分正整数正有理数正分数有理数0负整数负有理数负分数讨论一下小数属于哪一类? 三、有理数的运算 1、运算种类有哪些?2、运算法那么〔运算的根据〕;3、运算定律〔简便运算的根据〕;4、混合运算顺序①三级〔乘方〕②同一级运算应③有括号的先做括号内的运算; ④能简便运算的应尽量简便。
七年级上册数学教案(共12篇)

七年级上册数学教案〔共12篇〕篇1:七年级上册数学教案教学目的(一)通过复习一位数乘整百整十数不进位的口算,学生理解并掌握一位数乘两位数进位乘法的口算方法,能正确地进展一位数乘两位数的口算.(二)通过学生自己动手摆一摆,学生参与到知识的形成过程中,掌握口算的方法,可以比拟纯熟地进展口算.教学重点和难点重点:在理解的根底上,掌握用一位数乘的口算过程.难点:理解并掌握满十向前一位进“1”的算理.教学过程设计(一)复习准备投影出示口算题:老师提问:14×2请你说一说口算过程.(学生答复10×2=20,4×2=8,20+8=28)老师追问:那么你能不能说一说140×2又是怎样口算的呢?(同座位的两个小朋友互相说一说)然后请同学答复(把140看成14个十,先用10个十乘以2是20个十也就是200,4个十乘以2是8个十也就是80,200加上80等于280)老师提醒课题:(板书:一位数乘两位数、乘整百整十数)(二)学习新课出例如1:板书:口算14×3.想一想14×3的意义是什么?(3个14是多少)根据14×3的意义,用小棒摆出来.想口算的顺序,先拿出表示10×3=30,3个十的小棒是30,再拿出表示4×3=12,3个4的小棒是12,合起来是42,30+12=42.板书:14×3=42.比拟14×3与14×2两道口算的异同:(同桌或四人小组的同学互相启发进展讨论)然后请同学答复:两道题口算过程是一样的.都是先乘以被乘数的十位上的数,再乘以个位上的数,只是14乘以3,个位上的数相乘,满了十,最后一步是整十加上两位数.做一做投影出示:16×2=26×3=25×2=要求同学在练习本上直接写出结果.再把这几道题分别写在小黑板上,请几个同学直接写在小黑板上.待同学写完后集体订正.分别请同学说出口算过程.16×2:10乘以2等于20,6乘以2等于12,20加上12等于32.26×3,25×2分别请同学互相说,集体说,个人说.反复表达口算过程.出例如2:板书:口算:140×3=请同学想一想应该怎样做,然后试做.(老师巡视,个别指导一下)做完后,小组同学互相说一说自己是怎样做的.集中起来说出不同的想法:因为14×3=42,那么140×3只需在42后面添上一个0得420.把140看成14个十,14个十乘3得42个十,即420.3乘14得42,然后再在得数后面添上一个0.以上这几种算法,要给肯定,尤其第三种方法,给予表扬和鼓励.做一做投影出示:130×5=150×6=每人在自己本上直接写出结果.四人小组进展讨论,能用几种方法说出口算过程.小结今天我们学习了“一位数乘两位数、乘整十整百数”,在学习这部分内容时,要注意个位上、十位上满十向前一位进“1”.(三)稳固反应1.根本练习:(投影出示)首先看完题后,想一想这里是什么意思,然后填在书上,填完后同桌两个同学互相说一说.最后集体订正.2.填空练习:(投影出示)明确题目要求后,在课本上填括号.订正时请同学说出口算过程,左面三道题,被乘数添一个0,再请同学说出结果,并说明口算过程.3.找朋友游戏.15×318×212×514×435×2240×325×4310×332×326×2160×612×416×514×336×2120×4160×5240×2260×2题目卡片贴在黑板上,(或在投影上一题一题出示)答案卡片发到同学手中,当题目出示后,答案就是它的朋友.45366056708807201009109652960489072424809004805204.文字表达题.投影片出示,同学们在作业本上做.四个同学写在小黑板上,订正时用.(1)乘数是7,被乘数是12,积是多少?12×7=84(2)250的3倍是多少?250×3=750作业:看书第1页.课堂教学设计说明本节课教学内容口算“一位数乘两位数、乘整百整十数”.首先适量并有针对性的练习一些用一位数乘的不进位的乘法口算题,为学习新知识做准备.讲授新课例1时,抓住满十进一这一难点,以旧知识引出新知识,通过新旧知识的比拟,突出新旧知识的连接点,通过学生自己动手、动脑、动口获取知识,表达以学生为主体.使学生真正悟出新旧知识的内在联络.通过形式多样的练习,到达能准确、迅速地口算的目的.板书设计篇2:七年级上册数学教案一、目的1.用它们拼成各种形状不同的四边形,并计算它们的周长。
浙教版数学七年级上册第二章《有理数的运算》复习教学设计

浙教版数学七年级上册第二章《有理数的运算》复习教学设计一. 教材分析浙教版数学七年级上册第二章《有理数的运算》复习教学设计,主要涉及有理数的加法、减法、乘法、除法以及混合运算。
本章内容为学生提供了有理数运算的基本方法和规则,是进一步学习数学的基础。
教材通过丰富的例题和练习题,帮助学生掌握有理数运算的方法,培养学生的运算能力和逻辑思维能力。
二. 学情分析学生在学习本章内容前,已初步掌握了实数的概念,对加法、减法、乘法、除法有一定的了解。
但部分学生对有理数运算的规则和技巧还不够熟练,特别是在混合运算中,对运算顺序和运算法则的掌握程度不一。
因此,在复习教学中,需要针对学生的实际情况,重点巩固运算规则,提高学生的运算速度和准确性。
三. 教学目标1.掌握有理数的加法、减法、乘法、除法运算方法。
2.掌握混合运算的顺序和运算法则。
3.提高学生的运算能力和逻辑思维能力。
4.培养学生的团队合作精神和自主学习能力。
四. 教学重难点1.重难点:有理数的混合运算。
2.难点:运算顺序和运算法则的运用。
五. 教学方法1.采用问题驱动法,引导学生通过解决问题来掌握运算方法。
2.使用案例分析法,分析典型例题,让学生深刻理解运算规则。
3.运用合作学习法,分组讨论,培养学生的团队协作能力。
4.采用巩固练习法,通过适量练习,提高学生的运算速度和准确性。
六. 教学准备1.准备相关教案和教学PPT。
2.准备典型例题和练习题。
3.准备黑板和粉笔。
4.准备多媒体教学设备。
七. 教学过程1.导入(5分钟)回顾实数的概念,引导学生认识到有理数是实数的一部分。
通过提问方式,让学生回顾加法、减法、乘法、除法的基本概念和方法。
2.呈现(10分钟)利用PPT展示本章的主要内容和知识点,包括有理数的加法、减法、乘法、除法以及混合运算的规则。
引导学生对比实数和有理数的区别,明确有理数运算的重要性。
3.操练(10分钟)分组进行练习,每组选择一道混合运算的题目进行讨论和解答。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
⎧⎨⎩⎧⎪⎨⎪⎩第一章《有理数》总复习教学目标1.复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;2.培养学生综合运用知识解决问题的能力;3.渗透数形结合的思想.教学重点和难点重点:有理数概念和有理数运算.难点:负数和有理数法则的理解.教学手段引导——活动——讨论教学方法启发式教学教学过程一、基本概念1、正数与负数①表示大小②在实际中表示意义相反的量③带“-”号的数并不都是负数2、数轴 原点①三要素 正方向单位长度 ②如何画数轴③数轴上的点与有理数3、相反数①只有符号不同的两个数,叫做互为相反数,0的相反数是0②a 的相反数-a③a 与b 互为相反数a+b=04、绝对值①一般地,数轴上表示数a 的点与原点距离,表示成|a |。
a (a ≥0) ②|a |= -a (a ≤0)5、倒数①乘积是1的两个数叫作互为倒数。
②a 的倒数是1a(a ≠0) ③a 与b 互为倒数ab=16、相反数是它本身的数是0①倒数是它本身的数是±1②绝对值是它本身的数是非负数 ③平方等于它本身的数是0,1④立方等于经本身的数是±1,07、乘方⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩⎧⎪⎨⎪⎩①求几个相同因数的积的运算叫做乘方a·a·…·a=a n②底数、指数、幂8、科学记数法①把一个绝对值大于10的数表示成a×10n(其中1≤|a|<10,n为正整数)②指数n与原数的整数位数之间的关系。
9、近似数与有效数字①准确数、近似数、精确度精确到万位②精确度精确到0.001保留三个有效数字③近似数的最后一位是什么位,这个数就精确到哪位。
④有效数字⑤如何求较大数的近似数,有两种方法,一种用单位,一种用科学记数法二、有理数的分类1、按整数与分数分正整数整数 0负整数有理数正分数分数负分数2、按正负分正整数正有理数正分数有理数 0负整数负有理数负分数讨论一下小数属于哪一类?三、有理数的运算1、运算种类有哪些?2、运算法则(运算的根据);3、运算定律(简便运算的根据);4、混合运算顺序①三级(乘方)二级(乘除)一级(加减);②同一级运算应从左到右进行;③有括号的先做括号内的运算;④能简便运算的应尽量简便。
四、课堂练习与作业(一)1、下列语句正确的的( )个(1)带“-”号的数是负数(2)如果a 为正数,则- a 一定是负数(3)不存在既不是正数又不是负数的数(4)00C 表示没有温度A 、0B 、1C 、2D 、32、最小的整数是( )A 、- 1B 、0C 、1D 、不存在3、向东走10米记作+10米,则向西走8米记作___________4、在- 722 ,π,0,0.333……,3.14,- 10中,有理数有( )个 A 、1 B 、2 C 、4 D 、55、正整数集合与负整数集合合并在一起构成( )A 、整数集合B 、有理数集合C 、自然数集合D 、以上都不对6、有理数中,最小的正整数是_________,最大的负整数是___________7、下列说法错误的是( )A 、数轴是一条直线;B 、表示- 1的点,离原点1个单位长度;C 、数轴上表示- 3的点与表示- 1的点相距2个单位长度;D 、距原点3个单位长度的点表示—3或3。
8、数轴上表示整数的点称为整点某数轴的单位长度为1cm ,若在数轴上随意画出一条长2005cm 长的线段AB ,则线段AB 盖住的的整点有( )个A 、2003或2004B 、2004或2005;C 、2005或2006;D 、2006或20079、- 321的相反数、绝对值、倒数分别是___________________________; 10、- a 表示的数是( )A 、负数B 、正数C 、正数或负数D 、a 的相反数11、若|x+1|=2,则x=_______________;12、若|x+2|+(y-3)2=0,则yx =______________; 13、若|a|+|b|=4,且a=- 3,则b=_________;14、下列叙述正确的是( )A 、若|a|=|b|,则a=bB 、若|a|>|b|,则a>bC 、若a<b,则|a|<|b|D 、若|a|=|b|,则a=±b15、当a<0时,7a+8|a|=______________;16、下列名组数中,相等的一组是( )A 、(- 3)3与—33B 、(- 3)2与- 32C 、43与34D 、- 32与(- 3)+(- 3)17、(- 2)2004+(- 2)2005=__________________18、我国某石油产量为170000000吨,用科学记数法表示为___________________;19、近似数0.0302精确到______ 位,有__________个有效数字。
20、(-1)+(-1)2+(-1)3+……+(-1)2005=__________________;A 、-2005B 、2005C 、-1D 、121、绝对值小于5的所有整数有__________________________;22、用“<”符号连接:-3,1,0,(-3)2,-12为__________________________;23、已知a 与b 互为相反数,c 与d 互为倒数, 24、已知1<x<2,试确定m 的绝对值为2,求 m b a ||+-cd+m 的值。
xx x x x x ||1|1|2|2|+----- 的值。
25、已知有理数a,b,c 在数轴上对应点如图秘示,化简|a-b|+|b-c|-|c-a|。
五、课堂练习与作业(二)1、若两数之和为负数,则这两个数一定是()A 、同为正数B 、同为负数C 、一正一负D 、无法确定2、已知有理数a,b,c 在数轴上的位置如图所示,下列错误的是( )A 、b+c<0B 、-a+b+c<0 c b 0 aC 、|a+b|<|a+c|D 、|a+b|>|a+c|3、若b<0,则a,a+b,a-b 中最大的是( )A 、aB 、a+bC 、a-bD 、还要看a 的符号才能确定4、计算( 412131-- )×(-12)=________________ 5、按如图所示的模式,在第四个正方形内填入的数字。
6、下列计算正确的是( )A 、-14=-4B 、(132)2=194 C 、-(-2)2=4 D 、-1-3=-4 7、计算(-1)2004+(-1)2004÷(-1)2005+(-1)2006的值是( )A 、0B 、1C 、-1D 、28、计算:-32-22=___________9、计算:(1-2)(3-4)(5-6)……(9-10)=__________10、若x 2=64,则x=______11、(1+3+5+7+……+2005)-(2+4+6+8+……+2004)=________12、6999999+599999+49999+3999+299+19=_____________13、若a<0,则 ||a a =_______ 14、1+(-2)+3+(-4)+5+(-6)+7+(-8)+……+2005=___________15、下列说法正确的是( )A 、互为相反数的两个数的积一定是负数;B 、减去一个数等于加上这个数C 、0减去一个数,仍得这个数D 、互为倒数的两个数积为116、30-(-12)-(-25)-18+(-10)17、[- 61+(- 41)- 31+21]×(- 51+51)18、(- 0.5)-(- 314 )+2.75 -(+712 ) 19、- 191817 ×620、-52÷(-3)2×(-5)3÷[-(-5)2]21、-24-(3-7)2-(-1)2×(-2)第二章《一元一次方程》总复习教学目标1.准确地理解方程、方程的解、解方程和一元一次方程等概念;2.熟练地掌握一元一次方程的解法;3.通过列方程解应用题,提高学生综合分析问题的能力;4.使学生进一步理解在解方程时所体现出的化归思想方法;5.使学生对本章所学知识有一个总体认识.教学重点和难点进一步复习巩固解一元一次方程的基本思想和解法步骤,以及列方程解应用题. 教学手段引导——活动——讨论教学方法启发式教学教学过程一、主要概念1、方程:含有未知数的等式叫做方程。
2、一元一次方程:只含有一个未知数,未知数的指数是1的方程叫做一元一次方程。
3、方程的解:使方程左右两边相等的未知数的值叫做方程的解。
4、解方程:求方程的解的过程叫做解方程。
二、等式的性质等式的性质1:等式两边都加(或减)同一个数(或式子),结果仍相等。
等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。
三、解一元一次方程的一般步骤及根据1、去分母-------------------等式的性质22、去括号-------------------分配律3、移项----------------------等式的性质14、合并----------------------分配律5、系数化为1--------------等式的性质26、验根----------------------把根分别代入方程的左右边看求得的值是否相等四、解一元一次方程的注意事项1、分母是小数时,根据分数的基本性质,把分母转化为整数;2、去分母时,方程两边各项都乘各分母的最小公倍数,此时不含分母的项切勿漏乘,分数线相当于括号,去分母后分子各项应加括号;3、去括号时,不要漏乘括号内的项,不要弄错符号;4、移项时,切记要变号,不要丢项,有时先合并再移项,以免丢项;5、系数化为1时,方程两边同乘以系数的倒数或同除以系数,不要弄错符号;6、不要生搬硬套解方程的步骤,具体问题具体分析,找到最佳解法。
五、列方程解应用题的一般步骤1、审题2、设未数3、找相等关系4、列方程5、解方程6、检验7、写出答案六、例题例1、某班有50名学生,准备集体去看电影,买到的电影票中,有1元5角的,有2元的。
已知买电影票总共花88元,问票价是1元5角和2元的电影票各几张?解:设票价是2元的电影票为X张,则票价为1元5角的应有(50-X)张。
列方程:2X + 1.5(50 – X)= 88去括号:得 2X + 75 - 1.5X = 88移项、合并:得 0.5X = 13系数化为1:得 X = 26把X = 26代入50 – X,得50 – 26 = 24检验:2 ×26 + 1.5 × 24 = 88(元)∴求的解是符合题设条件的或者符合题意的。