高等代数_李海龙_习题第2章多项式
《高等代数》多项式试题库

�
(1 �
i)x 2
� 1 ;(vi) 1 �
1 2!
x
�
1 3!
x3
���
1 n!
xn
��
;
其中
是
多项式.
3. 零多项式是
, 零次多项式是
.
n
m
4.
� � 设 多 项 式 f ( x) � ai x i , g ( x) � bi x i
i �1
i �1
,
则 f (x)g(x) 的 k 次 项 系 数
二 证明题
1. 证明 x f k (x) 的充分必要条件是 x f (x) .
2. 证明 . x 8 � x 7 � x 5 � x 4 � x 3 � x � 1 x 12 � x 9 � x 6 � x 3 � 1
3. 证明 x d �1 整除 x n �1 的充要条件是 d n .
4. 证明, 若 x 3 � x 2 � x � 1 f ( x 4 ) � xg (x 4 ) � x 2 h(x 4 ) ,则 x � 1 同时整除 f ( x), g ( x), h( x) . 与例 2 联系,将此题推广到一般结果,并证明你的结论.
(C)若 g (x) Q f (x) ,则 g ( x) R f ( x) ;(D)若 g (x)� R f (x) ,则 g ( x)� q f ( x) .
3. 设 p(x) f (x), p(x) g (x) ,则 p( x) 整除于
.
① f ( x) � g ( x) ;② f 2 ( x) � g 2 ( x) ;③ f ( x) g ( x) ;④ f 3 (x) � g 3 (x) .
a2 � b2 n
高等代数__课后答案__高等教育出版社

高等代数习题答案(一至四章)第一章 多项式 习题解答1、(1)由带余除法,得17(),39q x x =-262()99r x =--(2)2()1q x x x =+-,()57r x x =-+2、(1)2100p m q m ⎧++=⎨-=⎩ , (2)由22(2)010m p m q p m ⎧--=⎪⎨+--=⎪⎩得01m p q =⎧⎨=+⎩或212q p m =⎧⎨+=⎩。
3、(1)432()261339109,q x x x x x =-+-+()327r x =- (2)q (x )=22(52)x ix i --+,()98r x i =--4、(1)有综合除法:2345()15(1)10(1)10(1)5(1)(1)f x x x x x x =+-+-+-+-+- (2)234()1124(2)22(2)8(2)(2)f x x x x x =-+++-+++(3)234()24(75)5()(1)()2()()f x i x i i x i i x i x i =+-++--+-+++5、(1)x+1 (2)1 (3)21x -- 6、(1)u (x )=-x-1 ,v (x )=x+2 (2)11()33u x x =-+,222()133v x x x =-- (3)u (x )=-x-1, 32()32v x x x x =+--7、02u t =⎧⎨=⎩或23u t =-⎧⎨=⎩8、思路:根具定义证明证:易见d (x )是f (x )与g (x )的公因式。
另设()x ϕ是f (x )与g (x )的任意公因式,下证()()x d x ϕ。
由于d (x )是f (x )与g (x )的一个组合,这就是说存在多项式s (x )与t (x ),使 d (x )=s (x )f (x )+t (x )g (x )。
从而()()x f x ϕ,()()x g x ϕ,可得()()x d x ϕ。
高等代数二练习题答案

高等代数二练习题答案一、多项式运算1. 给定多项式 \( p(x) = x^3 - 3x^2 + 2x - 1 \) 和 \( q(x) =x^2 + 1 \),求 \( p(x) \) 除以 \( q(x) \) 的商和余数。
2. 计算多项式 \( r(x) = 2x^3 - 5x^2 + 7x - 3 \) 和 \( s(x) =x - 2 \) 的乘积。
3. 证明多项式 \( t(x) = x^4 - 5x^3 + 6x^2 + 8x - 9 \) 可以分解为两个二次多项式的乘积。
二、矩阵运算1. 给定矩阵 \( A = \begin{bmatrix} 1 & 2 \\ 3 & 4\end{bmatrix} \) 和 \( B = \begin{bmatrix} 5 & 6 \\ 7 & 8\end{bmatrix} \),求矩阵 \( A \) 与 \( B \) 的乘积。
2. 若矩阵 \( C = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \),求 \( C \) 的逆矩阵。
3. 判断矩阵 \( D = \begin{bmatrix} 2 & 1 \\ 1 & 2\end{bmatrix} \) 是否可对角化,并给出相应的对角矩阵。
三、线性方程组1. 解线性方程组:\[\begin{align*}x + 2y - z &= 1 \\3x - y + 2z &= 0 \\2x + y + z &= -1\end{align*}\]2. 判断下列线性方程组是否有唯一解:\[\begin{align*}x + y &= 3 \\2x + 2y &= 6\end{align*}\]3. 用克拉默法则解线性方程组:\[\begin{align*}x - y + z &= 2 \\2x + y - z &= 1 \\-x + 2y + z &= 3\end{align*}\]四、特征值与特征向量1. 求矩阵 \( E = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix} \) 的特征值和对应的特征向量。
高等代数习题答案

高等代数(北大版第三版)习题答案I I(总95页)-本页仅作为预览文档封面,使用时请删除本页-高等代数(北大第三版)答案目录第一章多项式第二章行列式第三章线性方程组第四章矩阵第五章二次型第六章线性空间第七章线性变换第八章 —矩阵第九章欧氏空间第十章双线性函数与辛空间注:答案分三部分,该为第二部分,其他请搜索,谢谢!12.设A 为一个n 级实对称矩阵,且0<A ,证明:必存在实n 维向量0≠X ,使0<'A X X 。
证 因为0<A ,于是0≠A ,所以()n A rank =,且A 不是正定矩阵。
故必存在非退化线性替换Y C X 1-=使()BY Y ACY C Y AX X '=''='-12222122221n p p p y y y y y y ----+++=++ ,且在规范形中必含带负号的平方项。
于是只要在Y C Z 1-=中,令p y y y === 21,1,021=====++n p p y y y 则可得一线性方程组 ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+++=+++=+++=++++++1102211,122,111,122111212111n nn n n n n p p p n pn p p n n x c x c x c x c x c x c x c x c x c x c x c x c ,由于0≠C ,故可得唯一组非零解()ns s s s x x x X ,,,21 =使()0111000<--=----+++='p n AX X s s, 即证存在0≠X ,使0<'A X X 。
13.如果B A ,都是n 阶正定矩阵,证明:B A +也是正定矩阵。
证 因为B A ,为正定矩阵,所以BX X AX X '',为正定二次型,且 0>'A X X , 0>'B X X ,因此()0>'+'=+'BX X AX X X B A X ,于是()X B A X +'必为正定二次型,从而B A +为正定矩阵。
高等代数多项式习题解答(供参考)

第一章 多项式习题解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r .1)123)(,13)(223+-=---=x x x g x x x x f92926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f75)(,1)(2+-=-+=x x r x x x q .2.q p m ,,适合什么条件时,有1)q px x mx x ++-+32|1当且仅当m q p m ==++,012时q px x mx x ++-+32|1.本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323.因此有m q p m ==++,012.2)q px x mx x ++++242|1由带余除法可得当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即⎩⎨⎧=--+=--010)2(22m p q m p m ,即⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p3.求)(x g 除)(x f 的商)(x q 与余式)(x r .1);3)(,852)(35+=--=x x g x x x x f解:运用综合除法可得商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r2)i x x g x x x x f 21)(,)(23+-=--=.解:运用综合除法得:商为)25(22i ix x +--,余式为i 89+-.4.把)(x f 表成0x x -的方幂和,即表示成 +-+-+202010)()(x x c x x c c 的形式.1)1,)(05==x x x f ;2);2,32)(024-=+-=x x x x f3).1,73)1(2)(0234-=++-+-+=x i x x i ix x x f分析:假设)(x f 为n 次多项式,令0c 即为0x x -除)(x f 所得的余式,商为10021)()()(--++-+=n n x x c x x c c x q .类似可得1c 为0x x -除商)(x q 所得的余式,依次继续即可求得展开式的各项系数.解:1)解法一:应用综合除法得.5)(x x f =1)1(5)1(10)1(10)1(5)1(2345+-+-+-+-+-=x x x x x .解法二:把x 表示成1)1(+-x ,然后用二项式展开2)仿上可得432)2()2(8)2(22)2(2411)(+++-+++-=x x x x x f .3)因为5.求)(x f 与)(x g 的最大公因式1)1)(,143)(23234--+=---+=x x x x g x x x x x f解法一:利用因式分解因此最大公因式为1+x .解法二:运用辗转相除法得因此最大公因式为1+x .2)13)(,14)(2334+-=+-=x x x g x x x f .解:运用辗转相除法得(注意缺项系数补零)3).124624)(,110)(23424+++-=+-=x x x x x g x x x f)()()22(24)()(123x r x f x x x x f x g +=---=, 因此.122))(),((2--=x x x g x f6.求)(),(x v x u 使:))(),(()()()()(x g x f x g x v x f x u =+1);22)(,242)(234234---+=---+=x x x x x g x x x x x f解:运用辗转相除法得:因此2)())(),((22-==x x r x g x f .且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=.2);452)(,951624)(23234+--=++--=x x x x g x x x x x f解:运用辗转相除法得:因此1)())(),((2-=-=x x r x g x f .且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=.3).1)(,144)(2234--=++--=x x x g x x x x x f解:运用辗转相除法得:因此.1)())(),((2==x r x g x f 且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=.7.设u tx x x g u x x t x x f ++=++++=323)(,22)1()(的最大公因式是一个二次多项式,求u t ,的值.解:运用带余除法有由题意可得,)(1x r 即为)(),(x g x f 的最大公因式.因此有01≠+t .进一步])1(21[)1()2()1()1()(22222t t u x t t t u t t x r +--++-++-+=. 要使)(1x r 为)(),(x g x f 的最大公因式的充要条件是.0)(2=x r 即解得8.证明:如果),(|)(),(|)(x g x d x f x d 且)(x d 为)(x f 与)(x g 的一个组合,那么)(x d 是)(x f 与)(x g 的一个最大公因式.证明:由)(|)(),(|)(x g x d x f x d 可知)(x d 是)(x f 与)(x g 的一个公因式.下证)(x f 与)(x g 的任意一个公因式是)(x d 的因式.由)(x d 为)(x f 与)(x g 的一个组合可知,存在多项式)(),(x v x u ,使得)()()()()(x g x v x f x u x d +=.设)(x ϕ是)(x f 与)(x g 的任意一个公因式,则)(|)(),(|)(x g x x f x ϕϕ.故即).(|)(x d x ϕ因此)(x d 是)(x f 与)(x g 的一个最大公因式.9.证明:)()(())(),(())()(),()((x h x h x g x f x h x g x h x f =的首项系数为1).证明:存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.所以有)()()()()()()())(),((x h x g x v x h x f x u x h x g x f +=.即)())(),((x h x g x f 是)()(x h x f 与)()(x h x g 的一个组合.显然有)(|))(),((),(|))(),((x g x g x f x f x g x f .从而)()(|)())(),((),()(|)())(),((x h x g x h x g x f x h x f x h x g x f .由第8题结果)())(),((x h x g x f 是)()(x h x f 与)()(x h x g 的一个最大公因式.又)(x h 是首项系数为1的,因此).())(),(())()(),()((x h x g x f x h x g x h x f =10.如果)(x f ,)(x g 不全为零,证明1))(),(()(,)(),(()((=x g x f x g x g x f x f . 证明:由)(x f ,)(x g 不全为零可得其最大公因式不为零多项式,即.0))(),((≠x g x f 又存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.于是))(),(()()())(),(()()(1x g x f x g x v x g x f x f x u +=. 因此1))(),(()(,)(),(()((=x g x f x g x g x f x f . 11.如果)(x f ,)(x g 不全为零,且))(),(()()()()(x g x f x g x v x f x u =+,那么1))(),((=x v x u .证明:由)(x f ,)(x g 不全为零可得.0))(),((≠x g x f 由有于是1))(),((=x v x u .12.证明:如果,1))(),((,1))(),((==x h x f x g x f 那么.1))()(),((=x h x g x f证法一、由条件1))(),((,1))(),((==x h x f x g x f 可得存在多项式)(),(11x v x u ; )(),(22x v x u 使得1)()()()(11=+x g x v x f x u ,1)()()()(22=+x h x v x f x u .两式相乘得1)()()()()()]()()()()()()()()([21211221=+++x h x g x v x v x f x h x v x u x g x v x u x f x u x u . 因此有.1))()(),((=x h x g x f证法二、反证法证明.显然.0))()(),((≠x h x g x f 若,1))()(),((≠x h x g x f 则存在不可约多项式)(x p ,使得)(x p 为)(x f 与)()(x h x g 的公因式.因此有)(|)(x f x p 且)()(|)(x h x g x p .由)(x p 的不可约性有)(|)(x g x p 或)(|)(x h x p .若)(|)(x g x p ,则)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.若)(|)(x h x p ,则)(x p 为)(x f 与)(x h 的一个公因式,与1))(),((=x h x f 相矛盾.因此1))()(),((≠x h x g x f 不成立,即有.1))()(),((=x h x g x f13.设)(),(),(),(,),(),(2121x g x g x g x f x f x f n m 都是多项式,而且求证:1))()()(),()()((2121=x g x g x g x f x f x f n m .证明:由),,2,1(1))(),((1n j x g x f j ==,反复利用第12题结果可得1))()()(),((211=x g x g x g x f n .类似可得再反复利用12题结果可得1))()()(),()()((2121=x g x g x g x f x f x f n m .14.证明:如果,1))(),((=x g x f 那么.1))()(),()((=+x g x f x g x f证明:方法一.由,1))(),((=x g x f 存在多项式)(),(x v x u 使得1)()()()(=+x g x v x f x u .从而有,1)())()(())()()((,1))()()(()())()((111111=+-++=++-x g x v x u x g x f x u x g x f x v x f x v x u 因此有.1))()(),((,1))()(),((=+=+x g x f x g x g x f x f 由12题结果结论成立.方法二:用反证法.若.1))()(),()((≠+x g x f x g x f 则存在不可约多项式)(x p ,使得)(x p 为)()(x g x f 与)()(x g x f +的公因式.即)()(|)(x g x f x p 且)()(|)(x g x f x p +.由)(x p 的不可约性及)()(|)(x g x f x p ,有)(|)(x f x p 或)(|)(x g x p .若)(|)(x f x p ,又)()(|)(x g x f x p +,因此有)]())()([(|)(x f x g x f x p -+,即)(|)(x g x p ,也即)(x p为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.类似可得当)(|)(x g x p 时也与已知1))(),((=x g x f 矛盾.所以.1))()(),()((=+x g x f x g x f15.求下列多项式的公共根:解法一:利用因式分解可得因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 解法二:运用辗转相除法求出)(x f 与)(x g 的最大公因式,最大公因式的根即为所求的公共根.因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 16.判别下列多项式有无重因式:1);84275)(2345-+-+-=x x x x x x f解:,4421205)('234+-+-=x x x x x f运用辗转相除法可得.)2(44))('),((22-=+-=x x x x f x f 因此2-x 为)(x f 的三重因式.解法二:试根可得2为)(x f 的根)1()2()2()2()43)(2()(23232234++-=----=++--=x x x x x x x x x x x x f .因此2-x 为)(x f 的三重因式.2).344)(24--+=x x x x f解:).12(4484)('33-+=-+=x x x x x f 1))('),((=x f x f .故)(x f 无重因式.17.求t 值使13)(23-+-=tx x x x f 有重根.解法一:要使)(x f 有重根,则1))('),((≠x f x f ..63)('2t x x x f +-= 当,033=-t 即3=t 时 ),(|)(',)1(3363)('22x f x f x x x x f -=+-=2)1())('),((-=x x f x f ,因此1为)(x f 的三重根.当0415=+t ,即415-=t 时,21))('),((+=x x f x f ,21-为)(x f 的二重根. 解法二:设b a x ab a x b a x b x a x x f 22232)2()2()()()(-+++-=--=.因此有由第一个方程有a b 26-=,代人第三个方程有,0132,1)23(232=+-=-a a a a 即 0)12()1(2=+-a a .因此有⎪⎩⎪⎨⎧===,3,1,1t b a 或⎪⎪⎩⎪⎪⎨⎧-==-=.415,4,21t b a即当3=t 时1为)(x f 的三重根;当415-=t 时,21-为)(x f 的二重根. 18.求多项式q px x ++3有重根的条件.解:令q px x x f ++=3)(.显然当0==q p 时,0为)(x f 的三重根.当0≠p 时, p x x f +=23)(',q x p x xf q px x x f ++=++=32)('31)(3, )427()42729)(32()('222p q p p q x p q x p x f ++-+=. 要使)(x f 有重根,则1))('),((≠x f x f .即,042722=+pq p 即.027423=+q p 显然 0==q p 也满足.027423=+q p 因此)(x f 有重根的条件是.027423=+q p19.如果,1|)1(242++-Bx Ax x 求.,B A解法一:利用整除判定方法,1|)1(242++-Bx Ax x 的充要条件是用2)1(-x 除124++Bx Ax ,余式为零.)31()42()32()1(12224B A x A B A B Ax Ax x Bx Ax --++++++-=++.因此有0)31()42(=--++B A x A B ,即解法二:要使1|)1(242++-Bx Ax x 成立,则1至少是124++Bx Ax 的二重根.因此1既是124++Bx Ax 的根,也是其导数的根.而Bx Ax Bx Ax 24)'1(324+=++.故有解法三:利用待定系数法.令D x D C x D C A x A C Ax D Cx Ax x Bx Ax +-++-+-+=++-=++)2()2()2()()1(12342224因此有⎪⎪⎩⎪⎪⎨⎧==-=+-=-.1,02,2,02D D C B D C A A C 解得⎪⎪⎩⎪⎪⎨⎧==-==.1,2,2,1D C B A 20.证明:!!212n x x x n++++ 不能有重根. 证明:令,!!21)(2n x x x x f n++++= 则 因此有,!)(')(n x x f x f n +=从而有)!),('())('),((n x x f x f x f n =.!n x n因式只有)0(≠c c 及)1,0(n k c cx k ≤≤≠.而)1,0(n k c cx k ≤≤≠显然不是)('x f 的因式.因此有1)!),('())('),((==n x x f x f x f n. 所以)(x f 没有重根.21.如果a 是)('''x f 的一个k 重根,证明a 是的一个3+k 重根.证明:显然有0)(")(')(===a g a g a g .由a 是)('''x f 的一个k 重根可得a 是)(''x g 的一个1+k 重根,设a 是)(x g 的s 重根,则3,12+=+=-k s k s .本题常见错误证法.错误证法一:由a 是)('''x f 的一个k 重根就得出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根,于是 从而a 是)(x g 的3+k 重根.事实上,由a 是)('''x f 的一个k 重根推不出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根.如3)()()()(23+-+-+-=+a x a x a x x f k ,则1)(2))(3()('2+-+-+=+a x a x k x f k , 2))(2)(3()(''1+-++=+k a x k k x f .a 既不是)(x f 的根,也不是)('x f 与)(''x f 的根.错误证法二:由得出a 是)(''x g 的1+k 重根,直接得出a 是)(x g 的3+k 重根,缺了a 是)(x g 与)('x g 的根验证.22.证明:0x 是)(x f 的k 重根的充分必要条件是,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k证明:必要性.设0x 是)(x f 的k 重根,从而0x x -是)(x f 的k 重因式,从而是)('x f 的1-k 重因式,是)(''x f 的2-k 重因式,...,是)()1(x f k -的单因式,而不是)()(x f k 的因式.因此0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.故有,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k充分性.由,0)()(')(0)1(00====-x f x f x f k 而0)(0)(≠x f k 可知0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.因此0x 是)()1(x f k -的单根,是)()2(x f k -二重根,依此类推,是)(x f 的k 重根.23.举例说明断语“如果α是)('x f 的m 重根,那么α是)(x f 的1+m 重根”是不对的.解:例如2)()(1+-=+m x x f α,m x m x f ))(1()('α-+=.α是)('x f 的m 重根,但α不是)(x f 的根.24.证明:如果),(|)1(n x f x -那么)(|)1(n n x f x -.证明:由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 因此有 ),()1()(x h x x f -=从而有).()1()(n n n x h x x f -=即)(|)1(n n x f x -.证法二:要证)(|)1(n n x f x -,只要证1-n x 在复数域上的各个根都是)(n x f 的根.1-n x 的根为.1,,2,1,0,2sin 2cos -=+=n k nk i n k x k ππ由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 从而0)1()(==f x f n k .即,2sin 2cos nk i n k x k ππ+= 1,,2,1,0-=n k 都是)(n x f 的根.因此有)(|)1(n n x f x -.25.证明:如果)()(|)1(32312x xf x f x x +++,那么证明:要证)(|)1(),(|)1(21x f x x f x --成立,只要证1是)(1x f 和)(2x f 的根. 12++x x 的两个根为231,23121i i --=+-=εε.由)()(|)1(32312x xf x f x x +++可得)()1()()(23231x g x x x xf x f ++=+.于是 即0)1(231)1(,0)1(231)1(2121=+-=--f i f f i f .故有.0)1()1(21==f f 所以 )(|)1(),(|)1(21x f x x f x --.26.求多项式1-n x 在复数范围内和在实数范围内的因式分解.解:1-n x 的根为.1,,2,1,0,2sin 2cos-=+=n k nk i n k k ππε故在复数范围内的分解式为)())()(1(112-----=-n n x x x x x εεε . 在实数范围内,因k n k -=εε,)0(n k <<.当n 为奇数时,1-n x 的根中一个为实根,其余为虚根,其分解式为 ]1)([]1)(][1)()[1(12121222212++-++-++--=-+---x x x x x x x x n n n n n εεεεεε .当n 为偶数时,1-n x 的根中二个为实根,即,1±其余为虚根,其分解式为27.求下列多项式的有理根.1);1415623-+-x x x解:多项式可能的有理根为.14,7,2,1±±±±由系数取值可知,x 取负数时,多项式的值均为负的,故该多项式没有负根.检验得2为其根,进一步运用综合除法可得即)74)(2(14156223+--=-+-x x x x x x ,显然742+-x x 没有有理根.因此1415623-+-x x x 仅有一个有理根2,且为单根.2);157424---x x x解:多项式可能的有理根为.41,21,1±±± 因此有)1()12()444()21(1574222224--+=--+=---x x x x x x x x x , 显然12--x x 没有有理根.因此21-为157424---x x x 的二重根. 3).3111462345----+x x x x x解:多项式可能的有理根为.3,1±±检验得1-为其根,进一步运用综合除法可得故)3()1()12)(3()1(3111464222345-+=++-+=----+x x x x x x x x x x x .即1-为其四重跟,3为单根.28.下列多项式在有理数域上是否可约?1);12+x解:显然12+x 无有理根,又为二次的,故在有理数域上不可约. 2);2128234++-x x x解:取素数2=p ,满足艾森斯坦判别法的条件,因此在有理数域上不可约.3);136++x x解:令,1+=y x).(3918211561)1()1(1)(234563636y g y y y y y y y y x x x f =++++++=++++=++=取素数,3=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.4)p px x p ,1++为奇素数;解:令1-=y x ,由p 为奇数可得由组合数定义)11(-≤≤p k C k p 均为整数,且12)1()1()1(⋅-+--= k k k p p p C k p ,分子中有因子p ,分母个各数均小于p ,又p 为素数,因此约分时p 不会被约去,因此有k pC p |,取素数为p ,)(y g 满足艾森斯坦判别式条件,因此)(y g 在有理数域上不可约,从而)(x f 在有理数域上不可约.5)k kx x ,144++为整数.解:令,1+=y x 则有取素数,2=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.。
高等代数课后习题1-5章答案

高等代数课后习题1-5章答案高等代数是大学数学中的一门重要基础课程,对于数学专业的学生来说,掌握这门课程的知识和解题技巧至关重要。
在学习过程中,课后习题是巩固知识、提高能力的重要途径。
下面,我将为大家详细解答高等代数 1-5 章的课后习题。
第一章主要介绍了多项式的基本概念和运算。
在这一章的习题中,我们经常会遇到多项式的整除、最大公因式、因式分解等问题。
例如,有这样一道题:设\(f(x)\)和\(g(x)\)是两个多项式,且\((f(x), g(x))= 1\),证明:对于任意的多项式\(h(x)\),都存在多项式\(u(x)\)和\(v(x)\),使得\(f(x)u(x) + g(x)v(x) =h(x)\)。
解答这道题,我们可以利用辗转相除法来求出\(f(x)\)和\(g(x)\)的最大公因式。
因为\((f(x), g(x))= 1\),所以存在\(u_1(x)\)和\(v_1(x)\),使得\(f(x)u_1(x) + g(x)v_1(x) = 1\)。
然后,将等式两边同时乘以\(h(x)\),得到\(f(x)(u_1(x)h(x))+ g(x)(v_1(x)h(x))= h(x)\),令\(u(x) = u_1(x)h(x)\),\(v(x) =v_1(x)h(x)\),即证明了结论。
第二章是行列式的相关内容。
行列式的计算是这一章的重点和难点。
比如,有一道求行列式值的题目:\(\begin{vmatrix} 2 & 1 & 3 \\ 1 &-1 & 2 \\ 3 & 2 & 1 \end{vmatrix}\)对于这道题,我们可以按照行列式的展开法则进行计算。
先按照第一行展开:\\begin{align}&\begin{vmatrix} 2 & 1 & 3 \\ 1 &-1 & 2 \\ 3 & 2 & 1 \end{vmatrix}\\=&2\times\begin{vmatrix} -1 & 2 \\ 2 & 1 \end{vmatrix}-1\times\begin{vmatrix} 1 & 2 \\ 3 & 1 \end{vmatrix}+3\times\begin{vmatrix} 1 &-1 \\ 3 & 2 \end{vmatrix}\\=&2\times(-1\times1 2\times2) 1\times(1\times1 2\times3) +3\times(1\times2 (-1)\times3)\\=&2\times(-5) 1\times(-5) + 3\times(5)\\=&-10 + 5 + 15\\=&10\end{align}\第三章是线性方程组。
高等代数_李海龙_习题第2章多项式

第二章 多项式2.1 一元多项式的定义和运算1. 设f (x ),g (x )和h (x )是实数域上的多项式.证明:若f (x )2 = x g (x )2+x h (x )2,那么 f (x ) = g (x ) = h (x ) = 0.证明概要:比较等式两边的次数可证.2. 求一组满足上一题中等式的不全为零的复系数多项式f (x ),g (x )和h (x ). 解:取f (x ) = 2ix ,g (x ) = i (x +1),h (x ) = x-1即可. 或取f (x ) = 0,g (x ) = 1,h (x ) = i 即可. 3. 证明:(1)(1)(1)1(1)2!!(1)()(1)!nnx x x x x n x n x x n n ---+-+-+---=-证明提示:用数学归纳法证之.2.2 多项式的整除性1. 求f (x )被g (x )除所得的商式和余式:(i) 14)(24--=x x x f ,13)(2--=x x x g(ii) 13)(235-+-=x x x x f ,23)(3+-=x x x g解:(i) 35)(,2)(2--=--=x x r x x x q(ii) 56)(,2)(22++=+=x x x r x x q2. 证明:kx f x )(|必要且只要)(|x f x证明:充分性显然.现证必要性.反证法:若x 不整除)(x f ,则c x xf x f +=)()(1,且0≠c .两边取k次方得k k c x xg x f +=)()(,其中0≠kc .于是x 不整除)(x f k .矛盾.故必要性成立.3. 令)(),(),(,)(2121x g x g x f x f 都是数域F 上的多项式,其中0)(1≠x f 且)()(21x g x g |)()(21x f x f ,)(1x f |)(1x g .证明:)(2x g |)(2x f .证明:反复应用整除定义即得证.4. 实数m,满足什么条件时多项式12++mx x 能够整除多项式q px x ++4?解:以12++mx x 除q px x ++4得一次余式.令余式为零得整除应满足的条件:当且仅当m m p 23-=且12-=m q 时,12++mx x |q px x ++4.5. 设F 是一个数域,F a ∈.证明:a x -整除nn a x -.解:因为1221()()n n n n n n x a x a x ax a x a -----=-++⋅⋅⋅++6. 考虑有理数域上多项式 1)1)(2()1()(-+++++=n k n k x x x x fn k x x )1()2(++⋅⋅⋅+,这里n 和k 都是非负整数.证明:1+k x |1)1()()1(++++-n k x x f x .解:因为 1(1)()(1)k n x f x x ++-++1[2(1)]()(1)k n x x f x x ++=-+++nk x x )1()2(1+=+7. 证明:1-d x 整除1-nx 必要且只要d 整除n .证明:若d |n ,令md n =,则=-=-1)(1m d n x x )1(-dx ·)1)()((21++⋅⋅⋅++--dm d m d x x x .所以1-d x |1-n x .下面证必要性:反证法,若d 不整除n ,令r qd n +=,0≠r ,且0<r <d .于是111)1(-+-=-=-=-+rr r qdr qdrqd nx x x xx xxx)1()1(-+-=rqdr x xx .因1-qd x 可被1-d x 整除,故)1(-qdrx x 可被1-d x 整除.即1-r x 是1-n x 被1-d x 除所得的余式.因r <d ,0≠r .所以与1-n x 可被1-dx 整除相矛盾.2.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式:(i)32103)(,343)(23234-++=---+=x x x x g x x x x x f ;(ii) i x i x i x i x x f ----+-+-+=1)21()42()22()(234;x i x x g -+-+=1)21()(2.解: (i) 3),(+=x g f ; (ii)i x i x g f -+-+=1)21(),(2.2. 设)()()(1x f x d x f =,)()()(1x g x d x g =.证明:若)())(),((x d x g x f =,且)(x f 和)(x g 不全为零,则1))(),((=x g x f ,反之,若1))(),((=x g x f ,则)(x d 是)(x f 与)(x g 的一个最大公因式.解:由本节定理2.3.2及2.3.3得证(常当作定理).3. 令)(x f 与)(x g 是][x F 的多项式,而a ,b ,c ,d 是F 中的数,并且0≠-bc ad .证明:))(),(())()(),()((x g x f x dg x cf x bg x af =++.证明:设)()()(1x bg x af x f +=)()()(1x dg x cf x g +=,=)(x d))(),((x g x f .易知)(x d |)(x f ,)(x d |)(x g ,从而)(x d |)(1x f ,)(x d |)(1x g .即)(x d 是)(1x f ,)(1x g 的一个公因式.再设)(x ϕ是)(1x f ,)(1x g 的任一公因式.则由定义知)(x ϕ|)(1x f ,)(x ϕ|)(1x g ,由)(x f ,)(x g 之所设及0≠-bc ad ,可解得)()()(11x g bcad b x f bcad d x f ---=)()()(11x g bcad a x f bcad c x g ----=从而可知)(x ϕ|)(x f ,)(x ϕ|)(x g .既)(x ϕ是)(x f 、)(x g 的一个公因式,所以)(x ϕ|)(x d .由定义知))(),(()(11x g x f x d =.4. 证明:(i) h g f ),(是fh 和gh 的最大公因式;(ii) ( f 1 , g 1 )( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ) 此处f ,g ,h 都是F [x ]的多项式. 证明:(i) 设( f , g ) = d , 则d | f ,d | g .所以dh | fh ,dh | gh .又有u ,v 使uf + vg = d .于是ufh + vgh = dh .所以dh 是fh ,gh 的一个最大公因式.(ii)设( f 1 , g 1 ) = d 1,( f 2 , g 2 ) = d 1,则d 1d 2同时整除f 1f 2,f 1g 2,g 1f 2,g 1g 2.d 1d 2是它们的一个公因式,另设ϕ是f 1f 2,f 1g 2,f 2g 1,g 1g 2的任一公因式,那么就有ϕ| ( f 1f 2 , f 1g 2 ),( f 1f 2 , f 1g 2 ) = f 1( f 2 , g 2 ) = f 1d 1.ϕ| ( f 2g 1 , g 1g 2 ),( f 2g 1 , g 1g 2 ) = g 1 ( f 2 , g 2 ) = g 1d 2.所以ϕ| ( d 2g 1 , f 1d 2 ),而( d 2g 1 , f 1d 2 ) = d 2 ( f 1 , g 1 ) = d 1d 2.既ϕ| d 2d 1.故有( f 1 , g 1 ) ( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ).5. 设432()242f x x x x x =+---,432()2f x x x x x =+--2-都是有理数Q 域上的多项式.求u (x ),][)(x Q x v ∈使得))(),(()()()()(x g xd f x v x g x u x f =+. 解:u (x )=-x-1,v (x )=x +2.6. 设(f , g )=1.令n 是任意正整数,证明:( f , g n) = 1.由此进一步证明,对于任意正整数m ,n ,都有( f m , g n ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,则vg = 1- uf ,两边n 次方得v n g n = ( 1- uf )n = 1+ u 1f .所以v n g n = ( 1- uf )n = 1 + u 1f - u 1f + v n g n = 1.从而 -u 1f + v n g n = 1,( f , g n ) = 1.固定g n,同理可证( f m, g n) = 1.7. 设( f , g ) = 1.证明:( f , f + g ) = ( f + g , g ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,进而有( u – v ) f + v ( g + f ) = 1, 所以( f , g + f ) = 1.同理( g + f , g ) = 1利用互素性质得( f g , f + g ) = 18. 证明:对于任意正整数n 都有( f , g )n = ( f n , g n ).证明:设( f , g )=d ,则f = df 1 ,g = dg 1,且( f 1 , g 1 ) = 1由上面第6题知 ( f 1n , g 1n) = 1,从而存在u ,v 使uf 1n+ vg 1n= 1.所以uf 1nd n+ vg 1nd n= d n,既uf n+ vg n= d n.又d n|f n,d n |g n .所以( f , g )n = d n = ( f n , g n ).9. 证明:若是f ( x )与g ( x )互素,并且的次数都大于0.那么定理2.3.3里的可以如此选取,u ( x )次数低于g ( x )的次数,v ( x )次数低于f ( x )的次数,并且这样的u ( x )与v ( x )是唯一的.证明:因为, 所以有u 1 ( x ),v 1 ( x )使u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,因))((x f ∂︒> 0,))((x g ∂︒> 0.所以f ( x )不整除v 1 ( x )及g ( x ) 不整除 u 1 ( x ).现以f ( x )除v 1( x ),得商式为q 1 ( x ),余式为v ( x ),则有v 1 ( x ) = f ( x ) q 1 ( x ) + v ( x ),其中))((x v ∂︒< ))((x f ∂︒.同理有u 1 ( x ) = g ( x ) q 2 ( x ) + u ( x ).其中))((x u ∂︒< ))((x g ∂︒.代入u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,得( g ( x ) q 2 ( x ) + u ( x ) ) f ( x ) + ( f ( x ) q 1 ( x ) + v ( x ) ) g ( x ) = 1.整理得u ( x ) f ( x ) + v ( x ) g ( x ) + [ q 1 ( x ) + q 2 ( x ) ] f ( x ) g ( x ) = 1.因为))()((x f x u ∂︒< ))()((x g x f ∂︒,))()((x g x v ∂︒< ))()((x g x f ∂︒,所以必有q 1 ( x ) + q 2 ( x ) = 0.即u ( x ) f ( x ) + v ( x ) g ( x ) = 1,且满足))((x u ∂︒< ))((x g ∂︒,))((x v ∂︒< ))((x f ∂︒.下面证唯一性 设另有u 2 ( x ) , v 2 ( x ) 满足u 2 ( x ) f ( x ) + v 2(x ) g (x ) = 1,及))((2x u ∂︒<))((x g ∂︒,))((2x v ∂︒<))((x f ∂︒.则有 ( u ( x ) - u 2 ( x ) ) f ( x ) = ( v 2 ( x ) – v ( x )) g ( x ).故f ( x )| ( v 2 ( x ) - v ( x ) ) g ( x ).又( f ( x ) , g ( x ) ) = 1,从而.如果v 2 ( x ) -0)(≠x v ,其次数一定低于f ( x )的次数,故只有v 2 ( x ) - v ( x ) = 0.既v 2 ( x ) = v ( x ).同理u ( x ) = u 2 ( x ).10.决定k ,使2(6)42x k x k ++++与2(2)2x k x k +++的最大公因式是一次的.解:设=24)6(2++++k x k x , g (x )= k x k x 2)2(2+++,以g ( x ) 除 f ( x ) 得余式4x +2k + 2.由题意4x + 2k + 2 | g ( x ),由此推出k = 1或k = 3.11.证明:如果 ( f ( x ) , g ( x ) ) =1,那么对于任意正整数m ,( f ( x m ) , g ( x m ) ) =1 证明:因为 ( f ( x ) , g ( x ) ) =1,所以u ( x ),v ( x ),满足u ( x ) f ( x ) + v ( x ) g ( x ) = 1.从而u ( x m) f ( x m) + v ( x m) g ( x m) = 1,此即是 ( f ( x m) , g ( x m) ) =1.12.设f ( x ) , g ( x )是数域F 上的多项式.f ( x )与g ( x )的最小公陪式指的是F [x ]中满足以下条件的一个多项式m ( x ):(a) f (x ) | m (x ) 且 g (x ) | m (x );(b) h (x )∈F [x ] 且 f (x ) | h (x ),g (x ) | h (x ),那么m (x ) | h (x ).(i) 证明: F [x ]中任意两个多项式都有最小公倍式,并且除了可能的零次因式差别外,是唯一的.(ii)设f (x ), g (x )都是最高次项系数是1的多项式.令[ f (x ), g (x )]表示 f (x )与g (x )的最高次项系数是1的那个最小公倍式.证明: f (x ) g (x )= (f (x ) , g (x )) [ f (x ), g (x )].证明:(i) 若f (x ) , g (x )有一个为0,则它门的最小公倍式是0.现设f (x )0≠, g (x )0≠.以d (x )记(f (x ) , g (x )).则f (x ) = d (x ) f 1(x ),g (x ) = d (x )g 1(x ),且(f 1(x ) , g 1(x )) =1.现证)()()(x d x g x f 是f (x ),g (x )的一个最小公倍式.首先由)()()(x d x g x f = f 1(x ) g (x )= f (x )g 1(x ),知其是f (x )与g (x )的一个公倍式.另设M (x )是f (x )与g (x )的任一公倍式,则有M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )及M (x )=g (x )t (x )= d (x ) g 1 (x )t (x ),消去d (x ),得f 1(x ) s (x ) = g 1 (x )t (x ).又(f 1(x ) , g 1(x )) =1,由此可得g 1 (x )|s (x ),令s (x )= g 1 (x ) s 1(x ).代入M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )得M (x )= d (x ) f 1 (x )g 1 (x )s 1(x )=s 1(x ))()()(x d x g x f .即)()()(x d x g x f | M (x ),即)()()(x d x g x f 是f (x ) , g (x )的一个最小公倍式.从而存在性得证.现证唯一性:若m 1(x ),m 2(x )都是f 1(x ) , g 1(x )的最小公倍式,由定义得m 1(x )|m 2(x )及m 2(x )|m 1(x ).所以m 1(x ),m 2(x )只相差一个常数因子.(ii)由(i)的证明,知当f 1(x ) , g 1(x )的最高次项系数都是1时,有f (x ) g (x )= (f (x ) , g (x )) [f (x ) , g (x )].13.设g (x )|)()(1x f x f n ⋅⋅⋅,并且(f i (x ), g (x )) =1, i =1,1,,2-⋅⋅⋅n . 证明 g (x ) | f n (x ). 证明:令11()()()n h x f x f x -= ,由(f 1(x ), g (x ))=1. ( f 2(x ), g (x ))=1,所以(f 1(x ) f 2(x ),g (x ))=1,进而可证得(h (x ), g (x ))=1又g (x ) | h (x )f n (x ),所以g (x ) | f n (x ).14.设][)(,),(1x F x f x f n ∈⋅⋅⋅.证明:(i) ()(,),(1x f x f n ⋅⋅⋅)=(()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)), 1≤k ≤n -1.(ii))(,),(1x f x f n ⋅⋅⋅互素的充要条件是存在多项式][)(,),(1x F x u x u n ∈⋅⋅⋅使得1)()()()(11=+⋅⋅⋅+x u x f x u x f n n证明:(i) 设d (x ) = ( ()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)),有d (x ) |()(,),(1x f x f k ⋅⋅⋅), d (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步有d (x ) | f i (x ), i =1,n ,,2⋅⋅⋅.另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,h (x ) |()(,),(1x f x f k ⋅⋅⋅) 及h (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步h (x ) | ( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = d (x ).所以( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = ()(,),(1x f x f n ⋅⋅⋅).(ii)充分性:若有)(,),(1x u x u n ⋅⋅⋅使+⋅⋅⋅+)()(11x u x f1)()(=x u x f n n ,另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,则有h (x )|1.从而)(,),(1x f x f n ⋅⋅⋅互素.必要性:若(f 1(x ), f 2(x ))= d 2(x ),则由定理2.3.2有u 11(x ) ,u 12(x ) ,使u 11(x )f 1(x )+ u 12(x ) f 2(x )= d 2(x ),则由定理2.3.2可以假设对于s -1个多项式是成立的.即当d s-1(x ) = ()(,),(11x f x f s -⋅⋅⋅)时,有u 11(x ,),⋅⋅⋅u 1s-1(x ),使得∑-=111)()(s i i ix f x u=d s-1(x ).则对于s 个多项式来说,由()(,),(1x f x f s ⋅⋅⋅)= (()(,),(11x f x f s -⋅⋅⋅), f s (x ))= ( d s-1(x ) , f s (x )).知有p (x ), q (x )使p (x )d s-1(x ) + q (x ) f s (x ) = ( d s-1(x ) , f (x )),以d s-1(x )的上述表示式代入,则得∑-=111)()(s i i ix f x u+ q (x ) f s (x ) = ( d s-1(x ) , f (x )),.即有p (x )u 11(x ,),⋅⋅⋅p (x )u 1s-1(x ) , q (x ),使∑-=111)())()((s i i ix f x ux q +p (x ) f s (x ) = ()(,),(1x f x f s ⋅⋅⋅)()(,),(1x f x f s ⋅⋅⋅)=1时,令p (x )=1,s =n 其中u 1(x )= p (x ) u 11(x ,),⋅⋅⋅u 1s (x ) = p (x )u 1s (x ) 则本题必要性得证. 15.设][)(,),(1x F x f x f n ∈⋅⋅⋅.令I ={+⋅⋅⋅+)()(11x g x f f n (x ) g n (x )|][)(x F x g i ∈, 1≤i ≤n } .比照定理1.4.2,证明:)(,),(1x f x f n ⋅⋅⋅有最大公因式.[提示:如果)(,),(1x f x f n ⋅⋅⋅不全为零,取d (x )是中次数最底的一个多项式,则d (x )就是)(,),(1x f x f n ⋅⋅⋅的一个最大公因式.] 证明:如果0)()(1==⋅⋅⋅=x f x f n ,则0就是它们的最大公因式.如不全为0,则I 中 有非零多项式.设d (x )是I 中次数最低的一个多项式.以d (x )除f (x ),得.其中r 1=0,或∂︒( r 1 (x ))< ∂︒( d (x )).由于r 1 (x )= f 1(x )- q 1 (x )d (x ),可以推得r 1 (x )∈I ,而d (x )是I 中次数最底的,故r 1 (x ) =0.所以d (x )|f 1(x ),同理d (x )|f 2(x )⋅⋅⋅,,d (x )|f n (x ).即d (x ) 是)(,),(1x f x f n ⋅⋅⋅的一个公因式,又因是它们的组合,故d (x ) 就是)(,),(1x f x f n ⋅⋅⋅的最大公因式.2.4 多项式的分解1. 在有理数域上分解以下多项式为不可约因式的乘积:(i) 3x 2+1; (ii) x 3-2x 2-2x +1.解: (i) 不可约. (ii) (x +1) (x 2-3x +1)2. 分别在复数域,实数域和有理数域上分解多项式x 4+1为不可约因式的乘积.解:在复数域上有x 4+1= (x +22(1+i )) (x +22(1+i )) (x -22(1-i )) (x -22(1-i ));在实数域上有x 4+1=( x 2+2x +1) (x 2-2x +1);在有理数域上x 4+1 不可约3. 证明:g (x )2|f (x )2,当且仅当g (x )|f (x ).证明:充分性显然.现证必要性,即若g (x )2|f (x )2,那么g (x )|f (x ).若f (x )= g (x ) =0,则有g (x )|f (x ).如果f (x ), g (x )不全为0,令d (x )=(f (x ), g (x )).则f (x )=d (x )f 1(x ), g (x )=d (x )g 1(x ),且(f 1(x ), g 1(x ))=1.那么f (x )2=d (x )2f 1(x )2, g (x )2=d (x )2g (x )2,故由g (x )2|f (x )2,可得g 1(x )2|f 1(x )2,故g 1(x )|f 1(x )2,又(f 1(x ) , g 1(x ) ) =1,根据互素多项式的性质知g 1(x )|f 1(x ),从而g 1(x ) = c f 1(x ), (c 为非零常数).于是g (x )|f (x ).4. (i)求f (x )= x 5-x 4-2x 3+2x 2+x -1在Q (x )内的典型分解式;(ii)求f (x )= 2x 5-10x 4+16x 3-16x 2+14x -6在R (x )内的典型分解式. 解: (i) f (x )= (x-1)3(x +1)2 ; (ii) f (x )= 2(x-1)2(x-3)(x 2+1)5. 证明:数域F 上一个次数大于零的多项式f (x )是F [x ]中某一不可约多项式的幂的充分必要条件是对于任意g (x )∈F [x ],或者(f (x ), g (x )) =1,或者存在一个正整数m 使得f (x )|g (x )m . 证明:必要性:设f (x ) = p m (x ) ( p (x )不可约) ,则对于F [x ]中的任意g (x ),只有两种可能:(p (x ),g(x ))=1或 p (x )|g(x ).在前一情形有( f (x ),g (x ) )=1,在后一情形有p m (x ) |g m (x ),即f (x ) |g (x )m .充分性:设f (x )=1()i sri i a p x =∏为其典型分解式.令g (x )=p 1(x ).若 s >1,则(p (x ), g (x ))≠1,且f (x )不整除g (x )m,即条件成立时,必有s =1,即f (x )= 11()rap x .6. 设p (x )是F [x ]中一个次数大于零的多项式.如果对于任意f (x ), g (x )∈F [x ],只要p (x )|f (x )g(x )就有p (x )| f (x )或p (x )| g(x ),那么p (x )不可约.证明:反证法,若)(x p 可约,设)()()(21x p x p x p =,其中)(),(21x p x p 的次数都低于)(x p 的次数.由)()(|)(21x p x p x p ,根据条件可得出)(|)(1x p x p 或)(|)(2x p x p ,这是不可能的.2.5 重因式1. 证明下列关于多项式的导数的公式: a) )(')('))'()((x g x f x g x f +=+; b))(')()()('))'()((x g x f x g x f x g x f +=提示:设10()n n f x a x a x a =+++ ,10()mm g x b x b x b =+++ 利用本教材中对导数的定义证之.2. 设)(x p 是)(x f 的导数)('x f 的1-k 重因式.证明: a) )(x p 未必是)(x f 的k 重因式;b))(x p 是)(x f 的k 重因式的充分必要条件是)(|)(x f x p证明:a) 设4)(3+=x x f ,则x 是x x f 3)('=的二重因式,但不是)(x f 的因式,更不是)(x f 的三重因式.b) 必要性显然;充分性,设)(x p 是)(x f 的s 重因式,则)(x p 是)('x f 的1-s 重因式.11-=-k s 即得出.3. 证明有理系数多项式!!21)(2n xxx x f n++++= 没有重因式.证明:因为)!1(!21)('12-++++=-n xxx x f n ,有1),'(=f f .4. a,b 应该满足什么条件,下列的有理系数多项式才能有重因式?a) b ax x ++33b) b ax x ++44提示:由多项式有重因式的充要条件是它与它的导数不互素可得.a) 0423=+b a ; b)02734=-b a .5. 证明:数域F 上的一个n 次多项式)(x f 能被它的导数整除的充分必要条件是:nb x a x f )()(-=,这里a,b 是F 中的数.证明:若nb x a x f )()(-=,则1)()('--=n b x an x f ,0>n ,所以)(1)(')(a x nx f x f -⋅=,)(|)('x f x f .必要性:设)(x f 的典型分解式为)()()(11x p x ap x f tm t m =,其中)(x p i 都是不可约多项式,则)()()()('1111x x p x p x f tm t m ϕ--= .由)(|)('x f x f ,知c x =)(ϕ(常数),但))((1))('(x f x f ∂︒=+∂︒.故知t =1,且n x p =∂︒))((1.即nb x a x f )()(-=.2.6 多项式函数 多项式的根1.设f (x )=2x 5-3x 4-5x 3+1.求f (3),f (-2). 解: f (3) =109; f (-2) =-71.2.数环R 的一个数c 说是f (x )∈R(x )的一个k 重根,如果f (x )可以被(x -c )k整除,但不能被(x -c )k +1整除.判断5是不是多项式f (x )=3x 5-224x 3+742x 2+5x +50的根.如果是的话,是几重根?提示:用3次综合除法得:5是f (x ) 的二重根. 3.设2x 3-x 2+3x -5=a (x -2)3+b (x -2)2+c (x -2)+d .求a,b,c,d . 提示:应用综合除法得:a =2, b =11, c =23, d =13. 4.将下列多项式f (x )表成x-a 的多项式. a) f (x )= x 5,a =1; b) f (x )=x 4-2x 2+3,a =-2. 解:用综合除法求出:a) f (x )= x 5=(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1)+1; b) f (x )=x 4-2x 2+3=(x +2)4-8(x +2)3+22(x +2)2+24(x +2)+11. 5.求一次数小于4的多项式,使f (2)=3,f (3)=-1,f (4)=0,f (5)=2.解:f (x )= -32x 3+217x 2-6203x +426.求一个2次多项式,使它在x =0,,2ππ处于函数 sin x 有相同的值.结果:24()()f x x x ππ=--7.令f (x ) , g (x ),是两个多项式,并且f (x 3) +x g (x 3)可以被x 2+x +1.证明: f (1) = g (1) =0.证明: 因x 2+x +1| f (x 3) +x g (x 3).故x 2+x +1=0的根必为f (x 3) +x g (x 3)的根.而x 2+x +1=0的两个根是2,231ωωi+-=.但3ω=1.故有2(1)(1)0(1)(1)0f g f g ωω+=⎧⎨+=⎩,解此方程组得:f (1) = g (1) =0.8.令c 是一个复数,且是Q [x ]中一个非零多项式的根.令J ={ f (x )∈Q [x ] | f (c ) = 0}.证明:a)在J 中存在唯一的高次项系数是1的多项式p (x ),使得J 中每一多项式f (x )都可以写成p (x )q (x )的形式,这里q (x )∈Q [x ].b) p (x )在Q [x ]中不可约.如果c =32+,求上述的p (x ).证明: a) 因c 是Q [x ]中一个非零多项式的根,则J 中存在次数大于零的多项式,即令A ={ m |f (x )∈J ,∂︒( f (x ))=m }非空. A 中必有最小数设为n (n >0).其对应的多项式若为f (x ),令p (x )=1a f (x ), (a 0是f (x )的最高次项系数),则11()n n n p x x a xa -=+++ .现证当f (x ) ∈J 时,必有f (x ) =p (x )q (x ).对于任意的f (x )∈J ,由p (x )的取法知∂︒( f (x )) ≥∂︒(p (x )).以p (x )除f (x )得f (x )=p (x )q (x )+r (x ),其中r (x )=0或∂︒( r (x )) <∂︒(p (x )).由于r (c )=f (c )-p (c )q (c )=0,故知r (x )∈J . 由p (x )的取法知r (x )的次数不可能小于p (x )的次数.故只有r (x )=0,即f (x ) = p (x )q (x ).再证的唯一性.设另有p 1(x )具有上述性质,则p (x )| p 1(x )且p 1(x ) | p (x ).所以p 1(x ) = c p (x ).又首项系数都为1,故c =1,即p 1(x ) = p (x ).b) 反证法:设p (x )可约,令p (x )=p 1(x ) p 2(x ),知p 1(x )与p 2(x )的次数都小于p (x )的次数.又p (c )=p 1(c )p 2(c )=0,知p 1(c )=0或p 2(c )=0从而p 1(c )或p 2(c ) ∈J ,这与p (x )是J 中次数最低的多项式相矛盾.故p (x )不可约.若c =32+,则p (x )=(x -32+)(x +32+)(x -32-) (x +32-).9.设C [x ]中多项式f (x )≠0且f (x )| f (x n),n 是一个对于1的整数.证明: f (x )的根只能是零或单位根.证明: 因f (x )| f (x n),所以f (x n)= f (x )g (x ), g (x )∈C [x ].如果c 是f (x )的根,即f (c )=0则f (nc)=f (c )g (c )=0, f (2nc)= f (nc) g (nc)=0,, f (knc)= f (1-k nc) g (1-k nc)=0.由于, f (x )在C 中至多有n 个不同的根,故有i <j ,使jnc =inc ,所以c =0或1.即c =0或c 是单位根.2.7 复数和实数域上多项式1.设n 次多项式n n na x a x a x f +++=-10)( 的根是n αα,,1 .a) 求以n c c αα,,1 为根的多项式,这里c 是一个数;b) 以na 1,,11 α(假定0,,1≠n αα )为根的多项式.解:a) 若c =0,则n c c αα,,1 都为0,则g (x )= x n即是.若c ≠0,则令g (x )=)(1)(10n n na x a x a cc x f +++=- 为所求.b) 令g (x )= f (x 1)x n =nn n n x a x a x a +++--110 ,则g (x )是以na 1,,11α为根的多项式.2.设f (x )是一个多项式,用)(x f 表示把f (x )的系数分别换成它们的共轭数后所得多项式.证明:a) 若是g (x )|f (x ),那么)(x g |)(x f ;b) 若是d (x )是f (x )和)(x f 的一个最大公因式,并且d (x )的最高次项系数是1,那么d (x )是一个实系数多项式.证明: a) 因为g (x )|f (x ),所以f (x )= q (x )g (x ), )(x f =)(x q )(x g 从而)(x g |)(x f .b) 若d (x )=(f (x ),)(x f ),则有u (x ), v (x )使的u (x )f (x )+ v (x ))(x f =d (x ),所以)(x d =)(x u )(x f +)(x vf f (x ),另一方面,由d (x )|f (x ), d (x )|)(x f ,可得)(x d |f (x ),)(x d |)(x f ,所以)(x d =(f (x ), )(x f ).从而d (x )=)(x d ,即d (x )是实系数多项式.3.给出实系数四次多项式在实数域上所有不同类型的典型分解式. 解:共9种:a (x +b )4; a (x +b 1)(x +b 2)3; a (x +b 1)2(x +b 2)2;a (x +b 1)(x +b 2)(x +b 3)2; a (x +b 1)(x +b 2)(x +b 3)(x +b 4); a (x 2+px +q )2; a (x 2+p 1x +q 1)(x 2+p 2x +q 2) ; a (x +b )2(x 2+px +q );a (x +b 1)(x +b 2)(x 2+px +q ) . (其中二次式x 2+px +q 不可约).4.在复数和实数域上分解x n-2为不可约因式的乘积.解: 在复数域上: x n -2=(x -n2)(x -)2()21--n nnx εε ,其中22cossini nn ππε=+; 在实数域上:当n 为奇数, x n-2=(x -n2)(x 2-222(1)cos(2n x nnππ-+-+ ;当n 为偶数, x n - 2=(x -n 2)(x +n 2)(x 222(2)cos(cosn x nnππ-+- )4n+.5.证明:数域F 上任意一个不可约多项式在复数域内没有重根.证明:设p (x )是F 上不可约多项式,因多项式的最大公因式不因数域扩大而改变, 所以在复数域内仍有(p (x ),'p (x ))=1,故p (x )在复数域内没有重根.2.8 有理数域上多项式1.证明以下多项式在有理域上不可约: a) x 4-2x 3+8x -10; b) 2x 5+18x 4+6x 2+6 c) x 4-2x 3+2x -3d) x 6+x 3+1提示:用艾森斯坦判断法. a)取p =2; b)取p =3; c)令x =y +1, 则f (x )=g (y )=y 4+2y 3-2, 取 p =2得g (y )不可约,即f (x )不可约;d)令x =y +1,则f (x )=g (y )=(y +1)6+(y +1)3+1=y 6+6y 5+15y 4+21y 3+18y 2 +9y+3,取p =3,得g (y )不可约,即f (x )不可约. 2利用艾森斯坦判断法,证明:若是t p p p ,,,21 是t 个不相同的素数,而n 是一个大于1的整数,那么ntp p p 21是一个无理数.证明:考虑多项式x n-t p p p ,,,21 ,因t p p p ,,,21 互不相同,取p=p 1满足艾森斯坦判断法,知x n -t p p p ,,,21 在有理数域上不可约, 因n<1无有理根,.因而.3.设f (x )是一个整数系数多项式,证明:若是f (0)和f (1)都是奇数,那么f (x )不能有整数根. 证明:设α是f (x )的一个整数根.则f (x )=(x -a )f 1(x ).由综合除法知f 1(x )也是整系数多项式.所以f (0)= -a f 1(0), f (1)=(1-a ) f 1(1),这是不可能的.因为α与1-α中有一个是偶数.从而f (0)与f (1)至少有一个是偶数,与题设矛盾.故f (x )无整数根.4.求以下多项式的有理数根: a) x 3-6x 2+15x -14; b) 4x 4-7x 2-5x -1;c) x 5-x 4-25x 3+2x 2-21x -3.解: a)有理单根-2; b)二重有理根-21; c)有理单根-1,2.2.9 多元多项式1.写出一个数域F 上三元三次多项式的一般形式.解:f =000a +∑=++1k j i kj i ijkzy x a+∑=++2k j i kj i ijkzy x a+∑=++3k j i kj i ijkzy x a其中,a ijk ∈F.2.设 f (n x x ,,1 )是一个r 次齐次多项式.t 是任意数.证明:f (n tx tx ,,1 )=t r f (n x x ,,1 ).证明:可设),,(1n x x f ∑=++=ri i i i i i i i n nnxx x a12121.于是 ),,(1n tx tx f ∑=++=ri i i i i i i i n nntx tx tx a12121)()()(∑=+++++=r i i i i i i i i i i i n nnnxx x ta1212121∑=++=ri i i i i ri i i n nnxx x t a12121∑=++=ri i i i i i i i rn nnxx x at12121rt=),,(1n x x f3. 设f (n x x ,,1 )是数域F 上一个n 元齐次多项式,证明:如果f (n x x ,,1 )=g (n x x ,,1 )h (n x x ,,1 ),则g ,h 也是n 元齐次多项式.证明:反证法,设g ,h 至少有一个不是n 元齐次多项式,不妨设是h ,则s g g g g +++= 21,1≥s ,i g 是齐次多项式,t h h h h +++= 21,1>t ,jh 是齐次多项式,并且假设)()()(21s g g g ∂︒>>∂︒>∂︒ ,)()()(21t h h h ∂︒>>∂︒>∂︒ .则111112()()s t s tf ghg gh h g h g h g h ==++++=+++其中t s h g h g ,11都不能消去,与f 是齐次多项式矛盾.故,g h 都是齐次多项式. 4.把多项式x 3+y 3+z 3+3xyz 写成两个多项式的乘积. 原式=(x +y +z )3-3(x +y +z )(xy +yz +xz )= (x +y +z ) [(x +y +z )2-3 (xy + yz +xz )] = (x +y +z ) (x 2+y 2+z 2-xy -yz -zx ).5.设F 是数域. f ,g ∈F [n x x ,,1 ]是F 上n 元多项式. 如果存在h ∈F [n x x ,,1 ]使得f =gh ,那么就说g 是f 的一个因式.或者说g |f .a) 证明,每一f 都可以被零次多项式c 和cf 整除c ∈F , c ≠0.b) f ∈F [n x x ,,1 ]说是不可约的,如果除了a)中那种类型的因式外f 没有其它因式,证明在F [x ,y ]里多项式x ,y ,x +y ,x 2-y 都不可约.c) 举反例证明,当n ≥2时,类似于一元多项式的带余除法不成立.d) f ,g ∈F [n x x ,,1 ]说是互素的,如果除了零次多项式外,它们没有次数大于零的公因式.证明x ,y ∈F [x ,y ]是互素的多项式.能是否找到u (x ,y ), v (x ,y ) ∈F [x ,y ],使得x u (x ,y )+y v (x ,y )=1?证明: a)因为0c ≠,所以1111,,(,,),(,,)[n n c cf x x f x x F cc∈ 1,,]nx x ,而11111(,,)[(,,)][(,,)]n n n f x x c f x x cf x x cc==所以|c f ,11(,,)|(,,)n n cf x x f x x .b) 现证对于1[,,]n F x x ,任意一次多项式不可约.设f 是1[,,]n F x x 的一次多项式.若f gh =,由次数定理有1= ()()()fgh ∂︒=∂︒+∂︒.因而g 与h 中有一个是0次多项式,故f 不可约.所以,,x y x y +都不可约.因2x y -是一个非齐次的二次多项式,如可约,只能是2x y -=()()x ay x b ++.比较()()x a y x b ++与2x y -的系数有:0,0b a ==,且1ab =-,这是不可能的,故2x y -不可约.c)例:若(,),(,)f x y x g x y y ==,若存在(,),(,)x y r x y ϕ使(,)(,)x x y y r x y ϕ=+,应有(,)0r x y =或c (常数).这是不可能的.即对于二元多项式.带余除法定理不成立. d)因为x 的因式只有常数c 与cx ,而x 不是y 的因式,故x 与y 的公共因式只有常数c (且0c ≠),故x 与y 互素.因对任意(,),(,)u x y v x y ,(,)(,)xu x y yv x y +没有零次项,所以找不到(,),(,)u x y v x y 使(,)(,)xu x y yv x y +=1.2.10 对称多项式1. 写出某一数环R 上三元三次对称多项式的一般形式. 结果: a 300(x 3+y 3+z 3)+a 210(x 2y +x 2z +y 2x +y 2z +z 2x +z 2y )+a 200(x 2+ y 2+z 2)+a 110(xy +xz +yx )+a 100 (x+y+z )+a 111(xyz )+a 000其中,a ijk ∈F.2.令R [n x x ,,1 ]是数环R 上n 元多项式环, S 是由一切n 元对称多项式组成的R [n x x ,,1 ]的子集.证明存在R [n x x ,,1 ]到S 的一个双射.证明:设1,,n σσ 是1,,n x x 的初等对称多项式.对任意11(,,)[,,]n n f x x R x x ∈ 规定1:(,,)|n f x x τ→ 1(,,)n f σσ ,则1(,,)n f σσ 是S 中唯一确定的多项式.既τ是R [n x x ,,1 ]到S 的映射, 对任意的1(,,)n g x x S ∈ ,由对称多项式的基本定理,有唯一的1(,,)n h σσ 使11(,,)(,,)n n h g x x σσ= .这里1(,,)n h x x [F ∈ 1,,]n x x ,故111((,,))(,,)(,,)n n n h x x h g x x τσσ== .故τ是满射.如果11(,,)(,,)n n f x x g x x ≠ 那么11(,,)(,,)n n f g σσσσ≠ ,所以τ是单射.从而是R [n x x ,,1 ]到S 的一个双射3.把下列多元多项式表成初等对称多项式的多项式: a)∑231x x; b)∑41x; c)32221x x x∑;解: a) 2212213424σσσσσσ--+;b) 42211221344244σσσσσσσ-++-; c) 2314535σσσσσ-+;4.证明:如果一个三次多项式x 3+ax 2+bx +c 的一个根的平方等于其余两个根的平方和那么这个多项式的系数满足以下关系: 2324)22(2)2(c ab a b a a +-=-.证明:设,,αβγ是32x ax bx c -++的三个根.则由条件知(,,f αβγ=222()αβγ--222()βγα--222()γαβ--=0,把(,,)f αβγ用初等对称多项式表出,得(,,)f αβγ=64223211212131233688168σσσσσσσσσσσ-++-+=4211(σσ-32211232)2(22)σσσσσ-++-.因123,,a b c σσσ=-=-=,用它们代入上式得(,,)f αβγ=42(a a -322)2(22)b a ab c -+++=0所以42(a a 322)2(22)b a ab c -=++.5.设n αα,,1 是某一数域F 上多项式x n +a 1x n -1++ a n -1x +a n 在复数域内的全部根.证明:2,,n αα 的每一个对称多项式都可以表成F 上关于1α的多项式.证明:设f (2,,n αα )是关于2,,n αα 的任意一个对称多项式.由对称多项式的基本定理有211(,,)(',,')n n f a a g σσ-= ,其中'i σ(1,2,,1i n =- )是nαα,,2的初等对称多项式.由于111'a σσ=-,11''i i i a σσσ-=-(2,,1i n =- ) 其中i σ是n αα,,1 的初等对称多项式.又(1)ii i a σ=-(1,2,,1i n =- ),是数域F 中的数,将它们代入上式可知, 'i σ是1a 与中的数11,,n αα- 的一个多项式,不妨记为i p (11,,n αα- )='i σ(1,2,,1i n =- ),再将它们代入f g=式右端,即证明f (nαα,,2)可表为1a 与11,,n αα- 的多项式.由11,,n αα- 是F 中的数,即f (nαα,,2)是F 上关于1a 的多项式:1()G a .。
(完整版)高等代数多项式习题解答

第一章 多项式习题解答1.用)(x g 除)(x f ,求商)(x q 与余式)(x r .1)123)(,13)(223+-=---=x x x g x x x x f9731929269791437134373132131232223232----+----+----+-x x x x x x x x x x x x x x 92926)(,9731)(--=-=x x r x x q . 2)2)(,52)(24+-=+-=x x x g x x x f17525422225200222223232342342-++--+-+--+---+-+-+++-x x x x x x x xx x x x x x x x x x x x x x75)(,1)(2+-=-+=x x r x x x q .2.q p m ,,适合什么条件时,有1)q px x mx x ++-+32|1m x m q x p m mx m x m qx p mx x mx x q px x x mx x --++++--+++--++++-+)()1()1(01222223232 当且仅当m q p m ==++,012时q px x mx x ++-+32|1.本题也可用待定系数法求解.当q px x mx x ++-+32|1时,用12-+mx x 去除q px x ++3,余式为零,比较首项系数及常数项可得其商为q x -.于是有q x mq x q m x mx x q x q px x ++--+=-+-=++)1()()1)((2323.因此有m q p m ==++,012.2)q px x mx x ++++242|1由带余除法可得)1()2()1)(1(2222224m p q x m p m m p mx x mx x q px x --++--++-+-++=++ 当且仅当0)1()2()(22=--++--=m p q x m p m x r 时q px x mx x ++++242|1.即⎩⎨⎧=--+=--010)2(22m p q m p m ,即⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 本题也可用待定系数法求解.当q px x mx x ++++242|1时,用12++mx x 去除q px x ++24,余式为零,比较首项系数及常数项可得其商可设为q ax x ++2.于是有)1)((2224++++=++mx x q ax x q px x.)()1()(234q x mq a x q ma x a m x ++++++++=比较系数可得.0,1,0=+=++=+mq a p q ma a m 消去a 可得⎩⎨⎧=+=,1,0p q m 或⎩⎨⎧==+.1,22q m p 3.求)(x g 除)(x f 的商)(x q 与余式)(x r .1);3)(,852)(35+=--=x x g x x x x f解:运用综合除法可得327109391362327117083918605023---------商为109391362)(234+-+-=x x x x x q ,余式为.327)(-=x r2)i x x g x x x x f 21)(,)(23+-=--=.解:运用综合除法得:ii ii i i i 892521892421011121+----+-------商为)25(22i ix x +--,余式为i 89+-. 4.把)(x f 表成0x x -的方幂和,即表示成 +-+-+202010)()(x x c x x c c 的形式.1)1,)(05==x x x f ;2);2,32)(024-=+-=x x x x f3).1,73)1(2)(0234-=++-+-+=x i x x i ix x x f分析:假设)(x f 为n 次多项式,令])()()[()()()()(10021000202010--++-+-+=-++-+-+=n n nn x x c x x c c x x c x x c x x c x x c c x f0c 即为0x x -除)(x f 所得的余式,商为10021)()()(--++-+=n n x x c x x c c x q .类似可得1c 为0x x -除商)(x q 所得的余式,依次继续即可求得展开式的各项系数.解:1)解法一:应用综合除法得.5110141110416311563143211143211111111111100000115)(x x f =1)1(5)1(10)1(10)1(5)1(2345+-+-+-+-+-=x x x x x .解法二:把x 表示成1)1(+-x ,然后用二项式展开1)1(5)1(10)1(10)1(5)1(]1)1[(234555+-+-+-+-+-=+-=x x x x x x x2)仿上可得812226122412210412112082422128442302012-----------------432)2()2(8)2(22)2(2411)(+++-+++-=x x x x x f . 3)因为i iii i i i i i i i i i ii ii i i 2111510157104141173121-----------+-------+---- .)()(2))(1()(5)57(73)1(2)(432234i x i x i i x i i x i ix x i ix x x f +++-++-+-+=++-+-+=5.求)(x f 与)(x g 的最大公因式1)1)(,143)(23234--+=---+=x x x x g x x x x x f解法一:利用因式分解),13)(1(143)(3234--+=---+=x x x x x x x x f).1()1(1)(223-+=--+=x x x x x x g因此最大公因式为1+x .解法二:运用辗转相除法得)(3438)(01122132)(1434343)(41432112321212314121)(3122123423422223232x q x x q x x x x x x x x r x x x x x x x x x x r x x x x x x x x x x x x q =+=---------=--+---+--=------++--++-= 因此最大公因式为1+x .2)13)(,14)(2334+-=+-=x x x g x x x f .解:运用辗转相除法得(注意缺项系数补零)2564411627)(125627)(2565391649216491633323)(10310031004911916)(920910310132310323110391031)(13221232323423422223232--=--=+-+-+-+--=-++-+-+-++-+++--=+--++--+++-+-=x x q x x r x x x x x x x r x x x x x x x x x x x x x x x x r x x x x x x x x x x x x q .1))(),((=x g x f3).124624)(,110)(23424+++-=+-=x x x x x g x x x f)()()22(24)()(123x r x f x x x x f x g +=---=,),()22)((241)122()22)(22()(21223x r x x r x x x x x x x f ++-=---+--= ,)()122(22)(24122231x x r x x x x x x x r -=--=--=- 因此.122))(),((2--=x x x g x f6.求)(),(x v x u 使:))(),(()()()()(x g x f x g x v x f x u =+1);22)(,242)(234234---+=---+=x x x x x g x x x x x f解:运用辗转相除法得:)()(1022)(222422)(222221)(3133123423422323242342x q x x q x x xx x r x x x x x x x x x x r xx x x x x x x x x x x x q ==--=---+---+-=--+----++= 因此2)())(),((22-==x x r x g x f .且有 )()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..2)()(1)(,1)()(212+=+=--=-=x x q x q x v x x q x u2);452)(,951624)(23234+--=++--=x x x x g x x x x x f解:运用辗转相除法得:)(96)(20999966936)(810249516241)(32422324523131)(3122123423422223232x q x x q x x x xx x x x r xx x x x x x x x x r x x x x x x x x x x x x q =+=+-+-+-+--=+--++--+-=+--+---++--+-= 因此1)())(),((2-=-=x x r x g x f .且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..13232)3131(21)()(1)(,3131)()(2212--=+---=--=+-==x x x x x q x q x v x x q x u 3).1)(,144)(2234--=++--=x x x g x x x x x f解:运用辗转相除法得:)(32)(3331431441)(21211)(121222342342222x q x x x r x x x x x x x x x x x x r x x xx x x x x q =--=++-++---++--=-----+= 因此.1)())(),((2==x r x g x f 且有)()()()(11x r x q x g x f +=,),()()()(221x r x q x r x g +=).()()(321x q x r x r =于是)()]()()([)()()()()(21212x q x q x g x f x g x q x r x g x r --=-=)()]()(1[)()(212x g x q x q x f x q ++-=..23)1)(3(1)()(1)(,1)()(232212--+=+-+=+=--=-=x x x x x x q x q x v x x q x u7.设u tx x x g u x x t x x f ++=++++=323)(,22)1()(的最大公因式是一个二次多项式,求u t ,的值.解:运用带余除法有),()()2()1(1)(22)1()(12323x r x g u x t x t u tx x u x x t x x f +=+--++⋅++=++++= 由题意可得,)(1x r 即为)(),(x g x f 的最大公因式.因此有01≠+t .进一步),(])1(211)[()(221x r t t x t x r x g ++-++= ])1(21[)1()2()1()1()(22222t t u x t t t u t t x r +--++-++-+=. 要使)(1x r 为)(),(x g x f 的最大公因式的充要条件是.0)(2=x r 即⎩⎨⎧=--+=-++-+,0)]2()1[(,0)2()1()1(222t t u t t u t t 解得⎪⎩⎪⎨⎧--=+-=⎪⎩⎪⎨⎧+-=--=⎪⎩⎪⎨⎧±==⎩⎨⎧-==.2111,117;2111,117;231,0;4,0i t i u i t i u i t u t u 8.证明:如果),(|)(),(|)(x g x d x f x d 且)(x d 为)(x f 与)(x g 的一个组合,那么)(x d 是)(x f 与)(x g 的一个最大公因式.证明:由)(|)(),(|)(x g x d x f x d 可知)(x d 是)(x f 与)(x g 的一个公因式.下证)(x f 与)(x g 的任意一个公因式是)(x d 的因式.由)(x d 为)(x f 与)(x g 的一个组合可知,存在多项式)(),(x v x u ,使得)()()()()(x g x v x f x u x d +=.设)(x ϕ是)(x f 与)(x g 的任意一个公因式,则)(|)(),(|)(x g x x f x ϕϕ.故)()()()(|)(x g x v x f x u x +ϕ即).(|)(x d x ϕ因此)(x d 是)(x f 与)(x g 的一个最大公因式.9.证明:)()(())(),(())()(),()((x h x h x g x f x h x g x h x f =的首项系数为1). 证明:存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.所以有)()()()()()()())(),((x h x g x v x h x f x u x h x g x f +=.即)())(),((x h x g x f 是 )()(x h x f 与)()(x h x g 的一个组合.显然有)(|))(),((),(|))(),((x g x g x f x f x g x f .从而)()(|)())(),((),()(|)())(),((x h x g x h x g x f x h x f x h x g x f .由第8题结果)())(),((x h x g x f 是)()(x h x f 与)()(x h x g 的一个最大公因式.又)(x h 是首项系数为1的,因此).())(),(())()(),()((x h x g x f x h x g x h x f =10.如果)(x f ,)(x g 不全为零,证明1))(),(()(,)(),(()((=x g x f x g x g x f x f . 证明:由)(x f ,)(x g 不全为零可得其最大公因式不为零多项式,即.0))(),((≠x g x f 又存在多项式)(),(x v x u ,使得)()()()())(),((x g x v x f x u x g x f +=.于是))(),(()()())(),(()()(1x g x f x g x v x g x f x f x u +=. 因此1))(),(()(,)(),(()((=x g x f x g x g x f x f . 11.如果)(x f ,)(x g 不全为零,且))(),(()()()()(x g x f x g x v x f x u =+,那么1))(),((=x v x u .证明:由)(x f ,)(x g 不全为零可得.0))(),((≠x g x f 由))(),(()()()()(x g x f x g x v x f x u =+有.1))(),(()()())(),(()()(=+x g x f x g x v x g x f x f x u 于是1))(),((=x v x u .12.证明:如果,1))(),((,1))(),((==x h x f x g x f 那么.1))()(),((=x h x g x f 证法一、由条件1))(),((,1))(),((==x h x f x g x f 可得存在多项式)(),(11x v x u ; )(),(22x v x u 使得1)()()()(11=+x g x v x f x u ,1)()()()(22=+x h x v x f x u .两式相乘得1)()()()()()]()()()()()()()()([21211221=+++x h x g x v x v x f x h x v x u x g x v x u x f x u x u . 因此有.1))()(),((=x h x g x f证法二、反证法证明.显然.0))()(),((≠x h x g x f 若,1))()(),((≠x h x g x f 则存在不可约多项式)(x p ,使得)(x p 为)(x f 与)()(x h x g 的公因式.因此有)(|)(x f x p 且)()(|)(x h x g x p .由)(x p 的不可约性有)(|)(x g x p 或)(|)(x h x p .若)(|)(x g x p ,则)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.若)(|)(x h x p ,则)(x p 为)(x f 与)(x h 的一个公因式,与1))(),((=x h x f 相矛盾.因此1))()(),((≠x h x g x f 不成立,即有.1))()(),((=x h x g x f13.设)(),(),(),(,),(),(2121x g x g x g x f x f x f n m 都是多项式,而且).,,2,1;,,2,1(,1))(),((n j m i x g x f j i ===求证:1))()()(),()()((2121=x g x g x g x f x f x f n m .证明:由),,2,1(1))(),((1n j x g x f j ==,反复利用第12题结果可得1))()()(),((211=x g x g x g x f n .类似可得.,,2,1))()()(),((21m i x g x g x g x f n i ==再反复利用12题结果可得1))()()(),()()((2121=x g x g x g x f x f x f n m .14.证明:如果,1))(),((=x g x f 那么.1))()(),()((=+x g x f x g x f 证明:方法一.由,1))(),((=x g x f 存在多项式)(),(x v x u 使得1)()()()(=+x g x v x f x u .从而有,1)())()(())()()((,1))()()(()())()((111111=+-++=++-x g x v x u x g x f x u x g x f x v x f x v x u 因此有.1))()(),((,1))()(),((=+=+x g x f x g x g x f x f 由12题结果结论成立.方法二:用反证法.若.1))()(),()((≠+x g x f x g x f 则存在不可约多项式)(x p ,使得)(x p 为)()(x g x f 与)()(x g x f +的公因式.即)()(|)(x g x f x p 且)()(|)(x g x f x p +.由)(x p 的不可约性及)()(|)(x g x f x p ,有)(|)(x f x p 或)(|)(x g x p .若)(|)(x f x p ,又)()(|)(x g x f x p +,因此有)]())()([(|)(x f x g x f x p -+,即)(|)(x g x p ,也即)(x p 为)(x f 与)(x g 的一个公因式,与1))(),((=x g x f 相矛盾.类似可得当)(|)(x g x p 时也与已知1))(),((=x g x f 矛盾.所以.1))()(),()((=+x g x f x g x f15.求下列多项式的公共根:.12)(;122)(23423++++=+++=x x x x x g x x x x f解法一:利用因式分解可得);1)(1(122)(223+++=+++=x x x x x x x f ).1)(1(12)(22234+++=++++=x x x x x x x x g因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 解法二:运用辗转相除法求出)(x f 与)(x g 的最大公因式,最大公因式的根即为所求的公共根.),1(2)1)(()(2++--=x x x x f x g ).1)(1()(2+++=x x x x f因此1))(),((2++=x x x g x f .)(x f 与)(x g 的公共根为.2321i ±- 16.判别下列多项式有无重因式: 1);84275)(2345-+-+-=x x x x x x f 解:,4421205)('234+-+-=x x x x x f运用辗转相除法可得.)2(44))('),((22-=+-=x x x x f x f 因此2-x 为)(x f 的三重因式.解法二:试根可得2为)(x f 的根)1()2()2()2()43)(2()(23232234++-=----=++--=x x x x x x x x x x x x f .因此2-x 为)(x f 的三重因式. 2).344)(24--+=x x x x f解:).12(4484)('33-+=-+=x x x x x f 1))('),((=x f x f .故)(x f 无重因式. 17.求t 值使13)(23-+-=tx x x x f 有重根.解法一:要使)(x f 有重根,则1))('),((≠x f x f ..63)('2t x x x f +-=),12(33)(')3131(13)(23+-+-=-+-=x t x f x tx x x x f .415)41523)(12(63)('2++-+=+-=t x x t x x x f当,033=-t 即3=t 时),(|)(',)1(3363)('22x f x f x x x x f -=+-=2)1())('),((-=x x f x f ,因此1为)(x f 的三重根. 当0415=+t ,即415-=t 时,21))('),((+=x x f x f ,21-为)(x f 的二重根.解法二:设b a x ab a x b a x b x a x x f 22232)2()2()()()(-+++-=--=. 因此有⎪⎩⎪⎨⎧==+=+.1,2,3222b a t ab a b a 由第一个方程有a b 26-=,代人第三个方程有,0132,1)23(232=+-=-a a a a 即0)12()1(2=+-a a .因此有⎪⎩⎪⎨⎧===,3,1,1t b a 或⎪⎪⎩⎪⎪⎨⎧-==-=.415,4,21t b a即当3=t 时1为)(x f 的三重根;当415-=t 时,21-为)(x f 的二重根.18.求多项式q px x ++3有重根的条件.解:令q px x x f ++=3)(.显然当0==q p 时,0为)(x f 的三重根.当0≠p 时, p x x f +=23)(',q x px xf q px x x f ++=++=32)('31)(3,)427()42729)(32()('222p q p p q x p q x p x f ++-+=. 要使)(x f 有重根,则1))('),((≠x f x f .即,042722=+pq p 即.027423=+q p 显然 0==q p 也满足.027423=+q p 因此)(x f 有重根的条件是.027423=+q p19.如果,1|)1(242++-Bx Ax x 求.,B A解法一:利用整除判定方法,1|)1(242++-Bx Ax x 的充要条件是用2)1(-x 除124++Bx Ax ,余式为零.)31()42()32()1(12224B A x A B A B Ax Ax x Bx Ax --++++++-=++.因此有0)31()42(=--++B A x A B ,即⎩⎨⎧-==⎩⎨⎧=--=+.2,1.031,042B A B A A B 解法二:要使1|)1(242++-Bx Ax x 成立,则1至少是124++Bx Ax 的二重根.因此1既是124++Bx Ax 的根,也是其导数的根.而Bx Ax Bx Ax 24)'1(324+=++.故有⎩⎨⎧-==⎩⎨⎧=+=++.2,1.024,01B A B A B A 解法三:利用待定系数法.令Dx D C x D C A x A C Ax D Cx Ax x Bx Ax +-++-+-+=++-=++)2()2()2()()1(12342224因此有⎪⎪⎩⎪⎪⎨⎧==-=+-=-.1,02,2,02D D C B D C A A C 解得⎪⎪⎩⎪⎪⎨⎧==-==.1,2,2,1D C B A 20.证明:!!212n x x x n++++ 不能有重根.证明:令,!!21)(2n x x x x f n++++= 则,)!1(!21)('12-++++=-n x x x x f n因此有,!)(')(n x x f x f n +=从而有)!),('())('),((n x x f x f x f n =.!n x n因式只有)0(≠c c 及)1,0(n k c cx k ≤≤≠.而)1,0(n k c cx k ≤≤≠显然不是)('x f 的因式.因此有1)!),('())('),((==n x x f x f x f n.所以)(x f 没有重根.21.如果a 是)('''x f 的一个k 重根,证明a 是)()()](')('[2)(a f x f a f x f ax x g +-+-=的一个3+k 重根. 证明:)],(')('[21)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++=).('''2)(''21)('''2)(''21)(''x f ax x f x f a x x f x g -=--+=显然有0)(")(')(===a g a g a g .由a 是)('''x f 的一个k 重根可得a 是)(''x g 的一个1+k 重根,设a 是)(x g 的s 重根,则3,12+=+=-k s k s .本题常见错误证法.错误证法一:由a 是)('''x f 的一个k 重根就得出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根,于是)(2)()()()](')('[2)(3x h a x a f x f a f x f a x x g k +-=+-+-=从而a 是)(x g 的3+k 重根.事实上,由a 是)('''x f 的一个k 重根推不出a 是)(''x f 的一个1+k 重根,a 是)('x f 的一个2+k 重根,a 是)(x f 的一个3+k 重根. 如3)()()()(23+-+-+-=+a x a x a x x f k ,则1)(2))(3()('2+-+-+=+a x a x k x f k ,2))(2)(3()(''1+-++=+k a x k k x f .a 既不是)(x f 的根,也不是)('x f 与)(''x f 的根.错误证法二:由)],(')('[21)(''2)(')(''2)](')('[21)('a f x f x f a x x f x f a x a f x f x g ---=--++=)('''2)(''21)('''2)(''21)(''x f ax x f x f a x x f x g -=--+=得出a 是)(''x g 的1+k 重根,直接得出a 是)(x g 的3+k 重根,缺了a 是)(x g 与)('x g 的根验证.22.证明:0x 是)(x f 的k 重根的充分必要条件是,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k证明:必要性.设0x 是)(x f 的k 重根,从而0x x -是)(x f 的k 重因式,从而是)('x f 的1-k 重因式,是)(''x f 的2-k 重因式,...,是)()1(x f k -的单因式,而不是)()(x f k 的因式.因此0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.故有,0)()(')(0)1(00====-x f x f x f k 而.0)(0)(≠x f k充分性.由,0)()(')(0)1(00====-x f x f x f k 而0)(0)(≠x f k 可知0x 是)(x f ,)('x f ,)(''x f ,...,)()1(x f k -的根,而不是)()(x f k 的根.因此0x 是)()1(x f k -的单根,是)()2(x f k -二重根,依此类推,是)(x f 的k 重根.23.举例说明断语“如果α是)('x f 的m 重根,那么α是)(x f 的1+m 重根”是不对的.解:例如2)()(1+-=+m x x f α,m x m x f ))(1()('α-+=.α是)('x f 的m 重根,但α不是)(x f 的根.24.证明:如果),(|)1(n x f x -那么)(|)1(n n x f x -.证明:由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 因此有),()1()(x h x x f -=从而有).()1()(n n n x h x x f -=即)(|)1(n n x f x -.证法二:要证)(|)1(n n x f x -,只要证1-n x 在复数域上的各个根都是)(n x f 的根.1-n x 的根为.1,,2,1,0,2sin 2cos-=+=n k nk i n k x k ππ由)(|)1(n x f x -可得)()1()(x g x x f n -=.从而.0)1(=f 从而0)1()(==f x f nk .即,2sin 2cos nk i n k x k ππ+=1,,2,1,0-=n k 都是)(n x f 的根.因此有)(|)1(n n x f x -.25.证明:如果)()(|)1(32312x xf x f x x +++,那么).(|)1(),(|)1(21x f x x f x --证明:要证)(|)1(),(|)1(21x f x x f x --成立,只要证1是)(1x f 和)(2x f 的根.12++x x 的两个根为231,23121ii --=+-=εε.由)()(|)1(32312x xf x f x x +++可得)()1()()(23231x g x x x xf x f ++=+.于是,0)()1()()(,0)()1()()(2223222321112312131121=++=+=++=+εεεεεεεεεεεεg f f g f f即0)1(231)1(,0)1(231)1(2121=+-=--f if f i f .故有.0)1()1(21==f f 所以 )(|)1(),(|)1(21x f x x f x --.26.求多项式1-n x 在复数范围内和在实数范围内的因式分解. 解:1-n x 的根为.1,,2,1,0,2sin 2cos -=+=n k nk i n k k ππε故在复数范围内的分解式为)())()(1(112-----=-n n x x x x x εεε .在实数范围内,因k n k -=εε,)0(n k <<.当n 为奇数时,1-n x 的根中一个为实根,其余为虚根,其分解式为]1)([]1)(][1)()[1(12121222212++-++-++--=-+---x x x x x x x x n n n n nεεεεεε .当n 为偶数时,1-n x 的根中二个为实根,即,1±其余为虚根,其分解式为].1)([]1)(][1)()[1)(1(11212222212++-++-++-+-=-+---x x x x x x x x x n n n n nεεεεεε27.求下列多项式的有理根. 1);1415623-+-x x x解:多项式可能的有理根为.14,7,2,1±±±±由系数取值可知,x 取负数时,多项式的值均为负的,故该多项式没有负根.检验得2为其根,进一步运用综合除法可得074114821415612-----即)74)(2(14156223+--=-+-x x x x x x ,显然742+-x x 没有有理根.因此1415623-+-x x x 仅有一个有理根2,且为单根.2);157424---x x x解:多项式可能的有理根为.41,21,1±±±444222026242113121570421------------因此有)1()12()444()21(1574222224--+=--+=---x x x x x x x x x ,显然12--x x 没有有理根.因此21-为157424---x x x 的二重根.3).3111462345----+x x x x x解:多项式可能的有理根为.3,1±±检验得1-为其根,进一步运用综合除法可得1213630351133511038601138601311146111--------------故)3()1()12)(3()1(3111464222345-+=++-+=----+x x x x x x x x x x x .即1-为其四重跟,3为单根.28.下列多项式在有理数域上是否可约? 1);12+x解:显然12+x 无有理根,又为二次的,故在有理数域上不可约. 2);2128234++-x x x解:取素数2=p ,满足艾森斯坦判别法的条件,因此在有理数域上不可约. 3);136++x x 解:令,1+=y x).(3918211561)1()1(1)(234563636y g y y y y y y y y x x x f =++++++=++++=++=取素数,3=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.4)p px x p ,1++为奇素数;解:令1-=y x ,由p 为奇数可得1)1()1(1)(+-+-=++=y p y px x x f p p).()(1222211y g p y p C y C y C yC y p p p p p p p p p =-++--+-=---- 由组合数定义)11(-≤≤p k C kp 均为整数,且12)1()1()1(⋅-+--= k k k p p p C k p,分子中有因子p ,分母个各数均小于p ,又p 为素数,因此约分时p 不会被约去,因此有kpC p |,取素数为p ,)(y g 满足艾森斯坦判别式条件,因此)(y g 在有理数域上不可约,从而)(x f 在有理数域上不可约. 5)k kx x ,144++为整数. 解:令,1+=y x 则有).(2)1(4641)1(4)1(1423444y g y k y y y y k y kx x =+++++=++++=++取素数,2=p )(y g 满足艾森斯坦判别法条件,因此在有理数域上不可约,从而)(x f 在有理数域上不可约.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 多项式2.1 一元多项式的定义和运算1. 设f (x ),g (x )和h (x )是实数域上的多项式.证明:若f (x )2 = x g (x )2+x h (x )2,那么 f (x ) = g (x ) = h (x ) = 0.证明概要:比较等式两边的次数可证.2. 求一组满足上一题中等式的不全为零的复系数多项式f (x ),g (x )和h (x ). 解:取f (x ) = 2ix ,g (x ) = i (x +1),h (x ) = x-1即可. 或取f (x ) = 0,g (x ) = 1,h (x ) = i 即可. 3. 证明:(1)(1)(1)1(1)2!!(1)()(1)!nnx x x x x n x n x x n n ---+-+-+---=-证明提示:用数学归纳法证之.2.2 多项式的整除性1. 求f (x )被g (x )除所得的商式和余式:(i) 14)(24--=x x x f ,13)(2--=x x x g(ii) 13)(235-+-=x x x x f ,23)(3+-=x x x g解:(i) 35)(,2)(2--=--=x x r x x x q(ii) 56)(,2)(22++=+=x x x r x x q2. 证明:kx f x )(|必要且只要)(|x f x证明:充分性显然.现证必要性.反证法:若x 不整除)(x f ,则c x xf x f +=)()(1,且0≠c .两边取k次方得k k c x xg x f +=)()(,其中0≠kc .于是x 不整除)(x f k .矛盾.故必要性成立.3. 令)(),(),(,)(2121x g x g x f x f 都是数域F 上的多项式,其中0)(1≠x f 且)()(21x g x g |)()(21x f x f ,)(1x f |)(1x g .证明:)(2x g |)(2x f .证明:反复应用整除定义即得证.4. 实数m,满足什么条件时多项式12++mx x 能够整除多项式q px x ++4?解:以12++mx x 除q px x ++4得一次余式.令余式为零得整除应满足的条件:当且仅当m m p 23-=且12-=m q 时,12++mx x |q px x ++4.5. 设F 是一个数域,F a ∈.证明:a x -整除nn a x -.解:因为1221()()n n n n n n x a x a x ax a x a -----=-++⋅⋅⋅++6. 考虑有理数域上多项式 1)1)(2()1()(-+++++=n k n k x x x x fn k x x )1()2(++⋅⋅⋅+,这里n 和k 都是非负整数.证明:1+k x |1)1()()1(++++-n k x x f x .解:因为 1(1)()(1)k n x f x x ++-++1[2(1)]()(1)k n x x f x x ++=-+++nk x x )1()2(1+=+7. 证明:1-d x 整除1-nx 必要且只要d 整除n .证明:若d |n ,令md n =,则=-=-1)(1m d n x x )1(-dx ·)1)()((21++⋅⋅⋅++--dm d m d x x x .所以1-d x |1-n x .下面证必要性:反证法,若d 不整除n ,令r qd n +=,0≠r ,且0<r <d .于是111)1(-+-=-=-=-+rr r qdr qdrqd nx x x xx xxx)1()1(-+-=rqdr x xx .因1-qd x 可被1-d x 整除,故)1(-qdrx x 可被1-d x 整除.即1-r x 是1-n x 被1-d x 除所得的余式.因r <d ,0≠r .所以与1-n x 可被1-dx 整除相矛盾.2.3 多项式的最大公因式1. 计算以下各组多项式的最大公因式:(i)32103)(,343)(23234-++=---+=x x x x g x x x x x f ;(ii) i x i x i x i x x f ----+-+-+=1)21()42()22()(234;x i x x g -+-+=1)21()(2.解: (i) 3),(+=x g f ; (ii)i x i x g f -+-+=1)21(),(2.2. 设)()()(1x f x d x f =,)()()(1x g x d x g =.证明:若)())(),((x d x g x f =,且)(x f 和)(x g 不全为零,则1))(),((=x g x f ,反之,若1))(),((=x g x f ,则)(x d 是)(x f 与)(x g 的一个最大公因式.解:由本节定理2.3.2及2.3.3得证(常当作定理).3. 令)(x f 与)(x g 是][x F 的多项式,而a ,b ,c ,d 是F 中的数,并且0≠-bc ad .证明:))(),(())()(),()((x g x f x dg x cf x bg x af =++.证明:设)()()(1x bg x af x f +=)()()(1x dg x cf x g +=,=)(x d))(),((x g x f .易知)(x d |)(x f ,)(x d |)(x g ,从而)(x d |)(1x f ,)(x d |)(1x g .即)(x d 是)(1x f ,)(1x g 的一个公因式.再设)(x ϕ是)(1x f ,)(1x g 的任一公因式.则由定义知)(x ϕ|)(1x f ,)(x ϕ|)(1x g ,由)(x f ,)(x g 之所设及0≠-bc ad ,可解得)()()(11x g bcad b x f bcad d x f ---=)()()(11x g bcad a x f bcad c x g ----=从而可知)(x ϕ|)(x f ,)(x ϕ|)(x g .既)(x ϕ是)(x f 、)(x g 的一个公因式,所以)(x ϕ|)(x d .由定义知))(),(()(11x g x f x d =.4. 证明:(i) h g f ),(是fh 和gh 的最大公因式;(ii) ( f 1 , g 1 )( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ) 此处f ,g ,h 都是F [x ]的多项式. 证明:(i) 设( f , g ) = d , 则d | f ,d | g .所以dh | fh ,dh | gh .又有u ,v 使uf + vg = d .于是ufh + vgh = dh .所以dh 是fh ,gh 的一个最大公因式.(ii)设( f 1 , g 1 ) = d 1,( f 2 , g 2 ) = d 1,则d 1d 2同时整除f 1f 2,f 1g 2,g 1f 2,g 1g 2.d 1d 2是它们的一个公因式,另设ϕ是f 1f 2,f 1g 2,f 2g 1,g 1g 2的任一公因式,那么就有ϕ| ( f 1f 2 , f 1g 2 ),( f 1f 2 , f 1g 2 ) = f 1( f 2 , g 2 ) = f 1d 1.ϕ| ( f 2g 1 , g 1g 2 ),( f 2g 1 , g 1g 2 ) = g 1 ( f 2 , g 2 ) = g 1d 2.所以ϕ| ( d 2g 1 , f 1d 2 ),而( d 2g 1 , f 1d 2 ) = d 2 ( f 1 , g 1 ) = d 1d 2.既ϕ| d 2d 1.故有( f 1 , g 1 ) ( f 2 , g 2 ) = ( f 1f 2 , f 1g 2 , g 1f 2 , g 1g 2 ).5. 设432()242f x x x x x =+---,432()2f x x x x x =+--2-都是有理数Q 域上的多项式.求u (x ),][)(x Q x v ∈使得))(),(()()()()(x g xd f x v x g x u x f =+. 解:u (x )=-x-1,v (x )=x +2.6. 设(f , g )=1.令n 是任意正整数,证明:( f , g n) = 1.由此进一步证明,对于任意正整数m ,n ,都有( f m , g n ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,则vg = 1- uf ,两边n 次方得v n g n = ( 1- uf )n = 1+ u 1f .所以v n g n = ( 1- uf )n = 1 + u 1f - u 1f + v n g n = 1.从而 -u 1f + v n g n = 1,( f , g n ) = 1.固定g n,同理可证( f m, g n) = 1.7. 设( f , g ) = 1.证明:( f , f + g ) = ( f + g , g ) = 1.证明:因为( f , g ) = 1.所以有u ,v 使uf + vg = 1,进而有( u – v ) f + v ( g + f ) = 1, 所以( f , g + f ) = 1.同理( g + f , g ) = 1利用互素性质得( f g , f + g ) = 18. 证明:对于任意正整数n 都有( f , g )n = ( f n , g n ).证明:设( f , g )=d ,则f = df 1 ,g = dg 1,且( f 1 , g 1 ) = 1由上面第6题知 ( f 1n , g 1n) = 1,从而存在u ,v 使uf 1n+ vg 1n= 1.所以uf 1nd n+ vg 1nd n= d n,既uf n+ vg n= d n.又d n|f n,d n |g n .所以( f , g )n = d n = ( f n , g n ).9. 证明:若是f ( x )与g ( x )互素,并且的次数都大于0.那么定理2.3.3里的可以如此选取,u ( x )次数低于g ( x )的次数,v ( x )次数低于f ( x )的次数,并且这样的u ( x )与v ( x )是唯一的.证明:因为, 所以有u 1 ( x ),v 1 ( x )使u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,因))((x f ∂︒> 0,))((x g ∂︒> 0.所以f ( x )不整除v 1 ( x )及g ( x ) 不整除 u 1 ( x ).现以f ( x )除v 1( x ),得商式为q 1 ( x ),余式为v ( x ),则有v 1 ( x ) = f ( x ) q 1 ( x ) + v ( x ),其中))((x v ∂︒< ))((x f ∂︒.同理有u 1 ( x ) = g ( x ) q 2 ( x ) + u ( x ).其中))((x u ∂︒< ))((x g ∂︒.代入u 1 ( x ) f ( x ) + v 1 ( x ) g ( x ) = 1,得( g ( x ) q 2 ( x ) + u ( x ) ) f ( x ) + ( f ( x ) q 1 ( x ) + v ( x ) ) g ( x ) = 1.整理得u ( x ) f ( x ) + v ( x ) g ( x ) + [ q 1 ( x ) + q 2 ( x ) ] f ( x ) g ( x ) = 1.因为))()((x f x u ∂︒< ))()((x g x f ∂︒,))()((x g x v ∂︒< ))()((x g x f ∂︒,所以必有q 1 ( x ) + q 2 ( x ) = 0.即u ( x ) f ( x ) + v ( x ) g ( x ) = 1,且满足))((x u ∂︒< ))((x g ∂︒,))((x v ∂︒< ))((x f ∂︒.下面证唯一性 设另有u 2 ( x ) , v 2 ( x ) 满足u 2 ( x ) f ( x ) + v 2(x ) g (x ) = 1,及))((2x u ∂︒<))((x g ∂︒,))((2x v ∂︒<))((x f ∂︒.则有 ( u ( x ) - u 2 ( x ) ) f ( x ) = ( v 2 ( x ) – v ( x )) g ( x ).故f ( x )| ( v 2 ( x ) - v ( x ) ) g ( x ).又( f ( x ) , g ( x ) ) = 1,从而.如果v 2 ( x ) -0)(≠x v ,其次数一定低于f ( x )的次数,故只有v 2 ( x ) - v ( x ) = 0.既v 2 ( x ) = v ( x ).同理u ( x ) = u 2 ( x ).10.决定k ,使2(6)42x k x k ++++与2(2)2x k x k +++的最大公因式是一次的.解:设=24)6(2++++k x k x , g (x )= k x k x 2)2(2+++,以g ( x ) 除 f ( x ) 得余式4x +2k + 2.由题意4x + 2k + 2 | g ( x ),由此推出k = 1或k = 3.11.证明:如果 ( f ( x ) , g ( x ) ) =1,那么对于任意正整数m ,( f ( x m ) , g ( x m ) ) =1 证明:因为 ( f ( x ) , g ( x ) ) =1,所以u ( x ),v ( x ),满足u ( x ) f ( x ) + v ( x ) g ( x ) = 1.从而u ( x m) f ( x m) + v ( x m) g ( x m) = 1,此即是 ( f ( x m) , g ( x m) ) =1.12.设f ( x ) , g ( x )是数域F 上的多项式.f ( x )与g ( x )的最小公陪式指的是F [x ]中满足以下条件的一个多项式m ( x ):(a) f (x ) | m (x ) 且 g (x ) | m (x );(b) h (x )∈F [x ] 且 f (x ) | h (x ),g (x ) | h (x ),那么m (x ) | h (x ).(i) 证明: F [x ]中任意两个多项式都有最小公倍式,并且除了可能的零次因式差别外,是唯一的.(ii)设f (x ), g (x )都是最高次项系数是1的多项式.令[ f (x ), g (x )]表示 f (x )与g (x )的最高次项系数是1的那个最小公倍式.证明: f (x ) g (x )= (f (x ) , g (x )) [ f (x ), g (x )].证明:(i) 若f (x ) , g (x )有一个为0,则它门的最小公倍式是0.现设f (x )0≠, g (x )0≠.以d (x )记(f (x ) , g (x )).则f (x ) = d (x ) f 1(x ),g (x ) = d (x )g 1(x ),且(f 1(x ) , g 1(x )) =1.现证)()()(x d x g x f 是f (x ),g (x )的一个最小公倍式.首先由)()()(x d x g x f = f 1(x ) g (x )= f (x )g 1(x ),知其是f (x )与g (x )的一个公倍式.另设M (x )是f (x )与g (x )的任一公倍式,则有M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )及M (x )=g (x )t (x )= d (x ) g 1 (x )t (x ),消去d (x ),得f 1(x ) s (x ) = g 1 (x )t (x ).又(f 1(x ) , g 1(x )) =1,由此可得g 1 (x )|s (x ),令s (x )= g 1 (x ) s 1(x ).代入M (x )= f (x )s (x )= d (x ) f 1 (x ) s (x )得M (x )= d (x ) f 1 (x )g 1 (x )s 1(x )=s 1(x ))()()(x d x g x f .即)()()(x d x g x f | M (x ),即)()()(x d x g x f 是f (x ) , g (x )的一个最小公倍式.从而存在性得证.现证唯一性:若m 1(x ),m 2(x )都是f 1(x ) , g 1(x )的最小公倍式,由定义得m 1(x )|m 2(x )及m 2(x )|m 1(x ).所以m 1(x ),m 2(x )只相差一个常数因子.(ii)由(i)的证明,知当f 1(x ) , g 1(x )的最高次项系数都是1时,有f (x ) g (x )= (f (x ) , g (x )) [f (x ) , g (x )].13.设g (x )|)()(1x f x f n ⋅⋅⋅,并且(f i (x ), g (x )) =1, i =1,1,,2-⋅⋅⋅n . 证明 g (x ) | f n (x ). 证明:令11()()()n h x f x f x -= ,由(f 1(x ), g (x ))=1. ( f 2(x ), g (x ))=1,所以(f 1(x ) f 2(x ),g (x ))=1,进而可证得(h (x ), g (x ))=1又g (x ) | h (x )f n (x ),所以g (x ) | f n (x ).14.设][)(,),(1x F x f x f n ∈⋅⋅⋅.证明:(i) ()(,),(1x f x f n ⋅⋅⋅)=(()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)), 1≤k ≤n -1.(ii))(,),(1x f x f n ⋅⋅⋅互素的充要条件是存在多项式][)(,),(1x F x u x u n ∈⋅⋅⋅使得1)()()()(11=+⋅⋅⋅+x u x f x u x f n n证明:(i) 设d (x ) = ( ()(,),(1x f x f k ⋅⋅⋅), ()(,),(1x f x f n k ⋅⋅⋅+)),有d (x ) |()(,),(1x f x f k ⋅⋅⋅), d (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步有d (x ) | f i (x ), i =1,n ,,2⋅⋅⋅.另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,h (x ) |()(,),(1x f x f k ⋅⋅⋅) 及h (x ) |()(,),(1x f x f n k ⋅⋅⋅+),进一步h (x ) | ( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = d (x ).所以( ()(,),(1x f x f k ⋅⋅⋅) ,()(,),(1x f x f n k ⋅⋅⋅+)) = ()(,),(1x f x f n ⋅⋅⋅).(ii)充分性:若有)(,),(1x u x u n ⋅⋅⋅使+⋅⋅⋅+)()(11x u x f1)()(=x u x f n n ,另设h (x )是)(,),(1x f x f n ⋅⋅⋅的任一公因式,则有h (x )|1.从而)(,),(1x f x f n ⋅⋅⋅互素.必要性:若(f 1(x ), f 2(x ))= d 2(x ),则由定理2.3.2有u 11(x ) ,u 12(x ) ,使u 11(x )f 1(x )+ u 12(x ) f 2(x )= d 2(x ),则由定理2.3.2可以假设对于s -1个多项式是成立的.即当d s-1(x ) = ()(,),(11x f x f s -⋅⋅⋅)时,有u 11(x ,),⋅⋅⋅u 1s-1(x ),使得∑-=111)()(s i i ix f x u=d s-1(x ).则对于s 个多项式来说,由()(,),(1x f x f s ⋅⋅⋅)= (()(,),(11x f x f s -⋅⋅⋅), f s (x ))= ( d s-1(x ) , f s (x )).知有p (x ), q (x )使p (x )d s-1(x ) + q (x ) f s (x ) = ( d s-1(x ) , f (x )),以d s-1(x )的上述表示式代入,则得∑-=111)()(s i i ix f x u+ q (x ) f s (x ) = ( d s-1(x ) , f (x )),.即有p (x )u 11(x ,),⋅⋅⋅p (x )u 1s-1(x ) , q (x ),使∑-=111)())()((s i i ix f x ux q +p (x ) f s (x ) = ()(,),(1x f x f s ⋅⋅⋅)()(,),(1x f x f s ⋅⋅⋅)=1时,令p (x )=1,s =n 其中u 1(x )= p (x ) u 11(x ,),⋅⋅⋅u 1s (x ) = p (x )u 1s (x ) 则本题必要性得证. 15.设][)(,),(1x F x f x f n ∈⋅⋅⋅.令I ={+⋅⋅⋅+)()(11x g x f f n (x ) g n (x )|][)(x F x g i ∈, 1≤i ≤n } .比照定理1.4.2,证明:)(,),(1x f x f n ⋅⋅⋅有最大公因式.[提示:如果)(,),(1x f x f n ⋅⋅⋅不全为零,取d (x )是中次数最底的一个多项式,则d (x )就是)(,),(1x f x f n ⋅⋅⋅的一个最大公因式.] 证明:如果0)()(1==⋅⋅⋅=x f x f n ,则0就是它们的最大公因式.如不全为0,则I 中 有非零多项式.设d (x )是I 中次数最低的一个多项式.以d (x )除f (x ),得.其中r 1=0,或∂︒( r 1 (x ))< ∂︒( d (x )).由于r 1 (x )= f 1(x )- q 1 (x )d (x ),可以推得r 1 (x )∈I ,而d (x )是I 中次数最底的,故r 1 (x ) =0.所以d (x )|f 1(x ),同理d (x )|f 2(x )⋅⋅⋅,,d (x )|f n (x ).即d (x ) 是)(,),(1x f x f n ⋅⋅⋅的一个公因式,又因是它们的组合,故d (x ) 就是)(,),(1x f x f n ⋅⋅⋅的最大公因式.2.4 多项式的分解1. 在有理数域上分解以下多项式为不可约因式的乘积:(i) 3x 2+1; (ii) x 3-2x 2-2x +1.解: (i) 不可约. (ii) (x +1) (x 2-3x +1)2. 分别在复数域,实数域和有理数域上分解多项式x 4+1为不可约因式的乘积.解:在复数域上有x 4+1= (x +22(1+i )) (x +22(1+i )) (x -22(1-i )) (x -22(1-i ));在实数域上有x 4+1=( x 2+2x +1) (x 2-2x +1);在有理数域上x 4+1 不可约3. 证明:g (x )2|f (x )2,当且仅当g (x )|f (x ).证明:充分性显然.现证必要性,即若g (x )2|f (x )2,那么g (x )|f (x ).若f (x )= g (x ) =0,则有g (x )|f (x ).如果f (x ), g (x )不全为0,令d (x )=(f (x ), g (x )).则f (x )=d (x )f 1(x ), g (x )=d (x )g 1(x ),且(f 1(x ), g 1(x ))=1.那么f (x )2=d (x )2f 1(x )2, g (x )2=d (x )2g (x )2,故由g (x )2|f (x )2,可得g 1(x )2|f 1(x )2,故g 1(x )|f 1(x )2,又(f 1(x ) , g 1(x ) ) =1,根据互素多项式的性质知g 1(x )|f 1(x ),从而g 1(x ) = c f 1(x ), (c 为非零常数).于是g (x )|f (x ).4. (i)求f (x )= x 5-x 4-2x 3+2x 2+x -1在Q (x )内的典型分解式;(ii)求f (x )= 2x 5-10x 4+16x 3-16x 2+14x -6在R (x )内的典型分解式. 解: (i) f (x )= (x-1)3(x +1)2 ; (ii) f (x )= 2(x-1)2(x-3)(x 2+1)5. 证明:数域F 上一个次数大于零的多项式f (x )是F [x ]中某一不可约多项式的幂的充分必要条件是对于任意g (x )∈F [x ],或者(f (x ), g (x )) =1,或者存在一个正整数m 使得f (x )|g (x )m . 证明:必要性:设f (x ) = p m (x ) ( p (x )不可约) ,则对于F [x ]中的任意g (x ),只有两种可能:(p (x ),g(x ))=1或 p (x )|g(x ).在前一情形有( f (x ),g (x ) )=1,在后一情形有p m (x ) |g m (x ),即f (x ) |g (x )m .充分性:设f (x )=1()i sri i a p x =∏为其典型分解式.令g (x )=p 1(x ).若 s >1,则(p (x ), g (x ))≠1,且f (x )不整除g (x )m,即条件成立时,必有s =1,即f (x )= 11()rap x .6. 设p (x )是F [x ]中一个次数大于零的多项式.如果对于任意f (x ), g (x )∈F [x ],只要p (x )|f (x )g(x )就有p (x )| f (x )或p (x )| g(x ),那么p (x )不可约.证明:反证法,若)(x p 可约,设)()()(21x p x p x p =,其中)(),(21x p x p 的次数都低于)(x p 的次数.由)()(|)(21x p x p x p ,根据条件可得出)(|)(1x p x p 或)(|)(2x p x p ,这是不可能的.2.5 重因式1. 证明下列关于多项式的导数的公式: a) )(')('))'()((x g x f x g x f +=+; b))(')()()('))'()((x g x f x g x f x g x f +=提示:设10()n n f x a x a x a =+++ ,10()mm g x b x b x b =+++ 利用本教材中对导数的定义证之.2. 设)(x p 是)(x f 的导数)('x f 的1-k 重因式.证明: a) )(x p 未必是)(x f 的k 重因式;b))(x p 是)(x f 的k 重因式的充分必要条件是)(|)(x f x p证明:a) 设4)(3+=x x f ,则x 是x x f 3)('=的二重因式,但不是)(x f 的因式,更不是)(x f 的三重因式.b) 必要性显然;充分性,设)(x p 是)(x f 的s 重因式,则)(x p 是)('x f 的1-s 重因式.11-=-k s 即得出.3. 证明有理系数多项式!!21)(2n xxx x f n++++= 没有重因式.证明:因为)!1(!21)('12-++++=-n xxx x f n ,有1),'(=f f .4. a,b 应该满足什么条件,下列的有理系数多项式才能有重因式?a) b ax x ++33b) b ax x ++44提示:由多项式有重因式的充要条件是它与它的导数不互素可得.a) 0423=+b a ; b)02734=-b a .5. 证明:数域F 上的一个n 次多项式)(x f 能被它的导数整除的充分必要条件是:nb x a x f )()(-=,这里a,b 是F 中的数.证明:若nb x a x f )()(-=,则1)()('--=n b x an x f ,0>n ,所以)(1)(')(a x nx f x f -⋅=,)(|)('x f x f .必要性:设)(x f 的典型分解式为)()()(11x p x ap x f tm t m =,其中)(x p i 都是不可约多项式,则)()()()('1111x x p x p x f tm t m ϕ--= .由)(|)('x f x f ,知c x =)(ϕ(常数),但))((1))('(x f x f ∂︒=+∂︒.故知t =1,且n x p =∂︒))((1.即nb x a x f )()(-=.2.6 多项式函数 多项式的根1.设f (x )=2x 5-3x 4-5x 3+1.求f (3),f (-2). 解: f (3) =109; f (-2) =-71.2.数环R 的一个数c 说是f (x )∈R(x )的一个k 重根,如果f (x )可以被(x -c )k整除,但不能被(x -c )k +1整除.判断5是不是多项式f (x )=3x 5-224x 3+742x 2+5x +50的根.如果是的话,是几重根?提示:用3次综合除法得:5是f (x ) 的二重根. 3.设2x 3-x 2+3x -5=a (x -2)3+b (x -2)2+c (x -2)+d .求a,b,c,d . 提示:应用综合除法得:a =2, b =11, c =23, d =13. 4.将下列多项式f (x )表成x-a 的多项式. a) f (x )= x 5,a =1; b) f (x )=x 4-2x 2+3,a =-2. 解:用综合除法求出:a) f (x )= x 5=(x -1)5+5(x -1)4+10(x -1)3+10(x -1)2+5(x -1)+1; b) f (x )=x 4-2x 2+3=(x +2)4-8(x +2)3+22(x +2)2+24(x +2)+11. 5.求一次数小于4的多项式,使f (2)=3,f (3)=-1,f (4)=0,f (5)=2.解:f (x )= -32x 3+217x 2-6203x +426.求一个2次多项式,使它在x =0,,2ππ处于函数 sin x 有相同的值.结果:24()()f x x x ππ=--7.令f (x ) , g (x ),是两个多项式,并且f (x 3) +x g (x 3)可以被x 2+x +1.证明: f (1) = g (1) =0.证明: 因x 2+x +1| f (x 3) +x g (x 3).故x 2+x +1=0的根必为f (x 3) +x g (x 3)的根.而x 2+x +1=0的两个根是2,231ωωi+-=.但3ω=1.故有2(1)(1)0(1)(1)0f g f g ωω+=⎧⎨+=⎩,解此方程组得:f (1) = g (1) =0.8.令c 是一个复数,且是Q [x ]中一个非零多项式的根.令J ={ f (x )∈Q [x ] | f (c ) = 0}.证明:a)在J 中存在唯一的高次项系数是1的多项式p (x ),使得J 中每一多项式f (x )都可以写成p (x )q (x )的形式,这里q (x )∈Q [x ].b) p (x )在Q [x ]中不可约.如果c =32+,求上述的p (x ).证明: a) 因c 是Q [x ]中一个非零多项式的根,则J 中存在次数大于零的多项式,即令A ={ m |f (x )∈J ,∂︒( f (x ))=m }非空. A 中必有最小数设为n (n >0).其对应的多项式若为f (x ),令p (x )=1a f (x ), (a 0是f (x )的最高次项系数),则11()n n n p x x a xa -=+++ .现证当f (x ) ∈J 时,必有f (x ) =p (x )q (x ).对于任意的f (x )∈J ,由p (x )的取法知∂︒( f (x )) ≥∂︒(p (x )).以p (x )除f (x )得f (x )=p (x )q (x )+r (x ),其中r (x )=0或∂︒( r (x )) <∂︒(p (x )).由于r (c )=f (c )-p (c )q (c )=0,故知r (x )∈J . 由p (x )的取法知r (x )的次数不可能小于p (x )的次数.故只有r (x )=0,即f (x ) = p (x )q (x ).再证的唯一性.设另有p 1(x )具有上述性质,则p (x )| p 1(x )且p 1(x ) | p (x ).所以p 1(x ) = c p (x ).又首项系数都为1,故c =1,即p 1(x ) = p (x ).b) 反证法:设p (x )可约,令p (x )=p 1(x ) p 2(x ),知p 1(x )与p 2(x )的次数都小于p (x )的次数.又p (c )=p 1(c )p 2(c )=0,知p 1(c )=0或p 2(c )=0从而p 1(c )或p 2(c ) ∈J ,这与p (x )是J 中次数最低的多项式相矛盾.故p (x )不可约.若c =32+,则p (x )=(x -32+)(x +32+)(x -32-) (x +32-).9.设C [x ]中多项式f (x )≠0且f (x )| f (x n),n 是一个对于1的整数.证明: f (x )的根只能是零或单位根.证明: 因f (x )| f (x n),所以f (x n)= f (x )g (x ), g (x )∈C [x ].如果c 是f (x )的根,即f (c )=0则f (nc)=f (c )g (c )=0, f (2nc)= f (nc) g (nc)=0,, f (knc)= f (1-k nc) g (1-k nc)=0.由于, f (x )在C 中至多有n 个不同的根,故有i <j ,使jnc =inc ,所以c =0或1.即c =0或c 是单位根.2.7 复数和实数域上多项式1.设n 次多项式n n na x a x a x f +++=-10)( 的根是n αα,,1 .a) 求以n c c αα,,1 为根的多项式,这里c 是一个数;b) 以na 1,,11 α(假定0,,1≠n αα )为根的多项式.解:a) 若c =0,则n c c αα,,1 都为0,则g (x )= x n即是.若c ≠0,则令g (x )=)(1)(10n n na x a x a cc x f +++=- 为所求.b) 令g (x )= f (x 1)x n =nn n n x a x a x a +++--110 ,则g (x )是以na 1,,11α为根的多项式.2.设f (x )是一个多项式,用)(x f 表示把f (x )的系数分别换成它们的共轭数后所得多项式.证明:a) 若是g (x )|f (x ),那么)(x g |)(x f ;b) 若是d (x )是f (x )和)(x f 的一个最大公因式,并且d (x )的最高次项系数是1,那么d (x )是一个实系数多项式.证明: a) 因为g (x )|f (x ),所以f (x )= q (x )g (x ), )(x f =)(x q )(x g 从而)(x g |)(x f .b) 若d (x )=(f (x ),)(x f ),则有u (x ), v (x )使的u (x )f (x )+ v (x ))(x f =d (x ),所以)(x d =)(x u )(x f +)(x vf f (x ),另一方面,由d (x )|f (x ), d (x )|)(x f ,可得)(x d |f (x ),)(x d |)(x f ,所以)(x d =(f (x ), )(x f ).从而d (x )=)(x d ,即d (x )是实系数多项式.3.给出实系数四次多项式在实数域上所有不同类型的典型分解式. 解:共9种:a (x +b )4; a (x +b 1)(x +b 2)3; a (x +b 1)2(x +b 2)2;a (x +b 1)(x +b 2)(x +b 3)2; a (x +b 1)(x +b 2)(x +b 3)(x +b 4); a (x 2+px +q )2; a (x 2+p 1x +q 1)(x 2+p 2x +q 2) ; a (x +b )2(x 2+px +q );a (x +b 1)(x +b 2)(x 2+px +q ) . (其中二次式x 2+px +q 不可约).4.在复数和实数域上分解x n-2为不可约因式的乘积.解: 在复数域上: x n -2=(x -n2)(x -)2()21--n nnx εε ,其中22cossini nn ππε=+; 在实数域上:当n 为奇数, x n-2=(x -n2)(x 2-222(1)cos(2n x nnππ-+-+ ;当n 为偶数, x n - 2=(x -n 2)(x +n 2)(x 222(2)cos(cosn x nnππ-+- )4n+.5.证明:数域F 上任意一个不可约多项式在复数域内没有重根.证明:设p (x )是F 上不可约多项式,因多项式的最大公因式不因数域扩大而改变, 所以在复数域内仍有(p (x ),'p (x ))=1,故p (x )在复数域内没有重根.2.8 有理数域上多项式1.证明以下多项式在有理域上不可约: a) x 4-2x 3+8x -10; b) 2x 5+18x 4+6x 2+6 c) x 4-2x 3+2x -3d) x 6+x 3+1提示:用艾森斯坦判断法. a)取p =2; b)取p =3; c)令x =y +1, 则f (x )=g (y )=y 4+2y 3-2, 取 p =2得g (y )不可约,即f (x )不可约;d)令x =y +1,则f (x )=g (y )=(y +1)6+(y +1)3+1=y 6+6y 5+15y 4+21y 3+18y 2 +9y+3,取p =3,得g (y )不可约,即f (x )不可约. 2利用艾森斯坦判断法,证明:若是t p p p ,,,21 是t 个不相同的素数,而n 是一个大于1的整数,那么ntp p p 21是一个无理数.证明:考虑多项式x n-t p p p ,,,21 ,因t p p p ,,,21 互不相同,取p=p 1满足艾森斯坦判断法,知x n -t p p p ,,,21 在有理数域上不可约, 因n<1无有理根,.因而.3.设f (x )是一个整数系数多项式,证明:若是f (0)和f (1)都是奇数,那么f (x )不能有整数根. 证明:设α是f (x )的一个整数根.则f (x )=(x -a )f 1(x ).由综合除法知f 1(x )也是整系数多项式.所以f (0)= -a f 1(0), f (1)=(1-a ) f 1(1),这是不可能的.因为α与1-α中有一个是偶数.从而f (0)与f (1)至少有一个是偶数,与题设矛盾.故f (x )无整数根.4.求以下多项式的有理数根: a) x 3-6x 2+15x -14; b) 4x 4-7x 2-5x -1;c) x 5-x 4-25x 3+2x 2-21x -3.解: a)有理单根-2; b)二重有理根-21; c)有理单根-1,2.2.9 多元多项式1.写出一个数域F 上三元三次多项式的一般形式.解:f =000a +∑=++1k j i kj i ijkzy x a+∑=++2k j i kj i ijkzy x a+∑=++3k j i kj i ijkzy x a其中,a ijk ∈F.2.设 f (n x x ,,1 )是一个r 次齐次多项式.t 是任意数.证明:f (n tx tx ,,1 )=t r f (n x x ,,1 ).证明:可设),,(1n x x f ∑=++=ri i i i i i i i n nnxx x a12121.于是 ),,(1n tx tx f ∑=++=ri i i i i i i i n nntx tx tx a12121)()()(∑=+++++=r i i i i i i i i i i i n nnnxx x ta1212121∑=++=ri i i i i ri i i n nnxx x t a12121∑=++=ri i i i i i i i rn nnxx x at12121rt=),,(1n x x f3. 设f (n x x ,,1 )是数域F 上一个n 元齐次多项式,证明:如果f (n x x ,,1 )=g (n x x ,,1 )h (n x x ,,1 ),则g ,h 也是n 元齐次多项式.证明:反证法,设g ,h 至少有一个不是n 元齐次多项式,不妨设是h ,则s g g g g +++= 21,1≥s ,i g 是齐次多项式,t h h h h +++= 21,1>t ,jh 是齐次多项式,并且假设)()()(21s g g g ∂︒>>∂︒>∂︒ ,)()()(21t h h h ∂︒>>∂︒>∂︒ .则111112()()s t s tf ghg gh h g h g h g h ==++++=+++其中t s h g h g ,11都不能消去,与f 是齐次多项式矛盾.故,g h 都是齐次多项式. 4.把多项式x 3+y 3+z 3+3xyz 写成两个多项式的乘积. 原式=(x +y +z )3-3(x +y +z )(xy +yz +xz )= (x +y +z ) [(x +y +z )2-3 (xy + yz +xz )] = (x +y +z ) (x 2+y 2+z 2-xy -yz -zx ).5.设F 是数域. f ,g ∈F [n x x ,,1 ]是F 上n 元多项式. 如果存在h ∈F [n x x ,,1 ]使得f =gh ,那么就说g 是f 的一个因式.或者说g |f .a) 证明,每一f 都可以被零次多项式c 和cf 整除c ∈F , c ≠0.b) f ∈F [n x x ,,1 ]说是不可约的,如果除了a)中那种类型的因式外f 没有其它因式,证明在F [x ,y ]里多项式x ,y ,x +y ,x 2-y 都不可约.c) 举反例证明,当n ≥2时,类似于一元多项式的带余除法不成立.d) f ,g ∈F [n x x ,,1 ]说是互素的,如果除了零次多项式外,它们没有次数大于零的公因式.证明x ,y ∈F [x ,y ]是互素的多项式.能是否找到u (x ,y ), v (x ,y ) ∈F [x ,y ],使得x u (x ,y )+y v (x ,y )=1?证明: a)因为0c ≠,所以1111,,(,,),(,,)[n n c cf x x f x x F cc∈ 1,,]nx x ,而11111(,,)[(,,)][(,,)]n n n f x x c f x x cf x x cc==所以|c f ,11(,,)|(,,)n n cf x x f x x .b) 现证对于1[,,]n F x x ,任意一次多项式不可约.设f 是1[,,]n F x x 的一次多项式.若f gh =,由次数定理有1= ()()()fgh ∂︒=∂︒+∂︒.因而g 与h 中有一个是0次多项式,故f 不可约.所以,,x y x y +都不可约.因2x y -是一个非齐次的二次多项式,如可约,只能是2x y -=()()x ay x b ++.比较()()x a y x b ++与2x y -的系数有:0,0b a ==,且1ab =-,这是不可能的,故2x y -不可约.c)例:若(,),(,)f x y x g x y y ==,若存在(,),(,)x y r x y ϕ使(,)(,)x x y y r x y ϕ=+,应有(,)0r x y =或c (常数).这是不可能的.即对于二元多项式.带余除法定理不成立. d)因为x 的因式只有常数c 与cx ,而x 不是y 的因式,故x 与y 的公共因式只有常数c (且0c ≠),故x 与y 互素.因对任意(,),(,)u x y v x y ,(,)(,)xu x y yv x y +没有零次项,所以找不到(,),(,)u x y v x y 使(,)(,)xu x y yv x y +=1.2.10 对称多项式1. 写出某一数环R 上三元三次对称多项式的一般形式. 结果: a 300(x 3+y 3+z 3)+a 210(x 2y +x 2z +y 2x +y 2z +z 2x +z 2y )+a 200(x 2+ y 2+z 2)+a 110(xy +xz +yx )+a 100 (x+y+z )+a 111(xyz )+a 000其中,a ijk ∈F.2.令R [n x x ,,1 ]是数环R 上n 元多项式环, S 是由一切n 元对称多项式组成的R [n x x ,,1 ]的子集.证明存在R [n x x ,,1 ]到S 的一个双射.证明:设1,,n σσ 是1,,n x x 的初等对称多项式.对任意11(,,)[,,]n n f x x R x x ∈ 规定1:(,,)|n f x x τ→ 1(,,)n f σσ ,则1(,,)n f σσ 是S 中唯一确定的多项式.既τ是R [n x x ,,1 ]到S 的映射, 对任意的1(,,)n g x x S ∈ ,由对称多项式的基本定理,有唯一的1(,,)n h σσ 使11(,,)(,,)n n h g x x σσ= .这里1(,,)n h x x [F ∈ 1,,]n x x ,故111((,,))(,,)(,,)n n n h x x h g x x τσσ== .故τ是满射.如果11(,,)(,,)n n f x x g x x ≠ 那么11(,,)(,,)n n f g σσσσ≠ ,所以τ是单射.从而是R [n x x ,,1 ]到S 的一个双射3.把下列多元多项式表成初等对称多项式的多项式: a)∑231x x; b)∑41x; c)32221x x x∑;解: a) 2212213424σσσσσσ--+;b) 42211221344244σσσσσσσ-++-; c) 2314535σσσσσ-+;4.证明:如果一个三次多项式x 3+ax 2+bx +c 的一个根的平方等于其余两个根的平方和那么这个多项式的系数满足以下关系: 2324)22(2)2(c ab a b a a +-=-.证明:设,,αβγ是32x ax bx c -++的三个根.则由条件知(,,f αβγ=222()αβγ--222()βγα--222()γαβ--=0,把(,,)f αβγ用初等对称多项式表出,得(,,)f αβγ=64223211212131233688168σσσσσσσσσσσ-++-+=4211(σσ-32211232)2(22)σσσσσ-++-.因123,,a b c σσσ=-=-=,用它们代入上式得(,,)f αβγ=42(a a -322)2(22)b a ab c -+++=0所以42(a a 322)2(22)b a ab c -=++.5.设n αα,,1 是某一数域F 上多项式x n +a 1x n -1++ a n -1x +a n 在复数域内的全部根.证明:2,,n αα 的每一个对称多项式都可以表成F 上关于1α的多项式.证明:设f (2,,n αα )是关于2,,n αα 的任意一个对称多项式.由对称多项式的基本定理有211(,,)(',,')n n f a a g σσ-= ,其中'i σ(1,2,,1i n =- )是nαα,,2的初等对称多项式.由于111'a σσ=-,11''i i i a σσσ-=-(2,,1i n =- ) 其中i σ是n αα,,1 的初等对称多项式.又(1)ii i a σ=-(1,2,,1i n =- ),是数域F 中的数,将它们代入上式可知, 'i σ是1a 与中的数11,,n αα- 的一个多项式,不妨记为i p (11,,n αα- )='i σ(1,2,,1i n =- ),再将它们代入f g=式右端,即证明f (nαα,,2)可表为1a 与11,,n αα- 的多项式.由11,,n αα- 是F 中的数,即f (nαα,,2)是F 上关于1a 的多项式:1()G a .。