大学物理学第六版《A下》复习题

合集下载

《大学物理》复习题及答案

《大学物理》复习题及答案

《大学物理》复习题及答案《大学物理》复习题及答案一:填空题1: 水平转台可绕通过中心的竖直轴匀速转动.角速度为?,台上放一质量为m的物体,它与平台之间的摩擦系数为?,m在距轴R处不滑动,则?满足的条件是??; 2: 质量为m的物体沿x轴正方向运动,在坐标x处的速度大小为kx,则此时物体所受力的大小为F?。

3: 质点在xoy平面内运动,任意时刻的位置矢量为r?3sin?ti?4cos?tj,其中?是正常数。

速度v?,速率v?,运动轨迹方程;物体从x?x1运动到x?x2所需的时间为4: 在合外力F?3?4x(式中F以牛顿,x以米计)的作用下,质量为6kg的物体沿x 轴运动。

如果t?0时物体的状态为,速度为x0?0,v0?0,那么物体运动了3米时,其加速度为。

25:一质点沿半径为米的圆周运动,其转动方程为??2?t。

质点在第1s 末的速度为,切向加速度为6: 一质量为m?2kg的质点在力F?4ti?(2?3t)j(N)作用下以速度v0?1j(m?s?1)运动,若此力作用在质点上的时间为2s,则此力在这2s内的冲量I?在第2s末的动量P? ;质点7:一小艇原以速度v0行驶,在某时刻关闭发动机,其加速度大小与速率v成正比,但方向相反,即a??kv,k为正常数,则小艇从关闭发动机到静止这段时间内,它所经过的路程?s?,在这段时间内其速率v与时间t的关系为v? 8:两个半径分别为R1和R2的导体球,带电量都为Q,相距很远,今用一细长导线将它们相连,则两球上的带电量Q1?则球心O处的电势UO?,Q2?9:有一内外半径分别为R及2R金属球壳,在距离球心O为R处放一电量为q的点电荷,2.在离球心O为3R处的电场强度大小为E?,电势U? 2210: 空间某一区域的电势分布为U?Ax?By,其中A,B为常数,则场强分布为Ex?为,Ey? ;电势11: 两点电荷等量同号相距为a,电量为q,两电荷连线中点o处场强为;将电量为?q0的点电荷连线中点移到无穷远处电场力做功为12: 在空间有三根同样的长直导线,相互间距相等,各通以同强度同方向的电流,设除了磁相互作用外,其他影响可忽略,则三根导线将13: 一半径为R的圆中通有电流I,则圆心处的磁感应强度为第1页。

北京邮电大学大学物理第六版下答案

北京邮电大学大学物理第六版下答案

北京邮电大学大学物理第六版下答案1、27.在只有量筒没有天平的情况下,要取出16g酒精(ρ酒精=8×103kg/m3),下列做法正确的是()[单选题] *A.只有量筒没有天平是做不到的B.用量筒量出体积为16cm3的酒精C.用量筒量出质量为16g的酒精D.用量筒量出体积为20cm3的酒精(正确答案)2、如图63所示,MM’为平面镜,AO为入射光线,ON为法线,入射角∠AON等于60°。

已知∠NOB等于30°,∠NOC等于45°,∠NOD等于60°。

则入射光线AO的反射光线将沿着哪个方向射出()[单选题]A.ONB.OBC.OCD.OD(正确答案)3、32.下列涉及的物态变化现象解释正确的是()[单选题] *A.清晨河面上出现的薄雾是汽化形成的B.冰冻的衣服变干是熔化现象C.烧水时,壶嘴附近出现的“白气”是液化形成的(正确答案)D.浓雾逐渐散去是升华现象4、15.下列有关托盘天平的使用说法正确的是()[单选题] *A.称量前,应估计被测物体的质量,以免超过量程(正确答案)B.称量前,应调节平衡螺母或移动游码使天平平衡C.称量时,左盘放砝码,右盘放物体D.称量时,向右移动游码,相当于向左盘加砝码5、53.下列实例中不能用光的直线传播解释的是()[单选题] *A.水中倒影(正确答案)B.手影的形成C.日食和月食D.小孔成像6、1.民乐团演奏中国名曲《茉莉花》时,其中的声现象,下列说法错误的是()[单选题] *A.竹笛声是由空气柱振动产生的B.胡琴、琵琶发出的声音音色不同C.敲击鼓面的节奏越快,鼓声传播得就越快(正确答案)D.听众关闭手机,是从声源处控制噪声7、87.把一个实心铁块放入盛满水的容器中,溢出水的质量是5g,若把铁块放入盛满酒精的容器中,则溢出酒精的质量是()(ρ酒精=8×103kg/m3,ρ水=0×103kg/m3)[单选题] *A.5gB.5gC.4g(正确答案)D.36g8、48.如图所示是甲和乙两种液体物质的质量和体积的关系图像,下列说法正确的是()[单选题] *A.甲物质的密度比乙小B.体积为60cm3的乙物质的质量为48g(正确答案)C.质量为25g的甲物质的体积为30cm3D.甲和乙两种液体等体积混合后的密度小于1g/cm39、导体中的自由电子做定向移动时,它的周围就产生磁场[判断题] *对(正确答案)错答案解析:自由电子做定向移动时产生电流,电流周围存在磁场10、人耳听不到次声波,是因为响度太小[判断题] *对错(正确答案)答案解析:次声波和超声波的频率超过了人耳的听觉范围11、3.这一秒末的速度是前一秒末的速度的2倍.[判断题] *对错(正确答案)12、当0℃的冰熔化成0℃的水时,温度和内能都不变[判断题] *对错(正确答案)答案解析:温度不变,内能增大13、举重运动员把杠铃举在空中停三秒,此时运动员对杠铃的举力做功[判断题] *对错(正确答案)答案解析:有力无距离,不做功14、49.由甲、乙两种物质分别制成体积相等的甲、乙两种实心球,按照如图所示方式摊放在已调节平衡的天平左右盘内,天平仍平衡。

《大学物理(A)Ⅱ》期末试卷一及答案

《大学物理(A)Ⅱ》期末试卷一及答案

《大学物理(A)Ⅱ》期末试卷一及答案一、选择题 (每题3分,共30分)1.电流I 由长直导线1沿垂直bc 边方向经a 点流入由电阻均匀的导线构成的正三角形线框,再由b 点流出,经长直导线2沿cb 延长线方向返回电源(如图).若载流直导线1、2和三角形框中的电流在框中心O 点产生的磁感强度分别用1B 、2B和3B 表示,则O点的磁感强度大小 ( )(A) B = 0,因为B 1 = B 2 = B 3 = 0.(B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021=+B B,B 3 = 0.(C) B ≠ 0,因为虽然B 3 = 0、B 1= 0,但B 2≠ 0.(D) B ≠ 0,因为虽然021≠+B B,但3B≠ 0.2.用细导线均匀密绕成长为l 、半径为a (l >> a )、总匝数为N 的螺线管,管内充满相对磁导率为r 的均匀磁介质.若线圈中载有稳恒电流I ,则管中任意一点的 ( ) (A) 磁感强度大小为B = 0rNI .(B) 磁感强度大小为B = rNI / l . (C) 磁场强度大小为H =NI / l .(D) 磁场强度大小为H = NI / l .3.一弹簧振子作简谐振动,当其偏离平衡位置的位移的大小为振幅的1/4时,其动能为振动总能量的 ( ) (A) 7/16. (B) 9/16. (C) 11/16. (D) 13/16. (E) 15/16.4.如图所示,两列波长为的相干波在P 点相遇.波在S 1点振动的初相是1,S 1到P 点的距离是r 1;波在S 2点的初相是2,S 2到P 点的距离是r 2,以k 代表零或正、负整数,则P 点是干涉极大的条件为: ( )(A) λk r r =-12.abcI O1 2 ISS 1S 2MPE(B) π=-k 212φφ. (C) π=-π+-k r r 2/)(21212λφφ.(D) π=-π+-k r r 2/)(22112λφφ.S 1S 2r 1r 2P5.在双缝干涉实验中,屏幕E 上的P 点处是明条纹,若将缝 2S 盖住,并在1S 、2S 连线的垂直平分面处放一反射镜M ,如图所示,则此时 ( ) (A )P 点处仍为明条纹; (B )P 点处为暗条纹;(C )不能确定P 点处是明条纹还是暗条纹; (D )无干涉条纹.6.某元素的特征光谱中含有波长分别为1=450 nm 和2=750 nm (1 nm =10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有重叠现象,重叠处2的谱线的级数将是 ( ) (A) 2 ,3 ,4 ,5 ......; (B) 2 ,5 ,8 ,11......; (C) 2 ,4 ,6 ,8 ......;(D) 3 ,6 ,9 ,12......7. 关于同时性的以下结论中,正确的是 ( )(A) 在一惯性系同时发生的两个事件,在另一惯性系一定不同时发生. (B) 在一惯性系不同地点同时发生的两个事件,在另一惯性系一定同时发生. (C) 在一惯性系同一地点同时发生的两个事件,在另一惯性系一定同时发生.(D) 在一惯性系不同地点不同时发生的两个事件,在另一惯性系一定不同时发生. 8.有一直尺固定在K ′系中,它与Ox ′轴的夹角′=45°,如果K ′系以匀速度沿Ox 方向相对于K 系运动,K 系中观察者测得该尺与Ox 轴的夹角 ( )(A) 大于45°. (B) 小于45°. (C) 等于45°.(D) 当K ′系沿Ox 正方向运动时大于45°,而当K ′系沿Ox 负方向运动时小于45°.9.一个电子运动速度v = 0.99c ,它的动能是:(电子的静止能量为0.51 MeV ,2217.11v cγ=≈-)(A) 4.0MeV . (B) 3.5 MeV . (C) 3.1 MeV . (D) 2.5 MeV .10. (已知粒子在一维矩形无限深势阱中运动其波函数为 ( ))...(23cos1)(a x a axa x ≤≤-=πψ,粒子在x =5A /6处出现的几率密度为 (A )1/(2a ); (B )1/a ; (C )1/a 2; (D )1/a .二、填空题(共30分)1如图,平行的无限长直载流导线A 和B ,电流强度为I ,垂直纸面向外,两载流导线之间相距为a ,则(1)AB 中点(P 点)的磁感应强度 P B=____________________,(2)磁感应强度B 沿图中环路L 的积分⎰⋅l Bd =_________________.2两个带电粒子,以相同的速度垂直磁感线飞入匀强磁场,它们的质量之比是1∶4,电荷之比是1∶2,它们所受的磁场力之比是______,运动轨迹半径之比是________. 3如图所示,在纸面上的直角坐标系中,有一根载流导线AC 置于垂直于纸面的均匀磁场B中,若I = 1 A ,B = 0.1 T ,则AC 导线所受的磁力大小为________________.4已知波源的振动周期为4.00×210-s ,波的传播速度为300 m 1-s .波沿X 轴正方向传播,则位于1x =10.0 m 和2x =16.0 m 的两质点的振动位相差为___________. 5一列火车以20 m/s 的速度行驶,若机车汽笛的频率为600 Hz ,一静止观测者在机车前和机车后所听到的声音频率分别为__________和____________(设空气中声速为340 m/s ).6平行单色光垂直入射于单缝上,观察夫琅禾费衍射.若屏上P 点处为第二级暗纹,则单缝处波面相应地可划分为________ 个半波带.若将单缝宽度缩小一半,P 点处将是第________级________纹(填明或暗).7当一束自然光在两种介质分界面处发生反射和折射时,若反射光为线偏振光,则折射光为____________偏振光,且反射光线和折射光线之间的夹角为___________. 8(当波长为3000 Å的光照射在某金属表面时,光电子的能量范围从 0到 4.0×10-19 J .在作上述光电效应实验时遏止电压为 |U a | =____________V ;此金属的红限频率=__________________Hz .(普朗克常量h =6.63×10-34 J ·s ;基本电荷e =1.60×10-19 C)三、计算题 (共40分)1. 如图所示,长直导线和一个矩形导线框共面.且导线框的一个边与长直导线平行,他到长直导线的距离为r .已知导线中电流为t I I ωsin 0=,其中I 0和为常数,t为时间.导线框长为a 宽为b ,求导线框中的感应电动势.OA c 34x (cm) × × ×× × ×× × ×IIO xrab2. 一质量m = 0.25 kg 的物体,在弹簧的力作用下沿x 轴运动,平衡位置在原点. 弹簧的劲度系数k = 25 N ·m -1. (1) 求振动的周期T 和角频率.(2) 如果振幅A =15 cm ,t = 0时物体位于x = 7.5 cm 处,且物体沿x 轴反向运动,求初速v 0及初相.(3) 写出振动的数值表达式.3. 用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干涉现象中,距劈形膜棱边l = 1.56 cm的A处是从棱边算起的第四条暗条纹中心.(1) 求空气劈形膜A处的厚度?此空气劈形膜的劈尖角?(2) 改用600 nm的单色光垂直照射到此劈尖上仍观察反射光的干涉条纹,A处是明条纹还是暗条纹?(3) 在第(2)问的情形从棱边到A处的范围内共有几条明纹?几条暗纹?4. 当氢原子从某初始状态跃迁到激发能(从基态到激发态所需的能量)为E = 10.19 eV的状态时,发射出光子的波长是=4860 Å,试求该初始状态的能量和主量子数.(普朗克常量h =6.63×10-34 J·s,1 eV =1.60×10-19 J)答案一、选择题 (每题3分,共30分) 1 C 2 D 3 E 4 D 5 B 6 D 7 C 8 A 9 C 10 A 二、填空题(共30分)1(本题4分) 0 2分0I μ- 2分2(本题4分) 1:2 2分1:2 2分3(本题3分) 3510N -⨯3分4(本题3分) π-或π 3分5(本题4分)637.5Hz2分 566.7Hz2分6(本题5分) 4 2分 第一 2分 暗 1分7(本题3分) 部分 2分,2π或901分8(本题4分) 2.5 2分 144.010⨯2分三、计算题 (共40分) 1.(本题10分)解:两个载同向电流的长直导线在如图坐标x 处所产生的磁场为 02IB xμ=π 2分选顺时针方向为线框回路正方向,则 02r brIaBdS dx xμπ+Φ==⎰⎰3分 0ln2Iar brμ+=π2分 ∴ 0d d lnd 2d a r b I t r tμε+=-=-πΦ00lncos 2I a r bt rμωω+=-π3分2.(本题10分)解:(1) 1s 10/-==m k ω 1分 63.0/2=π=ωT s 1分 (2) A = 15 cm ,在 t = 0时,x 0 = 7.5 cm ,v 0 < 0 由 2020)/(ωv +=x A得 2200v 0.753 1.3A x ω=--=-=- m/s 3分 π=-=-31)/(tg 001x ωφv 或 4/3∵ x 0 > 0 ,∴ π=31φ 3分 (3) )3110cos(10152π+⨯=-t x (SI) 2分 3.(本题10分)解:(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=21处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度 e 4=λ23=750 nm 3分 ∴ ()l l e 2/3/4λθ===4.8×10-5 rad 2分 或者: 1222e k λλ⎛⎫+=+ ⎪⎝⎭ 第四条暗纹:k=3 e 4=λ23 (2) 对于'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为λ'+2124e ,它与波长λ'之比为0.321/24=+'λe .所以A 处是明纹 3分(3) 棱边处仍是暗纹,A 处是第三条明纹,所以共有三条明纹,三条暗纹. 2分 4.(本题10分)解:所发射的光子能量为 ==λε/hc 2.56 eV 3分 氢原子在激发能为10.19 eV 的能级时,其能量为=+=∆E E E K 1-3.41 eV 2分 氢原子在初始状态的能量为 =+=K n E E ε-0.85 eV 2分 该初始状态的主量子数为 41==nE E n 3分。

《大学物理》复习题

《大学物理》复习题

《大学物理》复习题一、单项选择题1.一质点的运动方程为3232y t t =-。

当2t =秒时,质点的运动为()A.减速运动;B.加速运动;C.匀速运动;D.静止。

2.如题图所示, 一半径为R 的木桶,以角速度ω绕其轴线转动.有人紧贴在木桶内壁上。

人与桶壁间的静摩擦系数为μ,要想人紧贴在木桶上不掉下来,则角速度ω应不小于()A .g μ; B; C .g R μ; D3.一轻绳跨过一个定滑轮,两端各系一质量分别为1m 和2m 的重物,且12m m >。

滑轮质量及一切摩擦均不计,此时重物的加速度的大小为a 。

今用一竖直向下的恒力1F m g =代替质量为1m 的重物,质量为2m 的物体的加速度大小为a '。

则有()A.a a '=;B.a a '>;C.a a '<;D.不能确定。

4.某物体的运动规律为2dv dt kv t =,式中k 为大于零的常数,当0t =时,初速度为0v 。

则速度v 与时间t 的函数关系为()。

A.202v v kt =+;B.20v v kt =-;C.20112v v kt =+;D.20112v v kt =-。

5.一点电荷放在球形高斯面的球心处,会引起高斯面电通量变化的情况是( )。

A .球形高斯面被与它相切的正方体表面代替;B .在球面外另放一点电荷;C .点电荷离开球心,但仍在球面内;D .在球面内另放一点电荷.6.如题图所示,在匀强电场中,将一正电荷从A 移到B 。

下列说法中正确的是()。

第2题图A.电场力作正功,正电荷的电势能减少;B.电场力作正功,正电荷的电势能增加;C.电场力作负功,正电荷的电势能减少;D.电场力作负功,正电荷的电势能增加。

7.如题图所示,载流导线在同一平面内,电流为I ,在O 点的磁感强度为() A.08I R μ; B.04IRμ; C.06IRμ;D.02IRμ.8.如题图所示,在一长直导线L 中通有电流I ,ABCD 为一与L 共面的矩形线圈,且AB 边与导线L 平行。

大学物理学(第六版)模拟题答案

大学物理学(第六版)模拟题答案
B ⋅ 2πr = 0 B=0
3分
5分
(2) 同样在环外( r < R1 和 r > R2 )作圆形回路, 由于 ∑ I i = 0 2分

79. (本题 5分)(2294)
解 : 长 直 导 线 AC 和 BD 受 力 大 小 相 等 , 方 向 相 反 且 在 同 一 直 线 上 , 故 合 K 力为零.现计算半圆部分受力,取电流元 I dl , y K K K K K d F = I d l × B 即 d F = IRB d θ 2分 dFx d F B dθ 由 于 对 称 性 ∑ d Fx = 0 dF ∴ F = Fy = ∫ d Fy = ∫ IRB sin θ d θ = 2 RIB
9. (本题 3分)(5673)
(A)
10. (本题 3分)(5675)
(B)
11. (本题 3分)(5676)
(A)
12. (本题 3分)(5677)
(C)
13. (本题 3分)(3171)
(C)
14. (本题 3分)(3172)
(B)
15. (本题 3分)(3174)
(B)
16. (本题 3分)(3497)
70. (本题 3分)(3731)
71. (本题 3分)(3371)
60°(或π / 3) 9I0 / 32
72. (本题 3分)(3807)
传播速度 单轴
三 计算题 ( 共248分)
73. (本题 8分)(2261)
解:将导线分成 1、2、3、4 四部份,各部分在 O 点产生的磁感强度设为 B1、B2、 B3、B4.根据叠加原理 O 点的磁感强度为: K K K K K B = B1 + B2 + B3 + B4 K K K K K 2 3 2分 ∵ B1 、 B4 均为 0,故 B = B2 + B3

大学物理下复习题(附答案)

大学物理下复习题(附答案)

大学物理下复习题(附答案)第一章填空题自然界中只存在正负两种电荷,同种电荷相互排斥,异种电荷相互吸引。

()对自然界中只存在正负两种电荷,同种电荷相互吸引,异种电荷相互排斥。

()错电荷电量是量子化的。

()对物体所带电量可以连续地取任意值。

()错物体所带电量只能是电子电量的整数倍。

()对库仑定律只适用于真空中的点电荷。

()对电场线稀疏处的电场强度小。

()对电场线稀疏处的电场强度大。

()错静电场是有源场。

()对静电场是无源场。

()错静电场力是保守力。

()对静电场力是非保守力。

()错静电场是保守力场。

()对静电场是非保守力场。

()错电势是矢量。

()错电势是标量。

()对等势面上的电势一定相等。

()对沿着电场线的方向电势降落。

()对沿着电场线的方向电势升高。

()错电场中某点场强方向就是将点电荷放在该点处所受电场力的方向。

()错电场中某点场强方向就是将正点电荷放在该点处所受电场力的方向。

()对电场中某点场强方向就是将负点电荷放在该点处所受电场力的方向。

()错电荷在电场中某点受到电场力很大,该点场强E一定很大。

()错电荷在电场中某点受到电场力很大,该点场强E不一定很大。

()对在以点电荷为中心,r为半径的球面上,场强E处处相等。

()错在以点电荷为中心,r为半径的球面上,场强E大小处处相等。

()对如果在高斯面上的E处处为零,肯定此高斯面内一定没有净电荷。

()对根据场强与电势梯度的关系可知,在电势不变的空间电场强度为零。

()对如果高斯面内没有净电荷,肯定高斯面上的E处处为零。

()错正电荷由A移到B时,外力克服电场力做正功,则B点电势高。

对导体达到静电平衡时,导体内部的场强处处为零。

()对第一章填空题已一个电子所带的电量的绝对值e= C。

1.602*10-19或1.6*10-19真空中介电常数值为=0ε C 2.N -1.m -2。

8.85*10-12真空中有一无限长带电直棒,电荷线密度为λ,其附近一点P 与棒的距离为a ,则P 点电场强度E 的大小为 。

大学物理下册重点复习题

大学物理下册重点复习题

例11-8 设在半径为R 的球体内,其电荷分布是对称的,电荷体密度 ρ= k r (0≤r ≤R ),ρ=0(r>R ),k 为一正的常量,用高斯定理求场强与r 的函数关系。

在球内取半径为r 、厚为d r 的薄球壳,该壳内所包含的电荷为r r kr V q d 4d d 2π⋅==ρ 在半径为r 的球面内包含的总电荷为403d 4kr r kr dV q rVπ=π==⎰⎰ρ(r ≤R)以该球面为高斯面,按高斯定理有0421/4εkr r E π=π⋅得到()0214/εkr E =,(r ≤R ) 方向沿径向向外。

按高斯定理有0422/4εkR r E π=π⋅得到()20424/r kR E ε=,(r >R )方向沿径向向外。

假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电例11-13假想从无限远处陆续移来微量电荷使一半径为R 的导体球带电. (1) 当球上已带有电荷q 时,再将一个电荷元d q 从无限远处移到球上的过程中,外力作多少功?(2) 使球上电荷从零开场增加到Q 的过程中,外力共作多少功? (1) 令无限远处电势为零,那么带电荷为q 的导体球,其电势为RqU 04επ=将d q 从无限远处搬到球上过程中,外力作的功等于该电荷元在球上所具有的电势能q RqW A d 4d d 0επ==(2)带电球体的电荷从零增加到Q 的过程中,外力作功为⎰⎰==QR qq A A 004d d πεR Q 028επ=11-1 如下图,真空中一长为L 的均匀带电细直杆,总电荷为q ,试证明在直杆延长线上距杆的一端距离为d 的P 点的电场强度大小为:()d L d q+π=04E ε设杆的左端为坐标原点O ,x 轴沿直杆方向.带电直杆的电荷线密度为λ=q /L , 在x 处取一电荷元d q =λd x = q d x /L , 它在P 点的场强:()204d d x d L q E -+π=ε()204d x d L L x q -+π=ε总场强为:⎰+π=Lx d L xL q E 020)(d 4-ε()d L d q +π=04ε 11-5 图中所示为一沿x 轴放置的长度为l 的不均匀带电细棒,其电荷线密度为λ=λ0 (x -a ),λ0为一常量.取无穷远处为电势零点,求坐标原点O 处的电势.解:在任意位置x 处取长度元d x ,其上带有电荷 d q =λ0 (x -a )d x 它在O 点产生的电势()xxa x U 004d d ελπ-=O 点总电势⎥⎦⎤⎢⎣⎡-π==⎰⎰⎰++l a a la a x x a x dU U d d 400ελ⎥⎦⎤⎢⎣⎡+-π=a l a a l ln 400ελ11-6 一半径R 的均匀带电圆盘,电荷面密度为σ.设无穷远处为电势零点.计算圆盘中心O 点电势 在圆盘上取一半径为r →r +d r X 围的同心圆环.其面积为 d S =2πr d r 其上电荷为 d q =2πσr d rLqx它在O 点产生的电势为002d 4d d εσεrr q U =π=总电势02d 2d εσεσRr U U RS ===⎰⎰ 11-7 在盖革计数器中有一直径为2.00 cm 的金属圆筒,在圆筒轴线上有一条直径为0.134 mm 的导线.如果在导线与圆筒之间加上850 V 的电压,试分别求: (1) 导线外表处 (2) 金属圆筒内外表处的电场强度的大小.设导线上的电荷线密度为λ,与导线同轴作单位长度的、半径为r 的(导线半径R 1<r <圆筒半径R 2)高斯圆柱面,那么 高斯定理有 2πrE =λ / ε0得到E = λ/ (2πε0r ) (R 1<r <R 2)方向沿半径指向圆筒.导线与圆筒之间的电势差⎰⎰⋅π==2121d 2d 012R R R R r rr E U ελ120ln 2R R ελπ=那么()1212/ln R R r U E = 代入数值,那么:(1) 导线外表处()121121/ln R R R U E ==2.54 ×106 V/m(2) 圆筒内外表处()122122/ln R R R U E ==1.70×104 V/m 11-8 在强度的大小为E ,方向竖直向上的匀强电场中,有一半径为R 的半球形光滑绝缘槽放在光滑水平面上(如图).槽的质量为M ,一质量m 带有电荷+q 的小球从槽的顶点A 处由静止释放.如果忽略空气阻力且质点受到的重力大于其所受电场力,求:(1) 小球由顶点A 滑至半球最低点B时相对地面的速度;(2) 小球通过B 点时,槽相对地面的速度.设小球滑到B 点时相对地的速度为v ,槽相对地的速度为V .小球从A →B 过程中球、槽组成的系统水平方向动量守恒 m v +MV =0 对该系统,由动能定理mgR -EqR =21m v 2+21MV 2② ①、②两式联立解出()()m M m qE mg MR +-=2v 方向水平向右.()()m M M qE mg mR M m V +--=-=2v 方向水平向左. 11-9 如下图,一半径为R 的均匀带正电圆环,其电荷线密度为λ.在其轴线上有A 、B 两点,它们与环心的距离分别为R OA 3=,R OB 8= . 一质量为m 、电荷为q 的粒子从A 点运动到B 点.求在此过程中电场力所作的功.设无穷远处为电势零点,那么A 、B 两点电势分别为0220432ελελ=+=R R RU A 0220682ελελ=+=R R R U B q 由A 点运动到B 点电场力作功()0001264ελελελq q U U q A B A =⎪⎪⎭⎫ ⎝⎛-=-= 11-10 电荷以一样的面密度σ 分布在半径为r 1=10 cm 和r 2=20 cm 的两个同心球面上.设无限远处电势为零,球心处的电势为U 0=300 V .(1) 求电荷面密度σ.(2) 要使球心处的电势也为零,外球面上应放掉多少电荷? (1) 球心处的电势为两个同心带电球面各自在球心处产生的电势的叠加,⎪⎪⎭⎫ ⎝⎛+π=22110041r q r q U ε⎪⎪⎭⎫ ⎝⎛π-ππ=22212104441r r r r σσε()210r r +=εσ2100r r U +=εσ=8.85×10-9C / m 2(2) 设外球面上放电后电荷面密度为σ',那么应有()21001r r U σσε'+='= 0即σσ21r r -='外球面上应变成带负电,共应放掉电荷()⎪⎪⎭⎫ ⎝⎛+π='-π='212222144r r r r q σσσ()20021244r U r r r εσπ=+π==6.67×10-9C 11-12 质量为m 、电荷为-q 的粒子沿一圆轨道绕电荷为+Q 的固定粒子运动,证明运动中两者间的距离的立方与运动周期的平方成正比. 设半径为r 、周期为T ,那么有r /m r4qQ220v =πε 因为v = r ω = r( 2π / T ) 所以qQ / (4πε0r 2) = mr (4π2 / T 2) M A m,q CBEEO ARλ R 3 R 8 B即得r 3 = Q qT 2 / (16π3ε0m )11-15 边长为b 的立方盒子的六个面,分别平行于xOy 、yOz 和xOz 平面.盒子的一角在坐标原点处.在此区域有一静电场,场强为j i E300200+= .试求穿过各面的电通量. 由题意知E x =200 N/C , E y =300 N/C ,E z =0平行于xOy 平面的两个面的电场强度通量01=±==⋅S E S E z eΦ 平行于yOz 平面的两个面的电场强度通量2002±=±==⋅S E S E xeΦb 2N ·m 2/C 平行于xOz 平面的两个面的电场强度通量3003±=±==⋅S E S E yeΦb 2 N ·m 2/C11-18 图示为一个均匀带电的球层,其电荷体密度为ρ,球层内外表半径为R 1,外外表半径为R 2.设无穷远处为电势零点,求空腔内任一点的电势.由高斯定理知空腔内E =0,故带电球层的空腔是等势区,各点电势均为U . 在球层内取半径为r →r +d r 的薄球层.其电荷为d q = ρ 4πr 2d r 该薄层电荷在球心处产生的电势()00/d 4/d d ερεr r r q U =π=整个带电球层在球心处产生的电势()212200002d d 21R R r r U U R R-===⎰⎰ερερ因为空腔内为等势区所以空腔内任一点的电势U 为()2122002R R U U -==ερ11-19 电荷Q (Q >0)均匀分布在长为L 的细棒上,在细棒的延长线上距细棒中心O 距离为a 的P 点处放一电荷为q (q >0)的点电荷,求带电细棒对该点电荷的静电力. 沿棒方向取坐标Ox ,原点O 在棒中心处.求P 点场强:()()20204d 4d d x a x x a q E -π=-π=ελε()⎰--π=2/2/204d L L x a x E ελ()2202/2/0414L a Qx a L L -π=-⋅π=-εελ解:令1B 、2B 、acb B 和ab B分别代表长直导线1、2和三角形框ac 、cb 边和ab 边中的电流在O 点产生的磁感强度ab acb B B B B B+++=211B :由于O 点在导线1的延长线上,所以1B= 0. 2B :由毕-萨定律)60sin 90(sin 402︒-︒π=dIB μ 式中6/330tan 21l l Oe d =︒⋅== )231(34602-⋅π=lI B μ)332(40-π=l I μ方向:垂直纸面向里.acb B 和ab B:由于ab 和acb 并联,有acb acb ab ab R I R I ⋅=⋅又由于电阻在三角框上均匀分布,有21=+=cb ac ab R R acb ab ∴acb ab I I 2= 由毕奥-萨伐尔定律,有ab acb B B =且方向相反.方向沿x 轴正向.点电荷受力:=F 例14-1在真空中,电流由长直导线b 点从三角形框流出,经长直导线求正三角形的中心点O 处的磁感强Oxzy bb b PO -L/2 L/2 d x d qa.∴)332(402-π==lIB B μ,B的方向垂直纸面向里.例14-2 如下图,一无限长载流平板宽度为a ,线电流密度(即沿x 方向单位长度上的电流)为δ ,求与平板共面并且距离平板一边为b 的任意点P 的磁感强度.利用无限长载流直导线的公式求解.(1) 取离P 点为x 宽度为d x 的无限长载流细条,它的电流x i d d δ=(2) 这载流长条在P 点产生的磁感应强度xiB π=2d d 0μxxπ=2d 0δμ方向垂直纸面向里.(3) 所有载流长条在P 点产生的磁感强度的方向都一样,所以载流平板在P 点产生的磁感强度==⎰B B d ⎰+πba bxdx 20δμb ba +π=ln 20δμ方向垂直纸面向里. 例14-3 如下图,半径为R ,线电荷密度为λ (>0)的均匀带电的圆线圈,绕过圆心与圆平面垂直的轴以角速度ω 转动,求轴线上任一点的B的大小及其方向.λωR I =2/32230)(2y R R B B y +==λωμB的方向与y 轴正向一致.例14-4 平面闭合回路由半径为R 1及R 2 (R 1 > R 2 )的两个同心半圆弧和两个直导线段组成(如图).两个直导线段在两半圆弧中心O 处的磁感强度为零,且闭合载流回路在O 处产生的总的磁感强度B 与半径 为R 2的半圆弧在O 点产生的磁感强度B 2的关系为B = 2 B 2/3,求R 1与R 2的关 由毕奥-萨伐尔定律可得,设半径为R 1的载流半圆弧在O 点产生的磁感强度为B 1那么1014R IB μ=同理, 2024R IB μ=∵21R R >∴21B B <故磁感强度12B B B -=204R I μ=104R Iμ-206R I μ=∴213R R =例14-7 如图,一条任意形状的载流导线位于均匀磁场中,试证明导线a 到b 之间的一段上所受的安培力等于载同一电流的直导线ab 所受的安培力.由安培定律B l I f ⨯=d d ,ab 整曲线所受安培力为 ⎰⎰⨯==b aB l I f fd d 因整条导线中I 是一定的量,磁场又是均匀的,可以把I和B 提到积分号之外,即⎰⨯=b aB l I f d B l I ba⨯=⎰)d (B ab I⨯=载流一样、起点与终点一样的曲导线和直导线,处在均匀磁场中,所受安培力一样.例14-9 如下图,一半径为R 的均匀带电无限长直圆筒,面电荷密度为σ.该筒以角速度ω线匀速旋转.试求圆筒内部的磁感强度.如下图,圆筒旋转时相当于圆筒上具有同向的面电流密度i ,σωσωR R i =ππ=)2/(2作矩形有向闭合环路如右图中所示.从电流分布的对称性分析可知,在ab 上各点B且B 的方向平行于ab ,在bc 和fa 上各点B的方向与线元垂直,在de , cd fe ,0=B.应用安培环路定理∑⎰⋅=I l B 0d μ 可得ab i ab B 0μ=σωμμR i B 00==.均匀磁场,磁感强度的大小为σωμR B 0=,方向平行轴线朝右.14-4 如图,一半径为R 的带电塑料圆盘,其中半径为r 的阴影局部均匀带正电荷,面电荷密度为+σ ,其余局部均匀带负电荷,面电荷密度为-σ 当圆盘以角速度ω 旋转时,测得圆盘中心O 点的磁感强度为零,问R 与r 满足什么关系?带电圆盘转动时,可看作无数的电流圆环的磁场在O 点的叠加. 某一半径为ρ 的圆环的磁场为)2/(d d 0ρμi B =而ρσωρωρρσd )]2/([d 2d =π⋅π=i ∴ρσωμρρσωρμd 21)2/(d d 00==B正电局部产生的磁感强度为r B r2d 2000σωμρσωμ==⎰+负电局部产生的磁感强度为)(2d 200r R B Rr-==⎰-σωμρσωμ今-+=B B ∴r R 2=14-9 如下图,有两根平行放置的长直载流导线.它们的直径为a ,反向流过一样大小的电流I ,电流在导线内均匀分布.试在图示的坐标系中求出x 轴上两导线之间区域]25,21[a a 内磁感强度的分布.解:建立坐标系,应用安培环路定理,左边电流产生的磁感应强度x 2IB 01πμ=; 方向向里 右边电流产生的磁感应强度)x a 3(2I B 02-πμ=; 方向向外 应用磁场叠加原理可得磁场分布为, )3(2200x a I x I B -π+π=μμ)252(a x a ≤≤B 的方向垂直x 轴及图面向里. 14-1 在一顶点为45°的扇形区域,有磁感强度为B方向垂直指向纸面内的均匀磁场,如图.今有一电子(质量为m ,电荷为-e )在底边距顶点O 为l 的地方,以垂直底边的速度v射入该磁场区域,假设要使电子不从上面边界跑出,电子的速度最大不应超过多少? 电子进入磁场作圆周运动,圆心在底边上.当电子轨迹与上面边界相切时,对应最大速度,此时有如下图情形.R R l =︒+45sin )(∴l l R )12()12/(+=-=由)/(eB m R v =,求出v 最大值为m leBm eBR )12(+==v14-2 一边长a =10 cm 的正方形铜线圈,放在均匀外磁场中,B 竖直向上,且B = 9.40×10-3 T ,线圈中电流为I =10 A .(1) 今使线圈平面保持竖直,问线圈所受的磁力矩为多少? (2) 假假设线圈能以某一条水平边为固定轴自由摆动,问线圈平衡时,线圈平面与竖直面夹角为多少?(铜线横截面积S = 2.00 mm 2,铜的密度ρ = 8.90 g/cm 3 )(1) 2Ia p m =,方向垂直于线圈平面.︒=⨯=90sin B p B p M mm = 9.40×10-4 N ·m (2) 设线圈绕AD 边转动,并且线圈稳定时,线圈平面与竖直平面夹角为θ ,那么磁场对线圈的力矩为)21sin(θ-π=⨯=B p B p M m m θcos B p m =重力矩:)sin 21(2sin θθa mg mga L +=θρsin 22g S a ==θcos B p m θρsin 22g S a 712.3)/(2ctg ==BI g S ρθ 于是θ = 15°14-3 试证明任一闭合载流平面线圈在均匀磁场中所受的合磁力恒等于零.由安培公式,电流元l Id 受磁场作用力为OrR ωIa a I xO2aIa aIxO 2a l 45° vBOOO ′R Rl45°B AC DImg mg mg n B)(21θ-.B l I F⨯=d d 那么闭合电流受总磁力为B l I B l I F F ⨯=⨯==⎰⎰⎰)d (d d 其中,因为B 为恒矢量,可提出积分号外而保持叉乘顺序不变.由于0d =⎰l (∵多边形矢量叠加法那么) ∴0=F(证毕)14-4一通有电流I 1 (方向如图)的长直导线,旁边有一个与它共面通有电流I 2 (方向如图)每边长为a 的正方形线圈,线圈的一对边和长直导线平行,),在维持它们的电流不变和保证共面的条件下,将它们的距离从2/3a 变为2/5a 形线圈所做的功.如图示位置,线圈所受安培力的合力为])(22[10102a x I xI aI F +π-π=μμ 方向向右 从x = a 到x = 2a 磁场所作的功为⎰+-π=aax ax x IaI A 2210d )11(2μ)3ln 2ln 2(2210-π=I aI μ例16-2 如下图,一电荷线密度为λ的长直带电线(与一正方形线圈共面并与其一对边平行)以变速率v =v (t )沿着其长度方向运动,正方形线圈中的总电阻为R ,求t 时刻方形线圈中感应电流i (t )的大小(不计线圈自身的自感)长直带电线运动相当于电流λ⋅=)(t I v .正方形线圈内的磁通量可如下求出x a x a I d 2d 0+⋅π=μΦ2ln 2d 2000⋅π=+π=⎰Ia x a x Ia a μμΦ2ln t d I d 2a t d d 0i πμ=-=εΦ2ln t d )t (d a 20v λπμ=2ln td )t (d a R 2R )t (i 0i v λπμ=ε=例16-3电荷Q 均匀分布在半径为a 、长为L ( L >>a )的绝缘薄壁长圆筒外表上,圆筒以角速度ω 心轴线旋转.一半径为2a 、电阻为R 的单匝圆形线圈套在圆筒上(如下图))/1(00t t -=ωω的规律(ω 0和t 0是常数)筒以ω旋转时,相当于外表单位长度上有环形电流π⋅2ωL Q ,它和通电流螺线管的nI 等效. 按长螺线管产生磁场的公式,筒内均匀磁场磁感强度为:LQ B π=20ωμ (方向沿筒的轴向)筒外磁场为零.穿过线圈的磁通量为:La Q B a 2202ωμΦ=π=在单匝线圈中产生感生电动势为=Φ-=εt d d )d d (220t L Qa ωμ-00202Lt Qa ωμ=感应电流i 为0020RLt 2Qa R i ωμ=ε=i 的流向与圆筒转向一致. 例16-5 一内外半径分别为R 1, R 2的均匀带电平面圆环,电荷面密度为σ,其中心有一半径为r 的导体小环(R 1 >>r ),二者同心共面如图.设带电圆环以变角速度ω =ω(t )绕垂直于环面的中心轴旋转,导体小环中的感应电流i 等于多少?方向如何(小环的电阻为R ')?带电平面圆环的旋转相当于圆环中通有电流I .在R 1与R 2之间取半径为R 、宽度为d R 的环带 带内有电流R t R I d )(d ωσ=d I 在圆心O 点处产生的磁场R t R I B d )(21/.d 21d 00σωμμ== 在中心产生的磁感应强度的大小为 ))((21120R R t B -=σωμI 2I 2a选逆时针方向为小环回路的正方向,那么小环中2120))((21r R R t π-≈σωμΦ t t R R r t i d )(d )(2d d 1220ωσμΦε-π-=-=tt R R R r R i i d )(d 2)(π1220ωσμε⋅'--='=例16-6 求长度为L 的金属杆在均匀磁场B中绕平行于磁场方向的定轴OO '转动时的动生电动势.杆相对于均匀磁场B的方位角为θ,杆的角速度为ω,转向如下图.在距O 点为l 处的d l 线元中的动生电动势为 d ε l Bd )(⋅⨯=v θωsin l =v∴⎰⎰⋅απ=⨯=εLv vd cos )21sin(B d )B (L⎰⎰θω=θω=ΛθL2d sin B sin d sin lB θω22sin 21BL =ε 的方向沿着杆指向上端.例16-9 两根平行无限长直导线相距为d ,载有大小相等方向相反的电流I ,电流变化率d I /d t =α >0.一个边长为d 的正方形线圈位于导线平面内与一根导线相距d ,如下图.求线圈中的感应电动势ε,并说明线圈中的感应电动势的方向.无限长载流直导线在与其相距为r 处产生的磁感强度为:)2/(0r I B π=μ以顺时针为线圈回路的正方向,与线圈相距较远和较近的导线在线圈中产生的磁通量为:23ln 2d 203201π=π⋅=⎰Idr r I d dd μμΦ2ln 2d 20202π-=π⋅-=⎰Id r r I d ddμμΦ总磁通量34ln 2021π-=+=Id μΦΦΦ感应电动势为:34ln 2d d )34(ln 2d d 00αμμεπ=π=-=d t I d t Φ由ε >0,所以ε 的绕向为顺时针方向,线圈中的感应电流亦是顺时针方向.16-2半径为R 的长直螺线管单位长度上密绕有n 匝线圈.在管外有一包围着螺线管、面积为S 的圆线圈,其平面垂直于螺线管轴线.螺线管中电流i 随时间作周期为T 的变化,如下图.求圆线圈中的感生电动势ε.画出ε─t 曲线,注明时间坐标. 螺线管中的磁感强度ni B 0μ=,通过圆线圈的磁通量i R n 20π=μΦ. 取圆线圈中感生电动势的正向与螺线管中电流正向一样,有td id R n t d d 20i πμ-=Φ-=ε. 在0 < t < T / 4内,TI T I t im m 44/d d ==,20i R n πμ-=εT I m 4=T I nR m /420μπ-=在T / 4 < t < 3T / 4内,T I T I t im m 42/2d d -=-=,=εi T /I nR 4m 20μπ. 在3T / 4 < t < T 内,TI T I t im m 44/d d ==,=εi T I nR m /420μπ-.ε ─t 曲线如图. 16-4 如下图,有一根长直导线,载有直流电流I ,近旁有一个两条对边与它平行并与它共面的矩形线圈,以匀速度v沿垂直于导线的方向离开导线.设t =0时,线圈位于图示位置,求:(1) 在任意时刻t 通过矩形线圈的磁通量Φ.(2) 在图示位置时矩形线圈中的电动势ε. 建立坐标系,x 处磁感应强度x2IB 0πμ=;方向向里在x 处取微元,高l 宽dx ,微元中的磁通量:OωBθLdI I εi tT /4 3T /4T /2 TOiI m -I T /4 T /23T /4Tta bvlxdx x 2I Bydx S d B d 0 πμ==⋅=Φ 磁通量:⎰⎰⋅πμ==S0x d r 2I S d B )t ( Φ⎰++πμ=tb t a 0x x d 2I v v t a t b ln 2I 0v v ++μ=π 感应电动势ab2)a b (I t d d 00t π-μ=-=ε=v Φ方向:顺时针 16-5在一长直密绕的螺线管中间放一正方形小线圈,假设螺线管长1 m ,绕了1000匝,通以电流I =10cos100πt (SI ),正方形小线圈每边长5 cm ,共 100匝,电阻为1 Ω,求线圈中感应电流的最大值(正方形线圈的法线方向与螺线管的轴线方向一致,μ0 =4π×10-7 T ·m/A .) n =1000 (匝/m) nI B 0μ=nI a B a 022μΦ=⋅=tI n Na t Nd d d d 02με-=Φ-==π2×10-1 sin 100 πt (SI) ==R I m m /επ2×10-1 A= 0.987 A16-8 两相互平行无限长的直导线载有大小相等方向相反的电流,长度为b 的金属杆CD 与两导线共面且垂直,相对位置如图.CD 杆以速度v平行直线电流运动,求CD 杆中的感应电动势,并判断C 、D 两端哪端电势较高?建立坐标(如图)那么:21B B B +=x I B π=201μ,)(202a x I B -π=μxIa x I B π--π=2)(200μμ,B 方向⊙ d εx x a x I x B d )11(2d 0--π==v v μ ⎰⎰--πμ=ε=ε+x d )x1a x 1(2I d ba 202av b a b a I ++π=2)(2ln20v μ感应电动势方向为C →D ,D 端电势较高.16-11两根平行长直导线,横截面的半径都是a ,中心线相距d ,属于同一回路.设两导线内部的磁通都略去不计,证明:这样一对导线单位长的自感系数为 aa d L -π=ln 0μ取长直导线之一的轴线上一点作坐标原点,设电流为I ,那么在两长直导线的平面上两线之间的区域中B 的分布为 rIB π=20μ)(20r d I-π+μ 穿过单位长的一对导线所围面积〔如图中阴影所示〕的磁通为==⎰⋅SS B d Φr rd r Iad ad )11(20⎰--+πμa a d I -π=ln0μa a d I L -π==ln 0μΦ例18-1在双缝干预实验中,波长λ=5.50×10-7m 的单色平行光垂直入射到缝间距a =2×10-4 m 的双缝上,屏到双缝的距离D=2 m .求:(1) 中央明纹两侧的两条第10级明纹中心的间距;(2) 用一厚度为e =6.6×10-5 m 、折射率为n =1.58的玻璃片覆盖一缝后,零级明纹将移到原来的第几级明纹处?(1)∆x =20D λ / a =0.11 m(2) 覆盖云玻璃后,零级明纹应满足 (n -1)e +r 1=r 2设不盖玻璃片时,此点为第k 级明纹,那么应有r 2-r 1=k λ所以(n -1)e = k λk =(n -1) e / λ=6.96≈7零级明纹移到原第7级明纹处例18-6 图示一牛顿环装置,设平凸透镜中心恰好和平玻璃接触,透镜凸外表的曲率半 径是R =400 cm .用某单色平行光垂直入射,观察反射光形成的牛顿环,测得第5个明环的半径是0.30cm .(1) 求入射光的波长.(2) 设图中OA =1.00 cm ,求在半径为OA 的X 围内可观察到的明环数目. a2a x +d x 2a +bII C Dv xOx2a drIIOr(1) 明环半径()2/12λ⋅-=R k r ()Rk r 1222-=λ=5×10-5 cm (或500 nm) (2) (2k -1)=2 r 2 / (R λ) 对于r =1.00 cm ,k =r 2 / (R λ)+0.5=50.5 故在OA X 围内可观察到的明环数目为50个. 18-3 薄钢片上有两条紧靠的平行细缝,用波长λ=546.1 nm (1 nm=10-9 m)的平面光波正入射到钢片上.屏幕距双缝的距离为D =2.00 m ,测得中央明条纹两侧的第五级明条纹间的距离为∆x =12.0 mm .(1) 求两缝间的距离. (2) 从任一明条纹(记作0)向一边数到第20条明条纹,共经过多大距离? (1) x = 2kD λ / dd = 2kD λ /∆x 此处k =5∴d =10 D λ / ∆x =0.910 mm (2) 共经过20个条纹间距,即经过的距离l =20 D λ / d =24 mm18-6 用波长为500 nm (1 nm=10-9 m)的单色光垂直照射到由两块光学平玻璃构成的空气劈形膜上.在观察反射光的干预现象中,距劈形膜棱边l = 1.56cm 的A 处是从棱边算起的第四条暗条纹中心.(1) 求此空气劈形膜的劈尖角θ;(2) 改用600 nm 的单色光垂直照射到此劈尖上仍观察反射光的干预条纹,A 处是明条纹还是暗条纹?(1) 棱边处是第一条暗纹中心,在膜厚度为e 2=λ/2处是第二条暗纹中心,依此可知第四条暗纹中心处,即A 处膜厚度e 4=2/3λ∴()l l e 2/3/4λθ===4.8×10-5 rad (2) 由上问可知A 处膜厚为e 4=3×500 / 2 nm =750 nm 对于λ'=600 nm 的光,连同附加光程差,在A 处两反射光的光程差为2/24λ'+e ,它与波长λ'之比为0.32/1/24=+'λe .所以A 处是明纹 18-8 曲率半径为R 的平凸透镜和平板玻璃之间形成空气薄层,如下图.波长为λ的平行单色光垂直入射,观察反射光形成的牛顿环.设平凸透镜与平板玻璃在中心O 点恰好接触.求: (1) 从中心向外数第k 个明环所对应的空气薄膜的厚度e k .(2) 第k 个明环的半径用r k ,(用R ,波长λ和正整数k 表示,R 远大于上一问的e k .) (1)第k 个明环,λλk e k =+2124/)12(λ-=k e k(2)(2)∵λλk e k ==212222)(k k e R r R -+=2222k k k e Re R r +-+=式中k e 为第k 级明纹所对应的空气膜厚度∵k e 很小,R e k <<,∴2k e 可略去,得)2/(2R r e k k =∴λλk R r k =+21)2/(222/)12(λR k r k -=(k =1, 2, 3 …)例19-3一双缝,缝距d =0.40 mm ,两缝宽度都是a =0.08 mm ,用波长为λ=480 nm (1 nm = 10-9 m) 的平行光垂直照射双缝,在双缝后放一焦距f =2.0 m 的透镜,求:〔1〕在透镜焦平面处的屏上,双缝干预条纹的间距;〔2〕在单缝衍射中央亮纹X 围内的双缝干预亮纹数目N 和相应的级数。

06级《大学物理A2》期末考试试卷 (甲卷)

06级《大学物理A2》期末考试试卷 (甲卷)

注意事项:1.请在本试卷上直接答题. 2.密封线下面不得写班级,姓名,学号等.教师姓名__________________ 作业序号_________专业__________________学号__________________姓名________________…………………………………………………07~08学年第一学期………………………密封装订线………………………08年1月15日……………………………………安徽工业大学06级《大学物理A 2》期末考试试卷 (甲卷)一、选择题: 请将你所选的各题答案的序号填入下表(每题3分,共30分).1、若匀强电场的场强为E v,其方向平行于半径为R的半球面的轴,如图所示.则通过此半球面的电场强度通量Φe 为 (A)(B)E R 2πE R 22π (C) E R 221π (D) E R 22π2、如图所示,半径为R 的均匀带电球面,总电荷为Q ,设无穷远处的电势为零,则球内距离球心为r 的P 点处的电场强度的大小和电势为:(A) E =0,r Q U 04επ=. (B) E =0,RQ U 04επ=.(C) 204r QE επ=,r Q U 04επ=. (D) 204r Q E επ=,RQU 04επ=.3、如图所示,边长为a 的等边三角形的三个顶点上,分别放置着三个点电荷-q 、q 、2q .若将另一正点电荷Q 从无穷远处移到三角形的中心O 处,外力所作的功为: (A)a qQ 032επ. (B) aqQ03επ. (C)a qQ 0233επ. (D) aqQ023επ.4、在一不带电荷的导体球壳的球心处放一点电荷,并测量球壳内外的场强分布.如果将此点电荷从球心移到球壳内其它位置,重新测量球壳内外的场强分布,则将发现: (A) 球壳内、外场强分布均无变化. (B) 球壳外场强分布改变,球壳内不变. (C) 球壳内场强分布改变,球壳外不变. (D) 球壳内、外场强分布均改变.5、如图所示,一厚度为d 的“无限大”均匀带电导体板,电荷面密度为σ ,则板的两侧离板面距离均为h 的两点a 、b 之间的电势差为:(A) 0. (B) 02εσ. (C) 0εσh . (D) 02εσh.6、一平行板电容器充电后仍与电源连接,若用绝缘手柄将电容器两极板间距离拉大,则极板上的电荷Q 、电场强度的大小E 和电场能量W 将发生如下变化(A) Q 增大,E 增大,W 增大. (B) Q 增大,E 增大,W 减小. (C) Q 增大,E 减小,W 增大. (D) Q 减小,E 减小,W 减小.7、边长为l 的正方形线圈,分别用图示两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感强度的大小分别为 (A) 01=B ,02=B .(B) 01=B ,lI B π=0222μ. (C) lIB π=0122μ,02=B . (D) l I B π=0122μ,lI B π=0222μ.8、圆铜盘水平放置在均匀磁场中,B v的方向垂直盘面向上.当铜盘绕通过中心垂直于盘面的轴沿图示方向转动时,(A) 铜盘上有感应电流产生,沿铜盘转动的相反方向流动.(B) 铜盘上有感应电流产生,沿铜盘转动的方向流动. (C) 铜盘上产生涡流. (D) 铜盘上有感应电动势产生,铜盘边缘处电势最高.9、根据玻尔的理论,氢原子在n =7轨道上的动量矩与在第一激发态的轨道动量矩之比为(A) 7/6. (B) 7/2. (C) 7/4. (D) 7.10、若α粒子(电荷为2e )在磁感应强度为B r均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是(A) . (B) . )2/(eRB h )/(eRB h (C) . (D) .)2/(1eRBh )/(1eRBh二、填空题:(共 36 分) . 1、真空中一半径为R 的均匀带电球面带有电荷Q (Q >0).今在球面上挖去非常小块的面积△S (连同电荷),如图所示,假设不影响其他处原来的电荷分布,则挖去△S 后球心处电场强度的大小E =____________,其方向为_________.2、一空气平行板电容器,两极板间距为d ,充电后板间电压为U .然后将电源断开,在两板间平行地插入一厚度为d /4的金属板,则板间电压变成 U ' =________________3、如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd (磁场以边框为界).而a 、b 、c 三个角顶处开有很小的缺口.今有一束具有不同速度的电子由a 缺口沿ad 方向射入磁场区域,若b 、c 两缺口处分别有电子射出,则此两处出射电子的速率之比v b /v c =_________________.4、已知面积相等的载流圆线圈与载流正方形线圈的磁矩之比为2∶1,圆线圈在其中心处产生的磁感强度为0B v,那么正方形线圈(边长为a )在磁感强度为B v的均匀外磁场中所受最大磁力矩大小为______________________.( 反面还有试题 )题类,题号 选择题 填 空 题 计算题 1 计算题 2 计算题 3 计算题 4 计算题 5 总 分 累分人复累人得分评阅教师题号 1 2 3 4 5 678910选择 得分 q2 IvS Q得 分(1∼5)c d5、平行的无限长直载流导线A 和B ,电流均为I ,垂直纸面, 方向如图示,两根载流导线之间相距为a ,则(1) AB 中点(P 点)的磁感强度_________. =p B (2) 磁感强度B v 沿图中环路L 的线积分 =∫⋅L l B v v d __________________.6、如图所示,aOc 为一折成∠形的金属导线(aO =Oc =L ),位于xy 平面中;磁感强度为B v 的匀强磁场垂直于xy 平面.当aOc 以速度v沿x 轴正向运动时,导线上a 、c 两点间电势差U v ac =____________;当aOc 以速度v v 沿y 轴正向运动时,a 、c 两点的电势相比较, 是____________点电势高.7、两根很长的平行直导线与电源组成回路,如图.已知导线上的电流为I ,两导线单位长度的自感系数为L ,则沿导线单位长度的空间内的总磁能W m =______________.8、用某频率的单色光照射基态氢原子气体,使气体发射出三种频率的谱线,原照射单色光的频率是______________________.(普朗克常量h =6.63×10-34 J ·s ,1 eV =1.60×10-19 J)9、如图所示,一频率为ν 的入射光子与起始静止的自由电子发生碰撞和散射.如果散射光子的频率为ν′,反冲电子的动量为p ,则在与入射光子平行的方向上的动量守恒定律的分量形式为_______________.10、波长为λ0 = 0.500 Å的X 射线被静止的自由电子所散射,若散射线的波长变为λ = 0.522 Å,反冲电子的动能为______________________.(普朗克常量h =6.63×10-34 J ·s)三、计算题:要求写出解题主要步骤 (34分).(6分) 1、一半径为R 的带电球体,其电荷体密度分布为ρ =A/r (r ≤R ) ,ρ =0 (r >R )A 为一常量.试求球体内外的场强分布.(8分)2、一电容器由两个很长的同轴薄圆筒组成,内、外圆筒半径分别 为R 1 = 2 cm ,R 2 = 6 cm .电容器接在电压U = 30 V 的电源上,(如图所示),试求距离轴线R = 3 cm 处的A 点的电场强度和A 点与外筒间的电势差.(6分)3、一维运动的粒子,设其动量的不确定量等于它的动量,试求此粒子的位置不确定量与它的德布罗意波长的关系.(不确定关系式).h x p x ≥ΔΔ(6分)4、通有电流I的长直导线在一平面内被弯成如图形状,放于垂直进入纸面的均匀磁场B v中,求整个导线所受的安培力(R 为已知).(8分 )5、载有电流为I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直.半圆环的半径为b ,环心O 与导线相距a .设半圆环以速度 v v 平行导线平移,求半圆环内感应电动势的大小和方向以及MN 两端的电压U M − U N .××××× 得分(6∼10) ……………………………………………………………此线以下答题无效…………………………………………………………得分得分 得分 得分Bv得分A2甲卷 3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.无限长均匀带电圆柱面,其电荷线密度为λ。

(1)分析该模型激发的电场的对称性。

(2)求空间中的电场强度的分布。

(3)比较它与无限长带电直线的电场的异同点。

2.无限长均匀带电圆柱体,其电荷体密度为ρ。

(1)分析该模型激发的电场的对称性。

(2)求空间中的电场强度的分布。

3.内外半径为R1、R2的环形螺旋管截面为长方形,其尺寸如图所示,共有N匝线圈。

当螺旋管中通以电流I时,求螺旋管的磁通链数。

4. 如图所示,长直导线中的电流I沿导线向上。

导线附近放一个与之同面的矩形线框,初始位置及线框尺寸如图所示。

若保持线框的形状不变,分别可以用什么方法让线框中产生感生电动势和动生电动势,且表示出相应的电动势。

5.在惯性系S中某一地点先后发生两事件A和B,其中事件A超前于事件B。

试分析:(1)在惯性系S’中,事件A和B仍发生在同一地点吗?(2)在惯性系S’中,事件A总是超前于事件B吗?
6.在惯性系S中同一时刻在不同地点发生两事件A和B。

试分析:(1)在惯性系S’中,事件A和B仍发生在同一时刻吗?(2)在惯性系S’中,事件A总是与事件B发生在不同地点吗?
7.试分析可以用高斯定理求电场强度的电场要满足什么样的对称性?
8.试分析哪些模型的磁场的磁感应强度可以用安培环路定理来求?
9.均匀带电球面的电场强度和电势。

10.均匀带电球体的电场强度和电势。

11.麦克斯韦电磁场方程组的意义。

12.阐述静电场和感生电场的异同点。

13.阐述传导电流和位移电流的异同点。

相关文档
最新文档