初中数学函数专题练习及答案

合集下载

初中数学函数专题训练-附详细答案

初中数学函数专题训练-附详细答案

初中数学函数专题训练姓名:______________考号:______________一、解答题(100分)1.(5分)某游泳馆推出了两种收费方式.方式一:顾客先购买会员卡,每张会员卡200元,仅限本人一年内使用,凭卡游泳,每次游泳再付费30元.方式二:顾客不购买会员卡,每次游泳付费40元.设小亮在一年内来此游泳馆的次数为x次,选择方式一的总费用为y1(元),选择方式二的总费用为y2(元).(1)请分别写出y1,y2与x之间的函数表达式.(2)小亮一年内在此游泳馆游泳的次数x在什么范围时,选择方式一比方式二省钱.(k为常数,且k≠0)的图象经过点A(1,3)、B(3,m).2.(5分)反比例函数y=kx(1)求反比例函数的解析式及B点的坐标.(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.(k≠0)与一次函数y=ax+b相交于点A(n,-1),B(1,3),过点A作AD⊥y轴于点D,过3.(5分)如图,已知反比例函数y=kx点B作BC⊥x轴于点C,连接CD.(1)求反比例函数的解析式.(2)求四边形ABCD的面积.4.(5分)如图,反比例函数y=m−2的图象的一支在平面直角坐标系中的位置如图所示,根据图象回答下列问题:x(1)图象的另一支在第象限;在每个象限内,y随x的增大而,常数m的取值范围是.(2)若此反比例函数的图象经过点(-2,3),求m的值.5.(5分)如图,已知直线l 1:y=kx+1,与x 轴相交于点A ,同时经过点B(2,3),另一条直线l 2经过点B ,且与x 轴相交于点P(m ,0).(1)求l 1的解析式.(2)若S △APB =3,求P 的坐标.6.(5分)如图,在直角坐标系中,矩形OABC 的顶点O 与坐标原点重合,A ,C 分别在坐标轴上,点B 的坐标为(4,2),直线y=-12x+3交AB ,BC 于点M ,N ,反比例函数y=kx 的图象经过点M ,N .(1)求反比例函数的解析式.(2)若点P 在x 轴上,且△OPM 的面积与四边形BMON 的面积相等,求点P 的坐标.(x>0)的图象过格点(网格线的交点)P.7.(5分)如图,反比例函数y=kx(1)求反比例函数的解析式.(2)在图中用直尺和2B铅笔画出两个矩形(不写画法),要求每个矩形均需满足下列两个条件:①四个顶点均在格点上,且其中两个顶点分别是点O,点P;②矩形的面积等于k的值.8.(5分)如图,过点A(2,0)的两条直线l1,l2分别交y轴于点B,C,其中点B在原点上方,点C在原点下方,已知AB=√13.(1)求点B的坐标.(2)若△ABC的面积为4,求直线l2的解析式.9.(5分)一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.(1)求y关于x的函数关系式.(不需要写定义域)(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?10.(5分)某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的函数关系式.(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A 型、B型电脑各多少台,才能使销售总利润最大?11.(5分)已知,直线y=2x+3与直线y=-2x-1.(1)求两直线与y轴交点A,B的坐标.(2)求两直线交点C的坐标.(3)求△ABC的面积.的图象交于点A(-3,2),B(n,-6)两点.12.(5分)如图,一次函数y1=kx+b的图象与反比例函数y2=mx(1)求一次函数与反比例函数的解析式.(2)求△AOB的面积.(3)请直接写出y1<y2时x的范围.13.(5分)甲、乙两家绿化养护公司各自推出了校园绿化养护服务的收费方案.甲公司方案:每月的养护费用y(元)与绿化面积x(平方米)是一次函数关系,如图所示.乙公司方案:绿化面积不超过1000平方米时,每月收取费用5500 元;绿化面积超过1000平方米时,每月在收取5500元的基础上,超过部分每平方米收取4元.(1)求如图所示的y与x的函数解析式(不要求写出定义域).(2)如果某学校目前的绿化面积是1200平方米,试通过计算说明:选择哪家公司的服务,每月的绿化养护费用较少.14.(5分)如图,一次函数y=kx+b的图象与反比例函数y=m的图象交于A(-2,1),B(1,n)两点.x(1)求反比例函数和一次函数的解析式.(2)根据图象写出使一次函数的值大于反比例函数的值的x的取值范围.15.(5分)在平面直角坐标系xOy中,已知点A(0,3)、点B(3,0),一次函数y=2x的图象与直线AB交于点M.(1)求直线AB的函数解析式及M点的坐标.(2)若点N是x轴上一点,且△MNB的面积为6,求点N的坐标.16.(5分)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元.(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式.(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标.(3)利用(2)的点的坐标以及结合得出函数图象得出答案.17.(5分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶x+6,乙离一楼地面的梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=−310高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.(1)求y关于x的函数解析式.(2)请通过计算说明甲、乙两人谁先到达一楼地面.18.(5分)根据记录,从地面向上11 km以内,每升高1 km,气温降低6℃;又知在距离地面11 km以上高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃).(1)写出距地面的高度在11 km以内的y与x之间的函数表达式.(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距离地面的高度为7 km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面12 km的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面12 km时,飞机外的气温.19.(5分)小明放学后从学校回家,出发5分钟时,同桌小强发现小明的数学作业卷忘记拿了,立即拿着数学作业卷按照同样的路线去追赶小明,小强出发10分钟时,小明才想起没拿数学作业卷,马上以原速原路返回,在途中与小强相遇.两人离学校的路程y(米)与小强所用时间t(分钟)之间的函数图象如图所示.(1)求函数图象中a的值.(2)求小强的速度.(3)求线段AB的函数解析式,并写出自变量的取值范围.(x>0)的图象交于点B(m,2).20.(5分)如图,一次函数y=x+1的图象交y轴于点A,与反比例函数y=kx(1)求反比例函数的表达式.(2)求△AOB的面积.初中数学函数专题训练试卷答案一、解答题1.(1)解:当游泳次数为x时,方式一费用为:y1=30x+200,方式二的费用为:y2=40x.(2)解:由y1<y2,得:30x+200<40x,解,得x>20时,当x>20时,选择方式一比方式二省钱.2.(1)解:把A(1,3)代入y=kx得:k=1×3=3,∴反比例函数解析式为:y=3x;把B(3,m)代入y=3x,得3m=3,解得m=1,∴B点坐标为(3,1).(2)解:如图,作A点关于x轴的对称点A′,连接BA′交x轴于P点,则A′(1,-3),∵PA+PB=PA′+PB=BA′,∴此时PA+PB的值最小,设直线BA′的解析式为:y=mx+n,把A′(1,-3),B(3,1)代入得,{m+n=−33m+n=1,解得{m=2n=−5,∴直线BA′的解析式为:y=2x-5,当y=0时,2x-5=0,解得x=52,∴P点坐标为(52,0).3.(1)解:∵反比例函数y=kx(k≠0)的图象经过B(1,3),∴k=1×3=3.∴反比例函数的解析式为y=3x.(2)解:把A(n,-1)代入y=3x ,得-1=3n,解得n=-3,∴A(-3,-1),延长AD,BC交于点E,则∠AEB=90°,∵BC ⊥x 轴,垂足为点C ,∴点C 的坐标为(1,0),∵A(-3,-1),∴AE=1-(-3)=4,BE=3-(-1)=4,∴S 四边形ABCD =S △ABE -S △CDE =12AE×BE −12CE×DE =12×4×4−12×1×1=7.5.4. (1)四 增大 m<2(2)解:把(-2,3)代入y =m−2x 得到:m-2=xy=-2×3=-6,则m=-4.故m 的值为-4.5.(1)解:∵y=kx+1,经过点B(2,3),∴3=2k+1,∴k=1,∴直线l 1对应的函数表达式y=x+1.(2)解:∵A(-1,0)△APB 的面积=12PA·3=3,解得PA=2,当点P 在点A 的左边时,OP=OA+PA=1+2=3,此时m=-3;当点P 在点A 的右边时,OP=PA-OA=2-1=1,此时m=1.综上所述,P(-3,0)或(1,0).6.(1)解:∵B(4,2),四边形OABC 是矩形,∴OA=BC=2,将y=2代入y=-12x+3得:x=2,∴M(2,2),把M 的坐标代入y=k x 得:k=4,∴反比例函数的解析式是y=4x .(2)解:把x=4代入y=4x得:y=1,即CN=1, ∵S 四边形BMON =S 矩形OABC -S △AOM -S △CON=4×2-12×2×2-12×4×1=4, 由题意得:12|OP|×AO=4,∵AO=2,∴|OP|=4,∴点P 的坐标是(4,0)或(-4,0).7.(1)解:∵反比例函数y=k x (x>0)的图象过格点P(2,2),∴k=2×2=4,∴反比例函数的解析式为y=4x .(2)解:如图所示:矩形OAPB 、矩形OCDP 即为所求作的图形.8.(1)解:∵点A(2,0),AB=√13. ∴BO=√AB 2−AO 2=√9=3∴点B 的坐标为(0,3).(2)解:∵△ABC 的面积为4∴12×BC×AO=4∴12×BC×2=4,即BC=4∵BO=3∴CO=4-3=1∴C(0,-1)设l 2的解析式为y=kx+b ,则{0=2k +b −1=b ,解得{k =12b =−1∴l 2的解析式为y=12x-1.9. (1)解:设该一次函数解析式为y=kx+b ,将(150,45)、(0,60)代入y=kx+b 中,{150k +b =45b =60,解得:{k =−110b =60, ∴该一次函数解析式为y=-110x+60.(2)解:当y=-110x+60=8时, 解得x=520.即行驶520千米时,油箱中的剩余油量为8升.530-520=10千米,油箱中的剩余油量为8升时,距离加油站10千米.∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.10. (1)解:由题意可得,y=100x+150(100-x)=-50x+15000,即y 与x 的函数关系式是y=-50x+15000.(2)解:由题意可得,100-x≤2x ,解得,x≥3313,∵y=-50x+15000,∴当x=34时,y 取得最大值,此时y=13300,100-x=66,即商店购进A 型34台、B 型电脑66台,才能使销售总利润最大.11. (1)解:在y=2x+3中,当x=0时,y=3,即A(0,3);在y=-2x-1中,当x=0时,y=-1,即B(0,-1).(2)解:依题意,得{y =2x +3y =−2x −1, 解得{x =−1y =1; ∴点C 的坐标为(-1,1).(3)解:过点C 作CD ⊥AB 交y 轴于点D ;∴CD=1;∵AB=3-(-1)=4;∴S △ABC =12AB·CD=12×4×1=2.12.(1)解:把A(-3,2)代入y 2=m x ,得m=-3×2=-6,∴反比例函数解析式为y 2=-6x .把B(n ,-6)代入y 2=-6x ,得-6n=-6,解得n=1,∴B 点坐标为(1,-6),把A(-3,2),B(1,-6)代入y 1=kx+b ,得{−3k +b =2k +b =−6,解方程组得{k =−2b =−4, ∴一次函数解析式为y=-2x-4.(2)解:当x=0时,y=-2x-4=-4,则AB 与y 轴的交点坐标为(0,-4),∴△AOB 的面积=12×4×(3+1)=8.(3)解:当-3<x<0或x>1时,y 1<y 2.13.(1)解:设y =kx +b ,则有{b =400100k +b =900, 解得{k =5b =400, ∴y =5x +400.(2)解:绿化面积是1200平方米时,甲公司的费用为6400元,乙公司的费用为5500+4×200=6300元, ∵6300<6400∴选择乙公司的服务,每月的绿化养护费用较少.14.(1)解:因为A点在反比例函数的图象上,可先求出反比例函数的解析式y=-2x,又B点在反比例函数的图象上,代入即可求出n的值为-2,最后再由A,B两点坐标求出一次函数解析式y=-x-1.(2)解:根据图象可得x的取值范围是x<-2或0<x<1.15.(1)解:设直线AB的函数解析式为y=kx+b(k≠0).把点A(0,3)、点B(3,0)代入得:{b=33k+b=0解得:{k=−1 b=3,∴直线AB的函数解析式为y=-x+3;由{y=2xy=−x+3得:{x=1y=2,∴M点的坐标为(1,2).(2)解:设点N的坐标为(x,0),如图所示:∵△MNB的面积为6,∴12×2×|x-3|=6,∴x=9,或x=-3.∴点N的坐标为(-3,0)或(9,0).16.(1)解:由题意可得:银卡消费:y=10x+150,普通消费:y=20x.(2)解:由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600).(3)解:如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通片合算;当x>45时,金卡消费更划算.17.(1)解:设y 关于x 的函数解析式是y=kx+b , {b =615k +b =3,解得,{k =−15b =6, 即y 关于x 的函数解析式是y =−15x+6.(2)解:当h=0时,0=−310x+6,得x=20,当y=0时,0=−15x+6,得x=30,∵20<30,∴甲先到达地面.18. (1)解:根据题意得:y=m-6x .(2)解:将x=7,y=-26代入y=m-6x ,得-26=m-42,∴m=16 ∴当时地面气温为16℃∵x=12>11,∴y=16-6×11=-50(℃)假如当时飞机距地面12 km 时,飞机外的气温为-50℃.19.(1)解:a=3005×(10+5)=900.(2)解:小明的速度为:300÷5=60(米/分),小强的速度为:(900-60×2)÷12=65(米/分).(3)解:由题意得B(12,780),设AB 所在的直线的解析式为:y=kx+b(k≠0),把A(10,900)、B(12,780)代入得:{10k +b =90012k +b =780,解得{k =−60b =1500, ∴线段AB 所在的直线的解析式为y=-60x+1500(10≤x≤12).20. (1)解:∵点B(m ,2)在直线y=x+1上,∴2=m+1,得m=1,∴点B 的坐标为(1,2),∵点B(1,2)在反比例函数y=k x (x>0)的图象上,∴2=k 1,得k=2, 即反比例函数的表达式是y=2x .(2)解:将x=0代入y=x+1,得y=1,则点A 的坐标为(0,1), ∵点B 的坐标为(1,2),∴△AOB 的面积是:1×12=12.。

(专题精选)初中数学函数基础知识真题汇编附解析

(专题精选)初中数学函数基础知识真题汇编附解析

(专题精选)初中数学函数基础知识真题汇编附解析一、选择题1.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.2.如图,线段AB 6cm =,动点P 以2cm /s 的速度从A B A --在线段AB 上运动,到在线段AB上运动,到达点A达点A后,停止运动;动点Q以1cm/s的速度从B A后,停止运动.若动点P,Q同时出发,设点Q的运动时间是t(单位:s)时,两个动点之间的距离为S(单位:cm),则能表示s与t的函数关系的是( )A.B.C.D.【答案】D【解析】【分析】根据题意可以得到点P运动的快,点Q运动的慢,可以算出动点P和Q相遇时用的时间和点Q到达终点时的时间,从而可以解答本题.【详解】:设点Q的运动时间是t(单位:s)时,两个动点之间的距离为s(单位:cm),6=2t+t,解得:t=2,即t=2时,P、Q相遇,即S=0,.P到达B点的时间为:6÷2=3s,此时,点Q距离B点为:3,即S=3P点全程用时为12÷2=6s,Q点全程用时为6÷1=6s,即P、Q同时到达A点由上可得,刚开始P和Q两点间的距离在越来越小直到相遇时,它们之间的距离变为0,此时用的时间为2s;相遇后,在第3s时点P到达B点,从相遇到点P到达B点它们的距离在变大,1s后P点从B点返回,点P继续运动,两个动点之间的距离逐渐变小,同时达到A点.故选D.【点睛】本题考查动点问题的函数图象,解题的关键是明确各个时间段内它们对应的函数图象.3.甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发.他们离出发地的距离s/km和骑行时间t/h之间的函数关系如图所示.根据图象信息,以下说法错误的是()A.他们都骑了20 kmB.两人在各自出发后半小时内的速度相同C.甲和乙两人同时到达目的地D.相遇后,甲的速度大于乙的速度【答案】C【解析】【分析】首先注意横纵坐标的表示意义,再观察图象可得乙出发0.5小时后停留了0.5小时,然后又用1.5小时到达离出发地20千米的目的地;甲比乙早到0.5小时出发,用1.5小时到达离出发地20千米的目的地,然后根据此信息分别对4种说法进行判断.【详解】解:A.根据图形的纵坐标可得:他们都骑行了20km,故原说法正确;B.乙在出发0.5小时后,路程不增加,而时间在增加,故乙在途中停留了1-0.5=0.5h,故原说法正确;C.从图形的横坐标看,甲比乙早到了0.5小时,故原说法错误;D.相遇后,甲直线上升得快,故甲的速度大于乙的速度,故原说法正确;故答案为:C.【点睛】此题主要考查了学生从图象中读取信息的数形结合能力.同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.4.一水池放水,先用一台抽水机工作一段时间后停止,然后再调来一台同型号抽水机,两台抽水机同时工作直到抽干.设从开始工作的时间为t,剩下的水量为s.下面能反映s与t之间的关系的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据s随t的增大而减小,即可判断选项A、B错误;根据先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s随t的增大减小得比开始的快,即可判断选项C 、D 的正误.【详解】解:∵s 随t 的增大而减小,∴选项A 、B 错误;∵先用一台抽水机工作一段时间后停止,再调来一台同型号抽水机,两台抽水机同时工作直到抽干得出s 随t 的增大减小得比开始的快,∴s 随t 的增大减小得比开始的快,∴选项C 错误;选项D 正确;故选:D .【点睛】本题主要考查对函数图象的理解和掌握,能根据实际问题所反映的内容来观察与理解图象是解答此题的关键5.函数2x y x =-中自变量x 的取值范围是( ) A .x≠2B .x≥2C .x≤2D .x >2【答案】A【解析】【分析】根据分式的意义,进行求解即可.【详解】解:根据分式的意义得2-x≠0,解得x≠2故选:A【点睛】本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数.6.随着“互联网+”时代的到来,一种新型的打车方式受到大众欢迎.打车总费用y(单位:元)与行驶里程x(单位:千米)的函数关系如图所示.如果小明某次打车行驶里程为22千米,则他的打车费用为( )A.33元B.36元C.40元D.42元【答案】C【解析】分析:待定系数法求出当x≥12时y关于x的函数解析式,再求出x=22时y的值即可.详解:当行驶里程x⩾12时,设y=kx+b,将(8,12)、(11,18)代入,得:812 1118k bk b+=⎧⎨+=⎩,解得:24kb=⎧⎨=-⎩,∴y=2x−4,当x=22时,y=2×22−4=40,∴当小明某次打车行驶里程为22千米,则他的打车费用为40元.故选C.点睛:本题考查一次函数图象和实际应用. 认真分析图象,并利用待定系数法求一次函数的解析式是解题的关键.7.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B .【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.如图,已知矩形OABC ,A (4,0),C (0,4),动点P 从点A 出发,沿A ﹣B ﹣C ﹣O 的路线匀速运动,设动点P 的运动路程为t ,△OAP 的面积为S ,则下列能大致反映S 与t 之间关系的图象是( )A .B .C .D .【答案】A【解析】【分析】分三段求解:①当P 在AB 上运动时;②当P 在BC 上时;③当P 在CO 上时;分别求出S 关于t 的函数关系式即可选出答案.【详解】解:∵A (4,0)、C (0,4),∴OA =AB =BC =OC =4,①当P 由点A 向点B 运动,即04t ≤≤,114222S OA AP t t ==创=g ; ②当P 由点A 向点B 运动,即48t <≤,1144822S OA AB ==创=g ; ③当P 由点A 向点B 运动,即812t <≤,()1141222422S OA CP t t ==创-=-+g ; 结合图象可知,符合题意的是A .故选:A .【点睛】本题主要考查了动点问题的函数图象,解题的关键是根据图形求出S 关于t 的函数关系式.9.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E 为矩形ABCD 边AD 的中点,在矩形ABCD 的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P 从点B 出发,沿着B ﹣E ﹣D 的路线匀速行进,到达点D .设运动员P 的运动时间为t ,到监测点的距离为y .现有y 与t 的函数关系的图象大致如图2所示,则这一信息的来源是( )A .监测点AB .监测点BC .监测点CD .监测点D【答案】C【解析】 试题解析:A 、由监测点A 监测P 时,函数值y 随t 的增大先减少再增大.故选项A 错误;B 、由监测点B 监测P 时,函数值y 随t 的增大而增大,故选项B 错误;C 、由监测点C 监测P 时,函数值y 随t 的增大先减小再增大,然后再减小,选项C 正确;D 、由监测点D 监测P 时,函数值y 随t 的增大而减小,选项D 错误.故选C .10.在平面直角坐标系中有三个点的坐标:()()0,2,2,01(),3A B C ---,,从、、A B C 三个点中依次取两个点,求两点都落在抛物线2y x x 2=--上的概率是( )A .13B .16C .12D .23【答案】A【解析】【分析】先画树状图展示所有6种等可能的结果数,再找出两点都落在抛物线2y x x 2=--上的结果数,然后根据概率公式求解.【详解】解:在()()0,2,2,01(),3A B C ---,三点中,其中AB 两点在2y x x 2=--上, 根据题意画图如下:共有6种等可能的结果数,其中两点都落在抛物线2y x x 2=--上的结果数为2, 所以两点都落在抛物线2y x x 2=--上的概率是2163=; 故选:A .【点睛】本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式求出事件A 或B 的概率.也考查了二次函数图象上点的坐标特征.11.若y x =有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.小明从家骑车上学,先匀速上坡到达A 地后再匀速下坡到达学校,所用的时间与路程如图所示,如果返回时,上、下坡速度仍然保持不变,那么他从学校回到家需要的时间是( )A .9分钟B .12分钟C .8分钟D .10分钟【答案】B【解析】【分析】 先根据图形,得到上坡、下坡的时间和距离,然后分别求出上、下坡的速度,最后计算返回家的时间【详解】根据图形得,从家到学校:上坡距离为1km ,用时5min ,下坡距离为2km ,用时为4min 故上坡速度115V =(km/min),下坡速度22142V ==(km/min) 从学校返回家的过程中,原来的上下坡刚好颠倒过来,即上坡2km ,下坡1km故上坡时间12t 15==10(min),下坡时间21t 12==2(min) ∴总用时为:10+2=12(min)故选:B【点睛】 本题考查从函数图象获取信息,解题关键是将函数图像中的数据与生活实际一一对应13.如图,点M 为▱ABCD 的边AB 上一动点,过点M 作直线l 垂直于AB ,且直线l 与▱ABCD 的另一边交于点N .当点M 从A→B 匀速运动时,设点M 的运动时间为t ,△AMN 的面积为S ,能大致反映S 与t 函数关系的图象是( )A .B .C .D .【答案】C【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,AD=22,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C . 点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式.14.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )A .B .C .D .【答案】B【解析】【分析】注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.15.如图所示的图象(折线ABCDE)描述了一辆汽车在某一笔直的公路上的行驶过程中,汽车离出发地的距离s(千米)与行驶时间t(小时)之间的函数关系,根据图中提供的信息,给出下列说法:①汽车共行驶了140千米;②汽车在行驶途中停留了1小时;③汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大;④汽车出发后6小时至9小时之间行驶的速度在逐渐减小.其中正确的说法共有()A.1个B.2个C.3个D.4个【答案】B【解析】【分析】根据函数图象上的特殊点以及函数图象自身的实际意义进行判断即可.【详解】解:①由图象可知,汽车走到距离出发点140千米的地方后又返回出发点,所以汽车共行驶了280千米,故①错;②从3时开始到4时结束,时间在增多,而路程没有变化,说明此时在停留,停留了4-3=1(小时),故②对;③汽车4小时至6小时之间的速度为:(140-90)÷(6-4)=25(千米/小时),汽车6小时至9小时之间的速度为:140÷(9-6)≈46.7(千米/小时),所以汽车出发后6小时至9小时之间行驶的速度比汽车出发后4小时至6小时之间行驶的速度大,故③对;④汽车自出发后6小时至9小时,图象是直线,说明是在匀速前进,故④错;故选:B.【点睛】本题考查函数图象,由函数图象的实际意义,理解函数图象所反映的运动过程是解答本题的关键.16.如图所示:边长分别为1和2的两个正方形,其一边在同一水平线上,小正方形沿该水平线自左向右匀速穿过大正方形,设穿过的时间为t,大正方形内除去小正方形部分的面积为S(阴影部分),那么S与t的大致图象应为()A.B.C.D.【答案】A【解析】【分析】【详解】解:根据题意,设小正方形运动速度为v,由于v分为三个阶段,①小正方形向右未完成穿入大正方形,S vt vt vt=⨯-⨯=-≤.2214(1)②小正方形穿入大正方形但未穿出大正方形,S=⨯-⨯=,22113③小正方形穿出大正方形,=⨯-⨯-=+≤,S vt vt vt22(11)3(1)∴符合变化趋势的是A和C,但C中面积减小太多不符合实际情况,∴只有A中的符合实际情况.故选A.17.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.18.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.19.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.。

初中函数测试题及答案

初中函数测试题及答案

初中函数测试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项不是函数的定义?A. 函数是数集到数集的映射B. 函数是一种特殊的关系C. 函数是一种运算D. 函数是数集到数集的对应关系答案:C2. 如果一个函数的自变量x的取值范围是x>0,那么下列哪个选项是正确的?A. 函数的定义域为所有实数B. 函数的定义域为非负实数C. 函数的定义域为正实数D. 函数的定义域为负实数答案:C3. 函数y=2x^2+3x+1的图像是:A. 抛物线B. 直线C. 双曲线D. 圆答案:A4. 下列哪个函数是奇函数?A. y=x^2B. y=x^3C. y=x^4D. y=x答案:D5. 函数y=1/x的图像在第一象限内:A. 向右上方倾斜B. 向左上方倾斜C. 向右下方倾斜D. 向左下方倾斜答案:B6. 如果函数f(x)=x^2-4x+3,那么f(1)的值是多少?A. -2B. 0C. 2D. 4答案:A7. 函数y=3x-2的图像与y轴的交点坐标是:A. (0, -2)B. (0, 3)C. (2, 0)D. (-2, 0)答案:A8. 函数y=1/x的图像经过第几象限?A. 第一象限和第三象限B. 第二象限和第四象限C. 第一象限和第二象限D. 第三象限和第四象限答案:A9. 函数y=x+1与y=x-1的图像之间的距离是:A. 1B. 2C. 3D. 4答案:B10. 函数y=x^2的图像在x=0处的切线斜率是:A. 0B. 1C. 2D. -1答案:A二、填空题(每题4分,共20分)1. 函数y=2x+3的图像在x=2时的y值是_________。

答案:72. 如果函数f(x)=x^2-6x+8,那么f(3)的值是_________。

答案:13. 函数y=1/x的图像在x=-1处的切线斜率是_________。

答案:-14. 函数y=x^3-3x^2+2的图像在x=1处的切线斜率是_________。

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28道典型题(含答案和解析)1.已知关于x 的方程 mx+3=4的解为 x=1,则直线 y=(m−2)x−3一定不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵关于x的方程mx+3=4的解为x=1.∴m+3=4.∴m=1.∴直线y=(m−2)x−3为直线y=−x−3.∴直线y=(m−2)x−3一定不经过第一象限.考点:函数——一次函数——一次函数与一元一次方程.2.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB解析式是().A. y=−2x−3B. y=−2x−6C. y=−2x+3D. y=−2x+6答案:D.解析:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6−2a).∵直线AB与直线y=−2x平行.∴设直线AB的解析式是:y=−2x+b1.把(a,6−2a)代入函数解析式得:6−2a=−2a+b1.则b1=6.∴直线AB的解析式是y=−2x+6.考点:函数——一次函数——一次函数图象与几何变换——一次函数平移变换.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.答案:x>23.解析:∵函数y=2x过点A(m,3).∴2m=3.解得:m=23.∴A(32,3).∴不等式2x>ax+4的解集为x>23.考点:函数——一次函数——一次函数与一元一次不等式——两条直线相交或平行问题.4.若函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组{x−y=a2x+y=b的解是.答案:{x=2y=1.解析:因为函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1).所以方程组{x−y=a2x+y=b的解是{x=2y=1.考点:函数——一次函数——一次函数与二元一次方程——一次函数与二元一次方程(组)的关系.5.一次函数y=2x−3的图象与y轴交于A,另一个一次函数y=kx+b与y轴交于B,两条直线交于C,C点的纵坐标是1,且S△ABC=5,求k、b的值.答案:(2,1).解析:由题意知C(2,1).过C作CD⊥y轴,CD=2.·AB·CD=5.S△ABC=12∴AB=5.∴B(0,2)或(0,−8).x+2.当B(0,2)时,y=−12x−8.当B(0,−8)时,y=−92考点:函数——一次函数——求一次函数解析式——两条直线相交或平行问题.6.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),求关于x的不等式a(x−1)−b>0的解集.答案:x<−1.解析:∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0,a<0.把(2,0)代入解析式y=ax+b得:0=2a+b.解得:2a=−b.b=−2.a∵a(x−1)−b>0.∴a(x−1)>b.∵a<0..∴x−1<ba∴x<−1.考点:函数——一次函数——一次函数与一元一次不等式.7.如果一次函数y=−x+1的图象与x轴、y轴分别交于A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,那么这样的点M有().A. 3个B. 4个C. 5个D. 7个答案:B.解析:一次函数y=−x+1中令x=0,解得y=1.令y=0,解得x=1.∴A(1,0),B(0,1),即OA=OB=1.在直角三角形AOB中,根据勾股定理得:AB=√2.分四种情况考虑,如图所示:当BM1=BA时,由BO⊥AM1,根据三线合一得到O为M1A的中点,此时M1(−1,0).当AB=AM2时,由AB=√2,得到OM2=AM2−OA=√2−1,此时M2(1−√2,0).当BA=AM3时,由AB=√2,得到AM3=√2,则OM3=OA+AM3=1+√2,此时M3(1+√2,0).当M4A=M4B时,此时M4与原点重合,此时M4(0,0).综上,这样的M点有4个.故选B.考点:函数——一次函数——一次函数综合题——一次函数与等腰三角形结合.8.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/S的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).答案:4+2√3.解析:由图②可知,t在2到4秒时,△PAD的面积不发生变化.∴在AB上运动的时间是2秒,在BC上运动的时间是4−2=2秒.∵动点P的运动速度是1cm/s.∴AB=2cm,BC=2cm.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F.则四边形BCFE是矩形.∴BE=CF,BC=EF=2cm.∵∠A=60°.∴BE=ABsin60°=2×√3=√3.2AE=ABcos60°=2×1=1.2∴1×AD×BE=3√3.2×AD×√3=3√3.即12解得AD=6cm.∴DF=AD−AE−EF=6−1−2=3.在Rt△CDF中,CD=√CF2+DF2=√√32+32=2√3.所以,动点P运动的总路程为AB+BC+CD=2+2+2√3=4+2√3.∵动点P的运动速度是1cm/s.∴点P从开始移动到停止移动一共用了(4+2√3)÷1=4+2√3(秒).故答案为:4+2√3.考点:函数——一次函数——一次函数的应用.四边形——梯形.的图像上,OA长为2且∠1=60°。

初三函数测试题目及答案

初三函数测试题目及答案

初三函数测试题目及答案一、选择题(每题3分,共30分)1. 下列哪个选项是一次函数的图象?A. 一条直线B. 一个圆C. 一个椭圆D. 一个抛物线答案:A2. 函数y=2x+3的斜率是多少?A. 2B. 3C. -2D. -3答案:A3. 如果一个函数的图象经过点(2,5),那么这个点一定在函数的:A. 定义域内B. 值域内C. 函数图象上D. 函数图象外答案:C4. 函数y=x^2的反函数是:A. y=√xB. y=x^2C. y=1/xD. y=-x^2答案:A5. 函数y=1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:D6. 函数y=3x-2的零点是多少?A. 0.5B. 1C. 2D. 3答案:B7. 函数y=2x+1的图象与y轴的交点坐标是:A. (0, 1)B. (0, 2)C. (1, 0)D. (1, 2)答案:A8. 函数y=x^2-4x+3的最大值是多少?A. -1B. 0C. 1D. 3答案:B9. 函数y=|x|的图象是:A. 一条直线B. 一个V形C. 一个W形D. 一个倒V形答案:B10. 如果函数y=f(x)是奇函数,那么f(-x)等于:A. f(x)B. -f(x)C. xD. -x答案:B二、填空题(每题4分,共20分)11. 函数y=3x+5的图象与x轴的交点坐标是________。

答案:(-5/3, 0)12. 函数y=x^2-6x+9的最小值是________。

答案:013. 函数y=1/x的图象在x=2处的斜率是________。

答案:1/414. 函数y=x^3-3x^2+3x-1的零点是________。

答案:115. 函数y=2x^2-4x+1的顶点坐标是________。

答案:(1, -1)三、解答题(每题10分,共50分)16. 已知函数y=2x^2-4x+3,求该函数的顶点坐标。

答案:顶点坐标为(1, 1)。

初中函数专题试题及答案

初中函数专题试题及答案

初中函数专题试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{1}{x} \)D. \( y = x^3 - 2x \)答案:B2. 函数 \( y = 3x - 5 \) 的图象与x轴的交点坐标是:A. \( (0, -5) \)B. \( (5, 0) \)C. \( (-5, 0) \)D. \( (0, 5) \)答案:C3. 如果函数 \( y = 2x + 1 \) 在 \( x = 2 \) 时的值为5,那么\( x = 1 \) 时的值是:A. 3B. 4C. 2D. 1答案:A4. 函数 \( y = -\frac{1}{2}x + 3 \) 的斜率是:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{3}{2} \)D. \( -3 \)答案:B5. 函数 \( y = 4x^2 \) 的顶点坐标是:A. \( (0, 0) \)B. \( (0, 4) \)C. \( (2, 0) \)D. \( (0, -4) \)答案:A6. 函数 \( y = x^2 - 6x + 9 \) 可以写成完全平方的形式:A. \( (x - 3)^2 \)B. \( (x + 3)^2 \)C. \( (x - 3)^2 + 3 \)D. \( (x + 3)^2 - 3 \)答案:A7. 函数 \( y = 2x^2 - 8x + 7 \) 的最小值是:A. 1B. 3C. 7D. 无法确定答案:A8. 函数 \( y = \frac{1}{x} \) 的图象是:A. 一条直线B. 两条直线C. 一个双曲线D. 一个抛物线答案:C9. 函数 \( y = 3x^2 + 2x - 5 \) 的对称轴是:A. \( x = -\frac{2}{3} \)B. \( x = \frac{2}{3} \)C. \( x = -1 \)D. \( x = 1 \)答案:B10. 函数 \( y = 2x + 3 \) 和 \( y = -x + 1 \) 的交点坐标是:A. \( (-2, -1) \)B. \( (2, 5) \)C. \( (-1, 1) \)D. \( (1, 3) \)答案:C二、填空题(每题4分,共20分)11. 函数 \( y = 2x + 1 \) 在 \( x = -1 \) 时的值为 _______。

函数练习题(含答案解析)

函数练习题(含答案解析)

函数练习题(含答案解析) 1.若01x y <<<,则( )A .33y x <B .log 3log 3x y <C .44log log x y <D .11()()44x y <2. 设12log 3a =,0.213b ⎛⎫= ⎪⎝⎭,132c =,则( )A .a b c <<B .c b a <<C .c a b <<D .b a c <<3. 函数y=1212x -+x(x <0)的反函数是( )A.y=log 211-+x x (x<-1) B.y =log 211-+x x (x>1) C.y=log 211+-x x (x<-1) D.y =log 211+-x x (x>1)4.函数2441()431x x f x x x x -⎧=⎨-+>⎩, ≤,,的图象和函数2()log g x x =的图象的交点个数是( )A .4B .3C .2D .15.设2lg ,(lg ),lg a e b e c === )(A )a b c >> (B )a c b >> (C )c a b >> (D )c b a >> 6. 已知函数()f x 满足:x ≥4,则()f x =1()2x;当x <4时()f x =(1)f x +,则2(2l o g 3)f +=( ) (A )124(B )112(C )18(D )387. 若函数()y f x =是函数1xy a a a =>≠(0,且)的反函数,且(2)1f =,则()f x = A .x 2logB .x21 C .x 21logD .22-x8. 函数y=1+ln(x-1)(x>1)的反函数是 (A )y=1x e+-1(x>0) (B) y=1x e-+1(x>0) (C) y=1x e+-1(x ∈R) (D )y=1x e-+1 (x ∈R)9. 设25abm ==,且112a b+=,则m =(A(B )10 (C )20 (D )100 10. 函数()412xx f x +=的图象A. 关于原点对称B. 关于直线y=x 对称C. 关于x 轴对称D. 关于y 轴对称 11. 已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是 (A)(1,)+∞ (B)[1,)+∞(C) (2,)+∞ (D) [2,)+∞ 12. 函数y =log 2x 的图象大致是答案解析: 1. C2.解析:本题考查对数函数的增减性,由1>lge>0,知a>b,又c=21lge, 作商比较知c>b,选B 。

初中数学 函数专题练习及答案

初中数学 函数专题练习及答案

初中数学函数专题练习及答案函数专题讲稿二次函数:1.抛物线 $y=- (x-1)^2+3$ 的顶点坐标为 $(1,3)$。

2.抛物线 $y=x^2-2x+1$ 的顶点坐标是 $(1,0)$。

3.抛物线$y=2x^2+6x+c$ 与$x$ 轴的一个交点为$(1,0)$,则这个抛物线的顶点坐标是 $(-1,-2)$。

4.二次函数 $y=(x-1)^2+2$ 的最小值是 $2$。

5.已知二次函数 $y=-x^2+2x+c$ 的对称轴和 $x$ 轴相交于点 $(1,0)$,则 $m$ 的值为 $1$。

6.抛物线 $y=x^2-2x+3$ 的对称轴是直线 $x=1$。

7.将抛物 $y=-(x-1)$ 向左平移 $1$ 个单位后,得到的抛物线的解析式是 $y=-x^2$。

8.把抛物线 $y=x^2+bx+c$ 向右平移 $3$ 个单位,再向下平移 $2$ 个单位,所得图像的解析式是 $y=x^2-3x+5$,则有$b=3$,$c=4$。

9.已知抛物线 $y=x^2+(m-1)x+(m-2)$ 与 $x$ 轴相交于 $A$,且线段 $AB=2$,则 $m$ 的值为 $2$。

10.一个满足条件的二次函数解析式是 $y=-x^2$。

11.若抛物线 $y=x^2+2x+a$ 的顶点在 $x$ 轴的下方,则$a$ 的取值范围是 $a<1$。

12.已知二次函数 $y=ax^2+bx+c$,且 $a0$,则一定有$b^2-4ac<0$。

利用图像:1.若直线 $y=m$($m$ 为常数)与函数 $y=4$ 的图像恒有三个不同的交点,则常数 $m$ 的取值范围是 $m>4$。

2.阴影部分的面积相等的是 $①②$。

3.若 $A(-\frac{13}{4},1)$,$B(-1,y_2)$,$C(\frac{5}{3},y_3)$ 为二次函数 $y=-x^2-4x+5$ 的图象上的三点,则 $y_1>y_2>y_3$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对称轴、顶点、平移:
1.抛物线()2
13y x =--+的顶点坐标为 . 2.抛物线2
1y x =-的顶点坐标是( ) A .(01),
B .(01)-,
C .(10),
D .(10)-,
3.抛物线226y x x c =++与x 轴的一个交点为(10),,则这个抛物线 的顶点坐标是

4.二次函数2)1(2+-=x y 的最小值是( )
A. 2-
B . 2
C. 1-
D. 1
5.已知二次函数2
2
2y x x c =-++的对称轴和x 轴相交于点()0m ,,则m 的值为________. 6.抛物线322+-=x x y 的对称轴是直线( )
A. 2-=x
B. 2=x
C. 1-=x
D . 1=x
7.将抛物2
(1)y x =--向左平移1个单位后,得到的抛物线的解析式是 .
8.把抛物线c bx x y ++=2向右平移3个单位,再向下平移2个单位,所得图象的解析式是532+-=x x y ,则有( )
A . 3=b ,7=c
B. 9-=b ,15-=c
C. 3=b ,3=c
D. 9-=b ,21=c
图像交点、判别式:
9..已知抛物线2
(1)(2)y x m x m =+-+-与x 轴相交于A B ,两点,且线段2AB =,则m
的值为 .
10.已知二次函数不经过第一象限,且与x 轴相交于不同的两点,请写出一个满足上述条件的二次函数解析式 .
11.若抛物线2
2y x x a =++的顶点在x 轴的下方,则a 的取值范围是( )
A.1a >
B.1a <
C.1a ≥
D.1a ≤
12.已知二次函数c bx ax y ++=2,且0<a ,0>+-c b a ,则一定有( )
A . 042>-ac b
B. 042=-ac b
C. 042<-ac b
D. ac b 42-≤0
1.若直线y =m (m 为常数)与函数y =⎩⎪⎨⎪⎧x 2
(x ≤2)
4x
(x >2)的图像恒有三个不同的交点,则常数m
的取值范围是___________。

2.下列图形:
其中,阴影部分的面积相等的是( ) A.①② B.②③ C.③④
D.④①
3.若()123135143A y B y C y ⎛⎫⎛⎫
-
- ⎪ ⎪⎝⎭⎝⎭
,,,,,为二次函数245y x x =--+的图象上的三点,则123y y y ,,的大小关系是( ) A.123y y y <<
B.321y y y <<
C.312y y y <<
D.213y y y <<
4..二次函数2y ax bx c =++图象上部分点的对应值如下表:
则使y <的取值范围为 .5.二次函数2
y ax bx =+和反比例函数b
y x
=在同一坐标系中的图象大致是(

6.二次函数2
y ax
bx c =++的图象如图所示,则直线y bx c =+的图象不经过(

A.第一象限 B.第二象限 C.第三象限
D.第四象限
2 1-
A.
B.
C.
7.在同一平面直角坐标系中,一次函数y ax b =+和二次函数2
y ax bx =+的图象可能为( )
8.二次函数c bx ax y ++=2的图象如右图,则点),(a
c b M 在( )
A. 第一象限
B. 第二象限
C. 第三象限 D . 第四象限
9.二次函数2
y ax bx c =++的图象如图所示,反比列函数a
y x
=与正比列函数y bx =在同一坐标系内的大致图象是( )
一次函数:
1. 已知一次函数y 1=kx+b 与反比例函数y 2=
k
x
在同一直角坐标系中的图象如图所示,则当y 1<y 2时,x 的取值范围是( )
A .x <﹣1或0<x <3
B .﹣1<x <0或x >3
C .﹣1<x <0
D .x >3
1. 2.
2.如图,双曲线y =m
x
与直线y =kx +b 交于点M .N ,并且点M 的坐标为(1,3),点N 的纵坐标为﹣1.根据图象信息可得关于x 的方程m
x
=kx +b 的解为( )
A .﹣3,1
B .﹣3,3
C .﹣1,1
D .﹣1,3
O x
y O y
x A
O y
x B
O y
x
D
O y
x C
y O x y
O
x
y O
x
y
O
x
A. B.
C.
D.
O x
y
3.如图,直线l 和双曲线(0)k
y k x
=
>交于A 、B 两点,P 是线段AB 上的点(不与A 、B 重合),过点A 、B 、P 分别向x 轴作垂线,垂足分别为C 、D 、E ,连接OA 、OB 、0P ,设△AOC 的面积为S 1、△BOD 的面积为S 2、△POE 的面积为S 3,则( )
A 、S 1<S 2<S 3
B 、S 1>S 2>S 3
C 、S 1=S 2>S 3
D 、S 1=S 2<S 3
3.
4.
4.如图,过y 轴正半轴上的任意一点P ,作x 轴的平行线,分别与反比例函数x
y x
y 24=
-=和的图象交于点A 和点B ,若点C 是x 轴上任意一点,连接AC 、BC ,则△ABC 的面积为( )
A .3
B .4
C .5
D .6 5.若一次函数的图象经过反比例函数x
y 4
-
=图象上的两点(1,m )和(n ,2),则这个一次函数的解析式是 . 6.若一次函数y=kx+1的图象与反比例函数x
y 1
=的图象没有公共点,则实数k 的取值范围是 .
3:32522⎛⎫-- ⎪⎝⎭

;5:1;6.D ;7. 2
y x =-;8.A ;9:1
5,;10.2y x x =-- 答案不唯一;11.B ;12.A ;
利用图像:
1.0<m <2;
2.C ;
3.C ;4:23x -<<;5.B;6.B;7.A;8.D;9.B;
一次函数:
1.B;
2.A;
3.D;
4.A;
5.3
1432+-
=x y ;6.041
<<-k ;。

相关文档
最新文档