新人教版八年级数学下册专项训练
人教版八年级下册数学17章《勾股定理》解答题专项训练(带答案)

人教版八年级下册数学17章勾股定理解答题专题训练1.如图,已知∠C=90°,AB=12,BC=3,CD=4,AD=13,求∠ABD的度数.2.如图,在∠ABC中,AB=8,AC=6,BC=10,AD∠BC,垂足为D.求AD的长.3.如图,一次“台风”过后,一根旗杆被台风从离地面2.8米处吹断裂,倒下的旗杆的顶端落在离旗杆底部9.6米处,那么这根旗杆被吹断裂前有多高?(旗杆粗细、断裂磨损忽略不计)4.如图所示,在∠ABC中,AB∠BC∠CA=3∠4∠5,且周长为36cm,点P从点A开始沿边AB向点B以每秒1cm的速度移动,点Q从点B沿边BC向点C以每秒2cm的速度移动.如果点P、Q同时出发,设运动时间为t秒.(1)经过3秒时,∠BPQ的面积为多少?(2)当t为何值时,BP=1BQ?2(3)当t为何值时,点B在PQ的垂直平分线上?5.如图,一块铁皮(图中阴影部分),测得3AB =,4BC =,12CD =,13AD =,90ABC ∠=︒.求阴影部分的面积.6.如图,在边长为1的小正方形组成的网格中,ABC 的三个顶点均在格点上,请按要求完成下列各题.(1)画出ABC 关于直线MN 对称的A 1B 1C 1;(2)求AB 1C 的面积;(3)试判断ABC 的形状并说明理由.7.如图,在∠ABC 和∠CDE 中,∠ABC =∠CDE =90°,且AC ∠CE ,AC =CE .(1)求证:ABC CDE △≌△(2)若AC =13,DE =5,求DB 的长.8.如图,在∠ABC 中,∠ACB =90°,BC >AC ,CD ∠AB 于点D ,点E 是AB 的中点,连接CE .(1)若AC =3,BC =4,求CD 的长;(2)求证:BC 2﹣AC 2=2DE •AB ;(3)求证:CE =12AB .9.如图,ABC 中,3AB AC ==,4BC =.(1)求高AD 的长;(2)求ABC 的面积.10.《九章算术》“勾股”章中有一道题:“今有二人同所立,甲行率七,乙行率三,甲南行十步而斜东北与乙会,问甲乙行各几何?”大意是:已知甲、乙二人从同一地点出发,甲的速度与乙的速度之比为7:3,乙一直向东走,甲先向南走10步,后又斜向北偏东某方向走了一段后与乙相遇.这时甲、乙各走了多远?11.如图,△ABC中,△ABC=45°,△BAC=60°,D为BC上一点,△ADC=60°,AE∠BC于点E,CF∠AD于点F,AE、CF相交于点G.(1)求△DAC的度数;(2)求证:DF=FG;(3)若DC=2,求线段EG的长.12.如图,点C在线段BD上,AC∠BD,CA=CD,点E在线段CA上,且满足DE=AB,连接DE并延长交AB于点F.(1)求证:DE∠AB;(2)若已知BC=a,AC=b,AB=c,请借助本题提供的图形,用面积法证明勾股定理.13.如图,在△ABC中,AB=AC,D是CA的延长线上一点,连接BD.(1)若AC=8,AD=17,BD=15,判断AB与BD的位置关系,并说明理由;(2)若∠D=28°,∠DBC=121°,求∠DAB的度数.14.如图,在ABC ∆中,6BC =,8AC =,DE AB ⊥,7DE =,ABE ∆的面积为35.(1)求AB 的长;(2)求ACB ∆的面积.15.如图,在直角坐标系中,点A 、B 的坐标分别为()1,4和()3,0,点C 是y 轴上的一个动点,且A 、B 、C 三点不在同一条直线上.(1)求出AB 的长.(2)求出ABC 的周长的最小值?16.如图,CD 是∠ABC 的角平分线,DE ,DF 分别是∠ACD 和∠BCD 的高.(1)求证CD ∠EF ;(2)若AC =6,BC =4,S △ABC =10,∠ACB =60°,求CG 的长.17.如图,在∠ABC中,∠A=90°,BD平分∠ABC交AC于点D,AB=4,BC=12,AD=3,若点P在BC上运动.(1)求线段DP的最小值;(2)当DP最小时,求CDP的面积.18.如图,∠ABC中,BC的垂直平分线DE分别交AB、BC于点D、E,且BD2-DA2=AC2.(1)求证:∠A=90°;(2)若BC2=56,AD∠BD=3∠4,求AC的长.于D.19.已知∠ABC中,AB=AC,CD AB(1)若∠A=42°,求∠DCB的度数;(2)若BD=1,CD=3,M为AC的中点,求DM的长.参考答案:1.解:在直角∠BCD 中,∠C =90°,BC =3,CD =4,∠BD =5,在∠ABD 中,AD 2=132=169,AB 2+BD 2=122+52=144+25=169,∠AD 2=AB 2+BD 2,∠∠ABD 是直角三角形,∠∠ABD =90°.2.解:在ABC ∆中,8AB =,6AC =,10BC =,2222228610010AB AC BC ∴+=+===,90CAB ∴∠=︒,AD BC ⊥,1122ABC S AC AB BC AD ∆∴==, 4.8AC AB AD BC ∴==. 3.如图,由题意可知ABC 为直角三角形,且90ACB ∠=︒,∠10AB =米,∠10 2.812.8AB BC +=+=米.故这根旗杆被吹断裂前有12.8米高.4(1)设AB 、BC 、CA 分别为3x 、4x 、5x , 由题意得:3x +4x +5x =36,解得:x =3,则AB =3x =9,BC =4x =12,AC =5x =15,∠AB 2+BC 2=92+122=225,AC 2=152=225,∠AB 2+BC 2=AC 2,∠∠B =90°,当t =3时,AP =3cm ,BQ =6cm ,则BP =9﹣3=6cm ,∠S △BPQ =12×6×6=18(cm 2);(2)由题意得:AP =t ,BQ =2t ,则BP =6﹣t ,当BP =12BQ 时,6﹣t =12×2t ,解得:t =3;(3)当点B 在PQ 的垂直平分线上时,BP =BQ ,即6﹣t =2t ,解得:t =2.5.解:如图,连结AC .∠90B ∠=︒,3AB =,4BC =,5AC ∴=. 12CD =,13AD =,5AC =,222AC CD AD ∴+=,ACD ∴∆是直角三角形且∠ACD =90°,11512343062422ACD ABC S S S ∆∆∴=-=⨯⨯-⨯⨯=-=阴影.6.解:∠A1B1C1如图所示;,(2)解:∠AB1C的面积=4×4-12×1×4-12×2×3-12×2×4=16-2-3-4=16-9=7;,(3)解:由勾股定理得,ABBC,AC,∠AB2+AC2=2+)2=25=52,∠AB2+AC2=BC2,∠∠ABC是直角三角形.7.(1)证明:∠AC∠CE,∠ABC=∠CDE=90°,∠∠BCA+∠DCE=90°,∠A+∠BCA=90°∠∠DCE=∠A.∠在∠ABC 和∠CDE 中,90ABC D A DCE AC CE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∠∠ABC ∠∠CDE (AAS).(2)∠∠ABC ∠∠CDE ,DE =5,AC =13∠BC =DE =5,CE =13∠在Rt CDE △中,12CD ==∠1257DB CD BC =-=-=.8.解:在∠ABC 中,∠ACB =90°,AC =3,BC =4,由勾股定理得:AB5,∠∠ACB =90°,CD ∠AB ,∠S △ABC =12AC •BC =12AB •DE ,即12×3×4=12×5×CD ,解得:CD =125; (2)证明:∠点E 是AB 的中点,∠AE =BE ,∠BD ﹣AD =(BE +DE )﹣(AE ﹣DE )=BE ﹣AE +2DE =2DE ,∠CD ∠AB ,∠BC 2=BD 2+CD 2,AC 2=AD 2+CD 2,∠BC 2﹣AC 2=(BD 2+CD 2)﹣(AD 2+CD 2)=BD 2﹣AD 2=(BD +AD )(BD ﹣AD )=AB •2DE =2DE •AB ;(3)证明:延长CE 至点F ,使EF =CE ,连结AF ,在∠AEF 和∠BEC 中,AE BE AEF BEC EF EC =⎧⎪∠=∠⎨⎪=⎩,∠∠AEF ∠∠BEC (SAS ),∠∠B =∠EAF ,AF =BC ,∠∠ACB =90°,∠∠B +∠CAB =∠EAF +∠CAB =90°,∠∠CAF =∠ACB =90°,∠AC =CA ,∠∠ACF ∠∠CAB (SAS ),∠CF =AB ,∠CF =2CE ,∠CE =12AB .9.解:∠ ABC 中,3AB AC ==,4BC =,AD 是ABC 的高, ∠2BD DC ==,AD BC ⊥,∠AD ==(2)解:∠4BC =,AD =∠114522S ABC BC AD ==⨯⨯= 10.解:如图设经x 秒二人在B 处相遇,这时乙共行AB =3x , 甲共行AC +BC =7x ,∠AC =10,∠BC =7x -10,又∠∠A =90°,∠BC 2=AC 2+AB 2,∠(7x -10)2=102+(3x )2,解得:x 1=0(舍去),x 2=3.5,∠AB =3x =10.5,AC +BC =7x =24.5.答:甲行24.5步,乙行10.5步.11.(1)∠60ADC ∠=︒,∠604515DAB ADC B ∠=∠-∠=︒=-︒︒, ∠601545DAC BAC DAB ∠=∠-∠=︒-︒=︒.(2)∠45DAC ∠=︒,且CF AD ⊥,∠90AFC CFD ∠=∠=︒,45ACF DAC ∠=∠=︒, ∠AF CF =.又∠90FAG AGF ∠+∠=︒,90DAE ADE ∠+∠=︒ ∠ADC AGF ∠=∠,∠()AFG CFD AAS ≌△△,∠DF FG =;(3)在Rt CFD △中,90CFD ∠=︒,60CDF ∠=︒, ∠112DF CD ==, ∠1FG DF ==.在Rt CFD △中,CF∠1CG CF FG =-=.在Rt CGE △中,90GEC ∠=︒,9030GCE ADC ∠=︒-∠=︒,∠12EG CG == 12.证明:∠AC ∠BD ,∠∠ABC 和∠DCE 都是直角三角形, ∠CA =CD ,DE =AB ,∠()Rt ABC Rt DCE HL ≅ ,∠∠BAC =∠CDE ,∠∠BAC +∠ABC =90°,∠∠CDE +∠ABC =90°,∠∠BFD =90°,∠DE ∠AB ;(2)解:∠Rt ABC Rt DCE ≅,∠DE =AB =c ,CE =BC =a ,设EF =x ,则DF =c +x ,∠DE ∠AB , ∠()1122ABD SAB DF c c x =⋅=+ ,1122ABE S AB EF cx =⋅=, ∠ABD ACD BCE ABE S S S S =++, ∠()2211112222c c x cx a b +=++ , ∠222+=a b c .13.解:∠AB =AC ,AC =8,∠AB =8,∠AD =17,BD =15,∠22281517+=,即222AB BD AD +=, ∠∠ABD =90°,即AB ∠BD ;(2)∠∠D =28°,∠DBC =121°,∠∠C =180°-28°-121°=31°,∠AB =AC ,∠∠ABC =∠C =31°,∠∠DAB =∠C +∠ABC =62°.14(1) 解:由题意知17352ABE SAB =⨯= 解得10AB =∠AB 的长为10.(2)解:在ABC 中,2210100AB ==,222268100AC BC +=+= ∠222AB AC BC =+∠90C ∠=︒ ∠11682422ABC S AC BC ∆=⨯=⨯⨯=∠ABC 的面积为24.15作AD OB ⊥于D ,如图1所示:则90,1,4,3ADB OD AD OB ∠====︒, ∠312BD =-=,∠AB =(2)解:要使ABC 的周长最小,AB 一定,则AC BC +最小, 作A 关于y 轴的对称点A ',连接BA '交y 轴于点C ,点C 即为使AC BC +最小的点,作A E x '⊥轴于E ,由对称的性质得:AC A C '=,,4,1AC BC A B A E OE ''+===,OB =3, ∠=4BE OE OB +=,由勾股定理得:A B =='∠ABC 的周长的最小值为 16.(1)∠CD 是∠ABC 的角平分线,DE ∠AC ,DF ∠BC , ∠DE =DF ,∠CDE 和∠CDF 是直角三角形, ∠CD =CD ,∠()Rt CDE Rt CDF HL ≅,∠CE =CF ,∠CD 垂直平分EF ,即CD ∠EF△(2)∠CE =CF ,∠ACB =60°,∠∠CEF 是等边三角形,∠EF =CE ,∠ACD =30°,∠CD ∠EF , ∠1122EG EF CE ==, ∠AC =6,BC =4,S △ABC =10,DE =DF ,ABC ACD BCD S S S =+△△△, ∠ ()11110222DE AC DF BC DE AC BC ⨯+⨯=⨯+=, 解得:DE =2,在Rt CDE △ 中,∠ACD =30°,∠CD =2DE =4,∠CE∠1122EG EF CE ===∠3CG .17解:当DP ∠BC 时,线段DP 的值最小,∠BD 平分∠ABC ,∠A =90°,当DP ∠BC 时,DP =AD ,∠AD =3,∠DP 的最小值是3;(2)解:∠∠A =90°,∠BD ,当DP 最小时,DP =3,DP ∠BC ,则∠DPB =∠DPC =90°,∠PB =4,∠CP =BC -PB =12-4=8,∠∠CDP 的面积=12CP ×DP =12×8×3=12, 即当DP 最小时,∠CDP 的面积为12. 18解:连接CD .∠ DE 垂直平分BC ∠CD =BD .∠ BD2-DA2=AC2 ,∠ CD2-DA2=AC2 .∠∠A=90°.(2)解:∠ AD∠BD=3∠4,∠设AD=3x,BD=4x.7,AB xBD2-DA2=AC2 ,∠∠A=90°,∠AC2=7x2.∠BC2=AC2+AB2=56x2=56,∠x=1.(负根舍去)∠AC=19(1)∠AB=AC,∠∠B=∠ACB∠∠A=42°∠11(180)(18042)69 22ACB A∠=⨯︒-∠=⨯︒-︒=︒∠CD∠AB,∠∠ACD=90°-42°=48°∠∠DCB=69°-48°=21°;(2)设AC=AB=x,∠BD=1,CD=3∠AD=x-1,∠CD∠AB∠222 DC AD CA+=∠222 3(1)x x+-=∠5x=∠M为AC的中点∠1522 MD AC==。
人教版八年级数学下册专题训练(含参考答案与解析)

人教版八年级数学下册专题训练(附答案与解析)说明:本套训练习题包含12个专题:类比归纳专题:二次根式求值的常用方法考点综合专题:一次函数与几何图形的综合问题解题技巧专题:利用一次函数解决实际问题解题技巧专题:正方形中特殊的证明(计算)方法思想方法专题:矩形中的折叠问题核心素养专题:四边形中的探究与创新类比归纳专题:有关中点的证明与计算解题技巧专题:特殊平行四边形中的解题方法思想方法专题:勾股定理中的思想方法解题技巧专题:勾股定理与面积问题难点探究专题:特殊四边形中的综合性问题解题技巧专题:函数图象信息题考点综合专题:一次函数与几何图形的综合问题——代几综合,明确中考风向标◆类型一一次函数与面积问题1.如图,把Rt△ABC放在平面直角坐标系内,其中∠CAB=90°,BC=5,点A,B的坐标分别为(1,0),(4,0),将△ABC沿x轴向右平移,当点C落在直线y=2x-6上时,线段BC扫过的面积为________.2.如图,直线y =-2x +3与x 轴相交于点A ,与y 轴相交于点B.【易错7】(1)求A ,B 两点的坐标;(2)过B 点作直线BP 与x 轴相交于点P ,且使OP =2OA ,求△ABP 的面积.3.如图,直线y =-x +10与x 轴、y 轴分别交于点B ,C ,点A 的坐标为(8,0),点P(x ,y)是在第一象限内直线y =-x +10上的一个动点.(1)求△OPA 的面积S 与x 的函数解析式,并写出自变量x 的取值范围;(2)当△OPA 的面积为10时,求点P 的坐标.◆类型二 一次函数与三角形、四边形的综合4.(2016·长春中考)如图,在平面直角坐标系中,正方形ABCD 的对称中心与原点重合,顶点A 的坐标为(-1,1),顶点B 在第一象限,若点B 在直线y =kx +3上,则k 的值为________.第4题图 第5题图5.(2016·温州中考)如图,一直线与两坐标轴的正半轴分别交于A,B两点,P是线段AB上任意一点(不包括端点),过P分别作两坐标轴的垂线与两坐标轴围成的矩形的周长为10,则该直线的函数解析式是()A.y=x+5 B.y=x+10C.y=-x+5 D.y=-x+10◆类型三一次函数与几何图形中的规律探究问题6.(2017·安顺中考)如图,在平面直角坐标系中,直线l:y=x+2交x轴于点A,交y轴于点A1,点A2,A3,…在直线l上,点B1,B2,B3,…在x轴的正半轴上,若△A1OB1,△A2B1B2,△A3B2B3,…依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形A n B n-1B n顶点B n的横坐标为________.第6题图第7题图7.★(2016·潍坊中考)在平面直角坐标系中,直线l:y=x-1与x轴交于点A1,如图所示依次作正方形A1B1C1O,正方形A2B2C2C1,…,正方形A n B n C n C n-1,使得点A1,A2,A3,…在直线l上,点C1,C2,C3,…在y轴正半轴上,则点B n的坐标是________.参考答案与解析1.16解析:如图,∵点A,B的坐标分别为(1,0),(4,0),∴AB=3.∵∠CAB =90°,BC=5,∴在Rt△ABC中,由勾股定理得AC=BC2-AB2=4,∴A′C′=4.∵点C′在直线y=2x-6上,∴2x-6=4,解得x=5.即OA′=5,∴CC′=AA′=5-1=4.∴S▱BCC′B′=CC′·CA=4×4=16.即线段BC扫过的面积为16.2.解:(1)令y=0,则-2x+3=0,解得x=32;令x=0,则y=3,∴点A的坐标为⎝ ⎛⎭⎪⎫32,0,点B 的坐标为(0,3). (2)由(1)得点A ⎝ ⎛⎭⎪⎫32,0,∴OA =32,∴OP =2OA =3,∴点P 的坐标为(3,0)或(-3,0),∴AP =OP -OA =32或AP =OP +OA =92,∴S △ABP =12AP ·OB =12×92×3=274或S △ABP =12AP ·OB =12×32×3=94.综上所述,△ABP 的面积为274或94.3.解:(1)∵点P 在直线y =-x +10上,且点P 在第一象限内,∴x >0且y >0,即-x +10>0,解得0<x <10.∵点A (8,0),∴OA =8,∴S =12OA ·|y P |=12×8×(-x +10)=-4x +40(0<x <10).(2)当S =10时,即-4x +40=10,解得x =152.当x =152时,y =-152+10=52,∴当△OP A 的面积为10时,点P 的坐标为⎝ ⎛⎭⎪⎫152,52. 4.-2 5.C6.2n +1-2 解析:由题意得OA =OA 1=2,∴OB 1=OA 1=2,B 1B 2=B 1A 2=4,B 2A 3=B 2B 3=8,∴B 1(2,0),B 2(6,0),B 3(14,0)….∵2=22-2,6=23-2,14=24-2,…∴B n 的横坐标为2n +1-2.故答案为2n +1-2.7.(2n -1,2n -1) 解析:∵y =x -1与x 轴交于点A 1,∴点A 1的坐标为(1,0).∵四边形A 1B 1C 1O 是正方形,∴A 1B 1=OA 1=1,∴点B 1的坐标为(1,1).∵C 1A 2∥x 轴,点A 2在直线y =x -1上,∴点A 2的坐标为(2,1).∵四边形A 2B 2C 2C 1是正方形,∴A 2B 2=A 2C 1=2,∴点B 2的坐标为(2,3),同理可得点B 3的坐标为(4,7).∵B 1(20,21-1),B 2(21,22-1),B 3(22,23-1),…,∴点B n 的坐标为(2n -1,2n -1).难点探究专题(选做):特殊四边形中的综合性问题◆类型一特殊平行四边形的动态探究问题一、动点问题1.(2016·枣庄中考)如图,把△EFP放置在菱形ABCD中,使得顶点E,F,P分别在线段AB,AD,AC上,已知EP=FP=6,EF=63,∠BAD=60°,且AB>6 3.(1)求∠EPF的大小;(2)若AP=10,求AE+AF的值;(3)若△EFP的三个顶点E,F,P分别在线段AB,AD,AC上运动,请直接写出AP的最大值和最小值.二、图形的变换问题2.如图①,点O是正方形ABCD两条对角线的交点.分别延长OD到点G,OC 到点E,使OG=2OD,OE=2OC,然后以OG,OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图②.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′的最大值和此时α的度数,直接写出结果不必说明理由.◆类型二四边形间的综合性问题3.(2016·德州中考)我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.(1)如图①,四边形ABCD 中,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点.求证:中点四边形EFGH 是平行四边形;(2)如图②,点P 是四边形ABCD 内一点,且满足P A =PB ,PC =PD ,∠APB =∠CPD ,点E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 的中点,猜想中点四边形EFGH 的形状,并证明你的猜想;(3)若改变(2)中的条件,使∠APB =∠CPD =90°,其他条件不变,直接写出中点四边形EFGH 的形状.(不必证明)参考答案与解析1.解:(1)如图①,过点P 作PG ⊥EF 于点G ,H 为PE 的中点,连接GH ,∴∠PGE =90°,GH =PH =HE =12PE =3.∵PF =PE ,∴∠FPG =∠EPG ,FG =GE =12EEF =3 3 .在Rt △PGE 中,由勾股定理得PG =PE 2-GE 2=62-(33)2=3.∴PG =GH =PH ,即△GPH 为等边三角形,∴∠GPH =60°,∴∠FPE =∠FPG +∠GPE =2∠GPE =2×60°=120°.(2)如图①,过点P 作PM ⊥AB 于点M ,作PN ⊥AD 于点N ,∴∠ANP =∠AMP=90°.∵AC 为菱形ABCD 的对角线,∴∠DAC =∠BAC =12∠DAB =30°,PM =PN .在Rt △PME 和Rt △PNF 中,PM =PN ,PE =PF ,∴Rt △PME ≌Rt △PNF ,∴ME =NF .∵∠P AM =30°,AP =10,∴PM =12E AP =5.由勾股定理得AM =P A 2-PM 2=5 3 .在△ANP 和△AMP 中,⎩⎨⎧∠NAP =∠MAP ,∠ANP =∠AMP =90°,AP =AP ,∴△ANP ≌△AMP ,∴AN =AM =5 3 .∴AE +AF =(AM +ME )+(AN -NF )=AM +AN +ME -NF=10 3.(3)如图②,△EFP 的三个顶点分别在AB ,AD ,AC 上运动,点P 在P 1,P 之间运动.P 1O =PO =12PE =3,AE =EF =63,AO =AE 2-EO 2=9.∴AP 的最大值为AO +OP =12,AP 的最小值为AO -OP 1=6.2.(1)证明:如图,延长ED 交AG 于点H .∵四边形ABCD 与OEFG 均为正方形,∴OA =OD ,OG =OE ,∠AOG =∠DOE =90°,∴Rt △AOG ≌Rt △DOE ,∴∠AGO =∠DEO .∵∠AGO +∠GAO =90°,∴∠DEO +∠GAO =90°,∴∠AHE =90°,即DE ⊥AG ;(2)解:①在旋转过程中,∠OAG ′成为直角有以下两种情况:a .α由0°增大到90°过程中,当∠OAG ′为直角时,∵OA =OD =12OG =12OG ′,∴∠AG ′O =30°,∠AOG ′=60°.∵OA ⊥OD ,∴∠DOG ′=90°-∠AOG ′=30°,即α=30°;b .α由90°增大到180°过程中,当∠OAG ′为直角时,同理可求的∠AOG ′=60°,∴α=90°+∠AOG ′=150°.综上,当∠OAG ′为直角时,α=30°或150°;②AF ′长的最大值是2+22,此时α=315°.3.(1)证明:如图①中,连接BD .∵点E ,H 分别为边AB ,DA 的中点,∴EH ∥BD ,EH =12BD .∵点F ,G 分别为边BC ,CD 的中点,∴FG ∥BD ,FG =12BD ,∴EH ∥FG ,EH =GF ,∴中点四边形EFGH 是平行四边形.(2)解:四边形EFGH 是菱形.理由如下:如图②中,连接AC ,BD .∵∠APB =∠CPD ,∴∠APB +∠APD =∠CPD +∠APD ,即∠APC =∠BPD .在△APC 和△BPD 中,⎩⎨⎧AP =PB ,∠APC =∠BPD ,PC =PD ,∴△APC ≌△BPD ,∴AC =BD .∵点E ,F ,G 分别为边AB ,BC ,CD 的中点,∴EF =12AC ,FG =12BD ,∴EF =FG .∵四边形EFGH 是平行四边形,∴四边形EFGH 是菱形.(3)解:四边形EFGH 是正方形.理由如下:如图②中,设AC 与BD 交于点O .AC 与PD 交于点M ,AC 与EH 交于点N .∵△APC ≌△BPD ,∴∠ACP =∠BDP .∵∠DMO =∠CMP ,∴∠COD =∠CPD =90°.∵EH ∥BD ,AC ∥HG ,∴∠EHG =∠ENO =∠BOC =∠DOC =90°.∵四边形EFGH是菱形,∴四边形EFGH 是正方形.解题技巧专题:利用一次函数解决实际问题——明确不同类型的图象的端点、折点、交点等的意义◆类型一费用类问题一、建立一次函数模型解决问题1.(2016·攀枝花中考)某市为了鼓励居民节约用水,决定实行两级收费制度.若每月用水量不超过14吨(含14吨),则每吨按政府补贴优惠价m元收费;若每月用水量超过14吨,则超过部分每吨按市场价n元收费.小明家3月份用水20吨,交水费49元;4月份用水18吨,交水费42元.(1)求每吨水的政府补贴优惠价和市场价;(2)设每月用水量为x吨,应交水费为y元,请写出y与x之间的函数解析式;(3)小明家5月份用水26吨,则他家应交水费多少元?二、分段函数问题2.(2016·荆州中考)为更新果树品种,某果园计划新购进A,B两个品种的果树苗栽植培育,若计划购进这两种果树苗共45棵,其中A种树苗的单价为7元/棵,购买B种树苗所需费用y(元)与购买数量x(棵)之间存在如图所示的函数关系.(1)求y与x的函数解析式;(2)若在购买计划中,B种树苗的数量不超过35棵,但不少于A种树苗的数量,请设计购买方案,使总费用最低,并求出最低费用.三、两个一次函数图象结合的问题3.随着互联网的发展,互联网消费逐渐深入人们生活,如图是“滴滴顺风车”与“滴滴快车”的行驶里程x(公里)与计费y(元)之间的函数关系图象,下列说法:①“快车”行驶里程不超过5公里计费8元;②“顺风车”行驶里程超过2公里的部分,每公里计费1.2元;③A 点的坐标为(6.5,10.4);④从哈尔滨西站到会展中心的里程是15公里,则“顺风车”要比“快车”少用3.4元.其中正确的个数有( )A .1个B .2个C .3个D .4个四、分类讨论思想4.(2017·天门中考)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y 甲,y 乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y 甲,y 乙关于x 的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?◆类型二路程类问题一、两个一次函数图象结合的问题5.(2017·青岛中考)A,B两地相距60km,甲、乙两人从两地出发相向而行,甲先出发,图中l1,l2表示两人离A地的距离s(km)与时间t(h)的关系,请结合图象解答下列问题:(1)表示乙离A地的距离与时间关系的图象是________(填l1或l2);甲的速度是________km/h,乙的速度是________km/h;(2)甲出发多长时间两人恰好相距5km?二、分段函数问题6.(2016·新疆中考)暑假期间,小刚一家乘车去离家380km的某景区旅游,他们离家的距离y(km)与汽车行驶的时间x(h)之间的函数图象如图所示.(1)从小刚家到该景区乘车一共用了多少时间?(2)求线段AB对应的函数解析式;(3)小刚一家出发2.5h后离目的地有多远?◆类型三工程类问题一、两个一次函数图象结合的问题7.甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖2天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x =2或6时,甲、乙两队所挖管道长度都相差100米.正确的有________(填序号).二、分段函数问题8.(2016·绍兴中考)根据卫生防疫部门的要求,游泳池必须定期换水、清洗.某游泳池周五早上8:00打开排水孔开始排水,排水孔的排水速度保持不变,期间因清洗游泳池需要暂停排水,游泳池的水在11:30全部排完.游泳池内的水量Q(m 3)和开始排水后的时间t(h )之间的函数图象如图所示,根据图象解答下列问题:(1)暂停排水需要多少时间?排水孔的排水速度是多少? (2)当2≤t ≤3.5时,求Q 关于t 的函数解析式.参考答案与解析1.解:(1)设每吨水的政府补贴优惠价为m 元,市场价为n 元.由题意得⎩⎨⎧14m +(20-14)n =49,14m +(18-14)n =42,解得⎩⎨⎧m =2,n =3.5.答:每吨水的政府补贴优惠价为2元,市场价为3.5元.(2)当0≤x ≤14时,y =2x ;当x >14时,y =14×2+(x -14)×3.5=3.5x -21.综上所述,y =⎩⎨⎧2x (0≤x ≤14),3.5x -21(x >14).(3)∵26>14,∴小明家5月份水费为3.5×26-21=70(元).答:小明家5月份应交水费70元.2.解:(1)当0≤x ≤20时,设y 与x 的函数解析式为y =ax ,把(20,160)代入y =ax 中,得a =8.即y 与x 的函数解析式为y =8x ;当x >20时,设y 与x 的函数解析式为y =kx +b ,把(20,160),(40,288)代入y =kx +b 中,得⎩⎨⎧20k +b =160,40k +b =288,解得⎩⎨⎧k =6.4,b =32,即y 与x 的函数解析式为y =6.4x +32.综上所述,y 与x 的函数解析式为y =⎩⎨⎧8x (0≤x ≤20),6.4x +32(x >20).(2)∵B 种树苗的数量不超过35棵,但不少于A 种树苗的数量,∴⎩⎨⎧x ≤35,x ≥45-x ,∴22.5≤x ≤35.设总费用为W 元,则W =6.4x +32+7(45-x )=-0.6x +347.∵k =-0.6<0,∴y 随x 的增大而减小,∴当x =35,45-x =10时,总费用最低,即购买B 种树苗35棵,A 种树苗10棵时,总费用最低,W 最低=-0.6×35+347=326(元). 3.D4.解:(1)设y 甲=kx ,把(2000,1600)代入,得2000k =1600,解得k =0.8,所以y 甲=0.8x .当0<x <2000时,设y 乙=ax ,把(2000,2000)代入,得2000k =2000,解得k =1,所以y 乙=x .当x ≥2000时,设y 乙=mx +n ,把(2000,2000),(4000,3400)代入,得⎩⎨⎧2000m +n =2000,4000m +n =3400,解得⎩⎨⎧m =0.7,n =600,所以y乙=⎩⎨⎧x (0<x <2000),0.7x +600(x ≥2000).(2)当0<x <2000时,0.8x <x ,到甲商店购买更省钱;当x ≥2000时,若到甲商店购买更省钱,则0.8x <0.7x +600,解得x <6000;若到乙商店购买更省钱,则0.8x >0.7x +600,解得x >6000;若到甲、乙两商店购买一样省钱,则0.8x =0.7x +600,解得x =6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.5.解:(1)l 2 30 20 解析:由题意可知,乙的函数图象是l 2,甲的速度是602=30(km/h),乙的速度是603=20(km/h).故答案为l 2,30,20.(2)设甲出发x h 两人恰好相距5km.由题意30x +20(x -0.5)+5=60或30x +20(x -0.5)-5=60,解得x =1.3或1.5.答:甲出发1.3h 或1.5h 两人恰好相距5km. 6.解:(1)从小刚家到该景区乘车一共用了4h.(2)设线段AB 对应的函数解析式为y =kx +b .把点A (1,80),B (3,320)代入得⎩⎨⎧k +b =80,3k +b =320,解得⎩⎨⎧k =120,b =-40.∴y =120x -40(1≤x ≤3). (3)当x =2.5时,y =120×2.5-40=260,380-260=120(km).故小刚一家出发2.5h 后离目的地120km. 7.①②④ 8.解:(1)暂停排水需要的时间为2-1.5=0.5(h).∵排水时间为3.5-0.5=3(h),一共排水900m 3,∴排水孔的排水速度是900÷3=300(m 3/h).(2)当2≤t ≤3.5时,设Q 关于t 的函数解析式为Q =kt +b ,易知图象过点(3.5,0).∵当t =1.5时,排水300×1.5=450(m 3),此时Q =900-450=450,∴点(2,450)在直线Q =kt +b 上.把(2,450),(3.5,0)代入Q =kt +b ,得⎩⎨⎧2k +b =450,3.5k +b =0,解得⎩⎨⎧k =-300,b =1050,∴Q 关于t 的函数解析式为Q =-300t +1050.类比归纳专题:二次根式求值的常用方法——明确计算便捷渠道◆类型一 利用二次根式的非负性求值1.若a ,b 为实数,且|a +1|+b -1=0,则(ab )2018的值是( ) A .0 B .1 C .-1 D .±12.已知a +1+b 2-2b +1=0,则a 2018+b 2017的值是________.3.若a 2-3a +1+b 2-2b +1=0,则a 2+1a 2-|b |=________. 4.若y =x -3+3-x +2,求x y 的值.【方法1②】◆类型二利用乘法公式进行计算5.计算:(1)(5+3)2; (2)(25-2)2;(3)(3+2)2-(3-2)2.6.已知x+1x=5,求x2x4+x2+1的值.◆类型三整体代入求值7.已知x=2-10,则代数式x2-4x-6的值为()A.-1 B.0 C.1 D.28.(2017·安顺中考)已知x+y=3,xy=6,则x2y+xy2的值为________.9.已知x=1-2,y=1+2,求x2+y2-xy-2x+2y的值.10.已知x=13-22,y=13+22,求xy+yx-4的值.参考答案与解析: 1.B 2.23.6 解析:∵a 2-3a +1+b 2-2b +1=0,∴a 2-3a +1+(b -1)2=0,∴a 2-3a +1=0,b =1,∴a -3+1a =0,∴a +1a =3,∴⎝ ⎛⎭⎪⎫a +1a 2=32,∴a 2+1a 2=7.∴a 2+1a2-|b |=6. 4.解:由题意有x -3≥0,3-x ≥0,∴x =3,∴y =2,∴x y =32=9. 5.解:(1)原式=8+215.(2)原式=22-410. (3)原式=4 6.6.解:原式取倒数得x 4+x 2+1x 2=x 2+1x 2+1=⎝ ⎛⎭⎪⎫x +1x 2-1=(5)2-1=4.∴原式=14.7.B 8.329.解:∵x =1-2,y =1+2,∴x -y =(1-2)-(1+2)=-22,xy =(1-2 )(1+ 2 )=-1.∴x 2+y 2-xy -2x +2y =(x -y )2-2(x -y )+xy =(-2 2 )2-2×(-22)+(-1)=7+4 2.方法点拨:根据原式以及字母取值的特点,将原式配方、整合成含有x -y 和xy 的形式,利用整体思想代入求值.10.解:由已知得x =3+22,y =3-2 2.∴x +y =6,xy =1,∴原式=x 2+y 2xy -4=(x +y )2-6xy xy=62-6×1=30.思想方法专题:矩形中的折叠问题——体会折叠中的方程思想及数形结合思想◆类型一 折叠中求角度1.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C ′处,折痕为EF .若∠EFC ′=125°,那么∠ABE 的度数为( )A .15°B .20°C .25°D .30°第1题图 第2题图2.如图,某数学兴趣小组开展以下折纸活动:(1)对折矩形纸片ABCD ,使AD 和BC 重合,得到折痕EF ,把纸片展平;(2)再一次折叠纸片,使点A 落在EF 上,并使折痕经过点B ,得到折痕BM ,同时得到线段BN .观察探究可以得到∠ABM 的度数是( )A .25°B .30°C .36°D .45° ◆类型二 折叠中求线段长3.(2017·安顺中考)如图,在矩形纸片ABCD 中,AD =4cm ,把纸片沿直线AC 折叠,点B 落在E 处,AE 交DC 于点O ,若AO =5cm ,则AB 的长为( ) A .6cm B .7cm C .8cm D .9cm第3题图 第4题图4.(2017·宜宾中考)如图,在矩形ABCD 中,BC =8,CD =6,将△ABE 沿BE 折叠,使点A 恰好落在对角线BD 上的F 处,则DE 的长是( )A .3 B.245 C .5 D.89165.★(2016·威海中考)如图,在矩形ABCD 中,AB =4,BC =6,点E 为BC 的中点,将△ABE 沿AE 折叠,使点B 落在矩形内的点F 处,连接CF ,则CF的长为________.◆类型三折叠中求面积6.(2017·鄂州中考)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDE;(2)若AB=4,BC=8,求图中阴影部分的面积.7.★(2016·福州中考)如图,矩形ABCD中,AB=4,AD=3,M是边CD上的一点,将△ADM沿直线AM对折,得到△ANM.(1)当AN平分∠MAB时,求DM的长;(2)连接BN,当DM=1时,求△ABN的面积.参考答案与解析1.B 解析:由折叠可知∠EFC =∠EFC ′=125°.∵在矩形ABCD 中,AD ∥BC ,∴∠DEF =180°-125°=55°.根据折叠可知∠BEF =∠DEF =55°,∴∠BED =110°.∵四边形ABCD 为矩形,∠A =90°,∴∠ABE =110°-90°=20°.故选B. 2.B 3.C 4.C5. 185 解析:如图,连接BF 交AE 于H ,由折叠的性质可知BE =FE ,AB =AF ,∠BAE =∠F AE ,∴AH ⊥BF ,BH =FH .∵BC =6,点E 为BC 的中点,∴BE =12E B C =3.又∵AB =4,∴在Rt △ABE 中,由勾股定理得AE =AB 2+BE 2=5.∵S △ABE =12AB ·BE =12AE ·BH ,∴BH =125,则BF =2BH =245.∵E 是BC 的中点,∴FE =BE =EC ,∴∠BFC =90°.在Rt △BFC 中,由勾股定理得CF =BC 2-BF 2=62-⎝ ⎛⎭⎪⎫2452=185.6.(1)证明:∵四边形ABCD 是矩形,∴AB =CD ,∠B =∠D =90°.∵将矩形ABCD 沿对角线AC 翻折,点B 落在点F 处,∴∠F =∠B ,AB =AF ,∴AF =CD ,∠F=∠D .在△AFE 与△CDE 中,⎩⎨⎧∠F =∠D ,∠AEF =∠CED ,AF =CD ,∴△AFE ≌△CDE .(2)解:∵AB =4,BC =8,∴CF =AD =8,AF =CD =AB =4.∵△AFE ≌△CDE ,∴EF =DE .在Rt △CED 中,由勾股定理得DE 2+CD 2=CE 2,即DE 2+42=(8-DE )2,∴DE =3,∴AE =8-3=5,∴S 阴影=12×4×5=10.7.解:(1)由折叠性质得△ANM ≌△ADM ,∴∠MAN =∠DAM .∵AN 平分∠MAB ,∴∠MAN =∠NAB ,∴∠DAM =∠MAN =∠NAB .∵四边形ABCD 是矩形,∴∠DAB =90°,∴∠DAM =30°,∴AM =2DM .在Rt △ADM 中,∵AD =3,∴由勾股定理得AM 2-DM 2=AD 2,即(2DM )2-DM 2=32,解得DM = 3.(2)延长MN 交AB 的延长线于点Q ,如图所示.∵四边形ABCD 是矩形,∴AB ∥DC ,∴∠DMA=∠MAQ,由折叠性质得△ANM≌△ADM,∴∠ANM=∠D=90°,∠DMA=∠AMQ,AN=AD=3,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ.设NQ=x,则AQ=MQ=MN+NQ=1+x.∵∠ANM=90°,∴∠ANQ=90°.在Rt△ANQ中,由勾股定理得AQ2=AN2+NQ2,即(x+1)2=32+x2,解得x=4,∴NQ=4,AQ=5.∵△NAB和△NAQ在AB边上的高相等,AB=4,AQ=5,∴S△NAB =45S△NAQ=45×12×AN·NQ=45×12×3×4=245.解题技巧专题:正方形中特殊的证明(计算)方法——解决正方形中的最值及旋转变化模型问题◆类型一利用正方形的旋转性质解题1.如图,在四边形ABCD中,∠ADC=∠ABC=90°,AD=CD,DP⊥AB于P,若四边形ABCD的面积是18,则DP的长是__________.2.如图,在正方形ABCD中,点E,F分别在BC,CD上,∠EAF=45°.求证:S△AEF =S△ABE+S△ADF.3.如图,在正方形ABCD 中,对角线AC ,BD 交于点O ,P 为正方形ABCD 外一点,且BP ⊥CP . 求证:BP +CP =2OP .◆类型二 利用正方形的对称性解题4.如图,正方形ABCD 的面积为12,△ABE 是等边三角形,点E 在正方形ABCD 内,在对角线AC 上有一点P ,使PD +PE 最小,则这个最小值为( ) A. 3 B .23 C .2 6 D.6第4题图 第5题图5.如图,正方形ABCD 的边长为4,E 为BC 上一点,BE =1,F 为AB 上一点,AF =2,P 为AC 上一点,则PF +PE 的最小值为________.6.如图,在正方形ABCD 中,点E 是CD 的中点,AC ,BE 交于点F ,MF ∥AE 交AB 于M . 求证:DF =MF .参考答案与解析1.322.证明:延长CB到点H,使得HB=DF,连接AH.∵四边形ABCD是正方形,∴∠ABH=∠D=90°,AB=AD.∴△ADF绕点A顺时针旋转90°后能和△ABH重合.∴AH=AF,∠BAH=∠DAF.∵∠HAE=∠HAB+∠BAE=∠DAF+∠BAE=90°-∠EAF=90°-45°=45°,∴∠HAE=∠EAF=45°.又∵AE=AE,∴△AEF与△AEH关于直线AE对称,∴S△AEF =S△AEH=S△ABE+S△ABH=S△ABE+S△ADF.3.证明:∵四边形ABCD是正方形,∴OB=OC,∠BOC=90°.将△OCP顺时针旋转90°至△OBE(如图所示),∴OE=OP,BE=CP,∠OBE=∠OCP,∠BOE=∠COP.∵BP⊥CP,∴∠BPC=90°.∵∠BOC+∠OBP+∠BPC+∠OCP=360°,∴∠OBP+∠OCP=180°,∴∠OBP+∠OBE=180°,∴E,B,P在同一直线上.∵∠POC+∠POB=∠BOC=90°,∠BOE=∠COP,∴∠BOE+∠POB=90°,即∠EOP=90°.在Rt△EOP中,由勾股定理得PE=OE2+OP2=OP2+OP2=2OP.∵PE=BE+BP,BE=CP,∴BP+CP=2OP.4.B解析:连接PB.∵点P在正方形ABCD的对角线AC上,∴PD=PB,∴PD +PE的最小值就是PB+PE的最小值,∴PD+PE的最小值就是BE.∵△ABE是等边三角形,∴BE=AB.∵S正方形ABCD=12,∴BE2=AB2=12,即BE=23,故选B.5.176.证明:∵B,D关于AC对称,点F在AC上,∴BF=DF.∵四边形ABCD是正方形,∴AD=BC,∠ADE=∠BCE.∵点E是CD的中点,∴DE=CE.在△ADE 和△BCE中,∵AD=BC,∠ADE=∠BCE,DE=CE,∴△ADE≌△BCE,∴AE =BE,∴∠BAE=∠ABE.∵MF∥AE,∴∠BAE=∠BMF,∴∠BMF=∠ABE,∴MF=BF.∵BF=DF,∴DF=MF.解题技巧专题:函数图象信息题——数形结合,快准解题◆类型一 根据实际问题判断函数图象1.为了加强爱国主义教育,每周一学校都要举行庄严的升旗仪式,同学们凝视着冉冉上升的国旗.下列哪个函数图象能近似地刻画上升的国旗离旗杆顶端的距离与时间的关系( )2.(2017·牡丹江中考)下列图象中,能反映等腰三角形顶角度数y(度)与底角度数x(度)之间的函数关系的是( )◆类型二 获取实际问题中图象的信息3.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(m 2)与工作时间t(h )之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是【方法12】( )A .300m 2B .150m 2C .330m 2D .450m 2第3题图 第4题图4.(2017·河南中考)如图①,点P 从△ABC 的顶点B 出发,沿B →C →A 匀速运动到点A ,图②是点P 运动时,线段BP 的长度y 随时间x 变化的关系图象,其中M 为曲线部分的最低点,则△ABC 的面积是________.5.(2017·西宁中考)首条贯通丝绸之路经济带的高铁线——宝兰客专进入全线拉通试验阶段,宝兰客专的通车对加快西北地区与“一带一路”沿线国家和地区的经贸合作、人文交流具有十分重要的意义,试运行期间,一列动车从西安开往西宁,一列普通列车从西宁开往西安,两车同时出发,设普通列车行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示y 与x 之间的函数关系,根据图象进行一下探究:【方法12】 【信息读取】(1)西宁到西安两地相距________千米,两车出发后________小时相遇;(2)普通列车到达终点共需________小时,普通列车的速度是________千米/时. 【解决问题】(3)求动车的速度;(4)普通列车行驶t 小时后,动车到达终点西宁,求此时普通列车还需行驶多少千米到达西安.◆类型三 一次函数图象与字母系数的关系6.若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )7.在一次函数y =12ax -a 中,y 随x 的增大而减小,则其图象可能是( )参考答案与解析 1.A 2.C3.B 解析:设点A (4,1200),点B (5,1650),直线AB 的解析式为y =kx +b,则⎩⎨⎧4k +b =1200,5k +b =1650,解得⎩⎨⎧k =450,b =-600,故直线AB 的解析式为y =450x -600.当x =2时,y =450×2-600=300,300÷2=150(m 2).故选B.4.12 解析:根据图象可知点P 在BC 上运动时,此时BP 不断增大,由图象可知:点P 从B 运动到C 的过程中,BP 的最大值为5,即BC =5.点P 运动到点A 时,BP =AB =5.∴△ABC 是等腰三角形.∵M 是曲线部分的最低点,∴此时BP 最小,即BP ⊥AC 时,BP =4,∴由勾股定理得PC =3,∴AC =6,∴△ABC 的面积为12×4×6=12,故答案为12. 5.解:(1)1000 3(2)12 2503(3)设动车的速度为x 千米/时,根据题意,得3x +3×2503=1000,解得x =250. 答:动车的速度为250千米/时.(4)∵t =1000250=4(小时),∴4×2503=10003(千米),∴1000-10003=20003(千米),∴此时普通列车还需行驶20003千米到达西安. 6.B 7.B思想方法专题:勾股定理中的思想方法◆类型一 分类讨论思想一、直角边与斜边不明需分类讨论1.一直角三角形的三边长分别为2,3,x ,那么以x 为边长的正方形的面积为【易错3】( ) A .13 B .5C .13或5D .42.直角三角形的两边长是6和8,则这个三角形的面积是____________. 二、锐角或钝角三角形形状不明需分类讨论3.★(2016·东营中考)在△ABC 中,AB =10,AC =210,BC 边上的高AD =6,则BC 的长为【易错4】( ) A .10 B .8C .6或10D .8或104.在等腰△ABC中,已知AB=AC=5,△ABC的面积为10,则BC=____________.【易错4】◆类型二方程思想一、实际问题中结合勾股定理列方程求线段长5.如图,小华将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为________.二、折叠问题中结合勾股定理列方程求线段长6.如图,将长方形ABCD沿EF折叠,使顶点C恰好落在AB边的中点C′上.若AB=6,BC=9,求BF的长.【方法4】三、利用公共边相等结合勾股定理列方程求线段长7.(2016·益阳中考)如图,在△ABC中,AB=15,BC=14,AC=13,求△ABC 的面积.◆类型三 利用转化思想求最值8.(2017·涪陵区期末)一只蚂蚁从棱长为4cm 的正方体纸箱的A 点沿纸箱外表面爬到B 点,那么它的最短路线的长是________cm .【方法5】9.如图,A ,B 两个村在河CD 的同侧,且AB =13km ,A ,B 两村到河的距离分别为AC =1km ,BD =3km .现要在河边CD 上建一水厂分别向A ,B 两村输送自来水,铺设水管的工程费每千米需3000元.请你在河岸CD 上选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用W(元).【方法5】参考答案与解析 1.C 2.24或673.C 解析:根据题意画出图形,如图所示,图①中,AB =10,AC =210,AD =6.在Rt △ABD 和Rt △ACD 中,根据勾股定理得BD =AB 2-AD 2=102-62=8,CD =AC 2-AD 2=(210)2-62=2,此时BC =BD +CD =8+2=10;图②中,同理可得BD =8,CD =2,此时BC =BD -CD =8-2=6.综上所述,BC 的长为6或10.故选C.4.25或45 解析:如图①,△ABC 为锐角三角形,过点C 作CD ⊥AB ,交AB 于点D .∵S △ABC =10,AB =5,∴12AB ·CD =10,解得CD =4.在Rt△ACD 中,由勾股定理得AD=AC2-CD2=52-42=3,∴BD=AB-AD=5-3=2.在Rt△CBD中,由勾股定理得BC=BD2+CD2=22+42=25;如图②,△ABC为钝角三角形,过点C作CD⊥AB,交BA的延长线于点D.同上可得CD=4.在Rt△ACD中,AC=5,由勾股定理得AD=AC2-CD2=52-42=3.∴BD=BA+AD=5+3=8.在Rt△BDC中,由勾股定理得BC=BD2+CD2=82+42=4 5.综上所述,BC的长度为25或4 5.5.17m6.解:∵折叠前后两个图形的对应线段相等,∴CF=C′F.设BF=x.∵BC=9,∴C′F=CF=BC-BF=9-x.∵C′是AB的中点,AB=6,∴BC′=12E A B=3.在Rt△C′BF中,由勾股定理得C′F2=BF2+C′B2,即(9-x)2=x2+32,解得x=4,即BF的长为4.7.解:过A作AD⊥BC交BC于点D.在△ABC中,AB=15,BC=14,AC=13,设BD=x,则CD=BC-BD=14-x.在Rt△ABD和Rt△ACD中,由勾股定理得AD2=AB2-BD2=152-x2,AD2=AC2-CD2=132-(14-x)2,即152-x2=132-(14-x)2,解得x=9.在Rt△ABD中,由勾股定理得AD=AB2-BD2=152-92=12.∴S△ABC =12BC·AD=12×14×12=84.8.459.解:如图,作点A关于CD的对称点A′,连接BA′交CD于O,点O即为水厂的位置.过点A′作A′E∥CD交BD的延长线于点E,过点A作AF⊥BD于点F,则AF=A′E,DF=AC=1km,DE=A′C=1km.∴BF=BD-FD=3-1=2(km).在Rt△ABF中,AF2=AB2-BF2=13-22=9,∴AF=3km.∴A′E=3km.在Rt△A′BE中,BE=BD+DE=4km,由勾股定理得A′B=A′E2+BE2=32+42=5(km).∴W=3000×5=15000(元).故铺设水管的总费用为15000元.解题技巧专题:勾股定理与面积问题——全方位求面积,一网搜罗◆类型一 三角形中利用面积法求高1.直角三角形的两条直角边的长分别为5cm ,12cm ,则斜边上的高线的长为( ) A.8013cm B .13cm C.132cm D.6013cm2.(2017·乐山中考)点A 、B 、C 在格点图中的位置如图所示,格点小正方形的边长为1,则点C 到线段AB 所在直线的距离是________. ◆类型二 结合乘法公式巧求面积或长度3.已知Rt △ABC 中,∠C =90°,若a +b =12cm ,c =10cm ,则Rt △ABC 的面积是( )A .48cm 2B .24cm 2C .16cm 2D .11cm 24.若一个直角三角形的面积为6cm 2,斜边长为5cm ,则该直角三角形的周长是( )A .7cmB .10cmC .(5+37)cmD .12cm5.(2017·襄阳中考)“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3 B.4 C.5 D.6◆类型三巧妙利用割补法求面积6.如图,已知AB=5,BC=12,CD=13,DA=10,AB⊥BC,求四边形ABCD 的面积.7.如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2,求四边形ABCD的面积.【方法6】◆类型四利用“勾股树”或“勾股弦图”求面积8.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为9cm,则正方形A,B,C,D的面积之和为________cm2.9.在我国古算书《周髀算经》中记载周公与商高的谈话,其中就有勾股定理的最早文字记录,即“勾三股四弦五”,亦被称作商高定理.如图①是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图②是将图①放入长方形内得到的,∠BAC =90°,AB =3,AC =4,则D ,E ,F ,G ,H ,I 都在长方形KLMJ 的边上,那么长方形KLMJ 的面积为________.参考答案与解析 1.D2. 355 解析:如图,连接AC ,BC ,设点C 到线段AB 所在直线的距离是h .∵S △ABC =3×3-12×2×1-12×2×1-12×3×3-1=9-1-1-92-1=32,AB =12+22=5,∴12×5h =32,∴h =355.故答案为355.3.D 4.D 5.C6.解:连接AC ,过点C 作CE ⊥AD 交AD 于点E .∵AB ⊥BC ,∴∠CBA =90°.在Rt △ABC 中,由勾股定理得AC =AB 2+BC 2=52+122=13.∵CD =13,∴AC =CD .∵CE ⊥AD ,∴AE =12AD =12×10=5.在Rt △ACE 中,由勾股定理得CE =AC 2-AE 2=132-52=12.∴S 四边形ABCD =S △ABC +S △CAD =12E A B ·BC +12E A D ·CE =12×5×12+12×10×12=90.7.解:延长AD ,BC 交于点E .∵∠B =90°,∠A =60°,∴∠E=30°.∴AE =2AB。
2024年最新人教版初二数学(下册)模拟试卷及答案(各版本)

2024年最新人教版初二数学(下册)模拟试卷及答案(各版本)一、选择题:5道(每题1分,共5分)1. 下列数中,最大的数是()A. 2^3B. 3^2C. (3^2)^2D. 2^(3^2)2. 下列图形中,既是轴对称图形又是中心对称图形的是()A. 矩形B. 梯形C. 正三角形D. 菱形3. 已知x²=25,那么x的值为()A. 5B. 5C. ±5D. 5或54. 下列函数中,奇函数是()A. y=x²B. y=2xC. y=x³D. y=|x|5. 若a²+b²=25,则下列选项中正确的是()A. a+b=5B. ab=0C. ab=5D. a²+b²=625二、判断题5道(每题1分,共5分)1. 两个负数相乘的结果一定是正数。
()2. 平方根和立方根都只有一个解。
()3. 任何数都有倒数。
()4. 两个奇数相加的结果是偶数。
()5. 任何数乘以1都等于它本身。
()三、填空题5道(每题1分,共5分)1. 3的平方根是______。
2. 若a=3,b=3,则a+b=______。
3. 5的立方是______。
4. 若x²=9,则x的值为______。
5. 任何数乘以0都等于______。
四、简答题5道(每题2分,共10分)1. 请简述有理数的定义。
2. 请简述偶函数的定义。
3. 请简述一元二次方程的解法。
4. 请简述平行四边形的性质。
5. 请简述菱形的性质。
五、应用题:5道(每题2分,共10分)1. 已知a=2,b=3,求a²+b²的值。
2. 已知x²6x+9=0,求x的值。
3. 计算下列表达式的值:3²+4²。
4. 已知一个正方形的边长为a,求该正方形的面积。
5. 计算下列表达式的值:√(64)+√(49)。
六、分析题:2道(每题5分,共10分)1. 已知a²+b²=25,求a和b的值。
人教版八年级数学下册第十六章-二次根式专项攻克练习题(名师精选)

人教版八年级数学下册第十六章-二次根式专项攻克考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1x的取值范围是()A.5x≥B.5x<-C.5x≥-x>-D.52、实数a,b在数轴上对应的位置如图所示,化简|a﹣b|)A.a B.﹣a C.2b D.2b﹣a3、实数a,b||+的结果为()a bA.2a-b B.-3b C.b-2a D.3b4、下列二次根式中,最简二次根式是()A B C D5、若01x <<,则2x ,x 1x ,这四个数中( )A .1x 最大,2x 最小 B .x 最大,1x 最小C .2xD .x 最大,2x 最小6、下列各式是最简二次根式的是( )A B C D7、下列计算正确的是( ).A B 4=CD8、实数a ,b a b -=( )A .2a -bB .bC .-bD .2a +b9、下列计算正确的是( )A 2=B 2=C D .)112=10 )A B C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1=x的取值范围是_______.2x的取值范围是___________.3、计算:2(-=______.4___________.5.三、解答题(5小题,每小题10分,共计50分)1、【阅读材料】小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+2√2=(1+√2)2.善于思考的小明进行了以下探索:若设a+b√2=(m+n√2)2=m2+2n2+2mn√2(其中a、b、m、n均为整数),则有a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b√2的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:【问题解决】(1)若a+b√5=(m+n√5)2,当a、b、m、n均为整数时,则a=,b=.(均用含m、n的式子表示)(2)若x+4√3=(m+n√3)2,且x、m、n均为正整数,分别求出x、m、n的值.【拓展延伸】(3)化简√5+2√6=.2、计算:√18−(π+2021)0+(12)−1.3、计算:(1)(√5+√3)(√5−√3)+2;(2)√24×√13−3√2÷√63.4、计算:−√3×(√6+3√3).5、计算:(1)√27+(−13)2−|2−√3|;(2)√2−√3+|√2−√3|−√−83+(3.14﹣π)0; (3)解方程组{2π−π=1−3π+2π=3; (4)解不等式组{5π−3<π+3π+12≤2π−1 .---------参考答案-----------一、单选题1、D【解析】【分析】 根据二次根式被开方数是非负数列出不等式求解即可.【详解】50x +≥,解得,5x ≥-;故选:D .【点睛】本题考查了二次根式有意义的条件,解题关键是明确二次根式被开方数大于或等于0.2、A【解析】【分析】根据数轴可知0b a <<,然后根据绝对值的性质、二次根式的性质进行化简即可.【详解】解:由数轴可知:0b a <<,∴0a b ->,∴原式=()a b b a ---=,故选:A .【点睛】本题考查了二次根式的性质与化简,绝对值的化简,解题的关键使根据数轴得出0b a <<,属于基础题型.3、B【解析】【分析】根据数轴上点的坐标特点,判断出可知b <a <0,且|b |>|a|,所以a -2b >0,a +b <0,再把二次根式化简即可.【详解】解:根据数轴可知b <a <0,且|b |>|a |,所以a -2b >0,a +b <0,||a b +a b +(a +b )=a -2b -a -b=-3b .故选:B .a ≥0=a ;当a <0a ,解题关键是先判断所求的代数式的正负性.4、B【解析】【分析】根据最简二次根式的定义对各选项分析判断后利用排除法求解.【详解】解:ABCD故选:B .【点睛】本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.5、A【解析】【分析】由01x <<,可知10x -<,01<<,先利用作差法求得()210x x x x -=->即2x x >,同理求得x <再由01x <<,01<<,得到01<<10x =<,由此即可得到答案.解:∵01x <<,∴10x -<,01<,∴()210x x x x -=->10<,∴2x x >,)10x =<,∴x <∵01x <<,01<<,∴01<<,10x =<,∴21x x x <<, 故选A .【点睛】本题主要考查了实数比较大小,二次根式的运算,解题的关键在于能够利用作差法进行求解.6、D【解析】【分析】最简二次根式满足:被开方数不含分母;被开方数中不含能开得尽方的因数或因式.据此依次分析即可.【详解】解:A 、被开方数含有分母,不是最简二次根式,不符合题意;B、被开方数含有分母,不是最简二次根式,不符合题意;C、被开方数含有开方开得尽的因数,不是最简二次根式,不符合题意;D、是最简二次根式,符合题意;故选:D.【点睛】此题考查了最简二次根式的定义,解题的关键是掌握最简二次根式.7、D【解析】【分析】根据二次根式运算法则逐项判断即可.【详解】解:2,不符合题意;=故选:D.【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式运算法则进行准确计算.8、C【解析】【分析】首先根据数轴上a 、b 的位置,判断出a b -、a 的符号,然后再进行化简.【详解】解:由图知:0a b <<;0a b -<,0a <;()()a b a a b a a b b ⎡⎤-=----=-+-=-⎣⎦,故选:C .【点睛】本题考查了数轴,绝对值,二次根式的性质的应用,能正确去绝对值符号及化简二次根式是解题关键.9、D【解析】【分析】根据二次根式的四则运算法则依次计算即可判断.【详解】解:A 2=BCD 、)21112=-=,选项正确;故选:D .【点睛】题目主要考查二次根式的混合运算,熟练掌握运算法则是解题关键.10、C【解析】【分析】首先根据二次根式有意义的条件判断0a<,再根据二次根式的性质进行化简即可.【详解】故选:C.【点睛】本题主要考查了二次根式的性质与化简,正确化简二次根式是解题关键.二、填空题1、34x≤<【分析】3040xx-≥⎧⎨-⎩>,再解不等式组可得答案. 【详解】解:=3040xx-≥⎧∴⎨-⎩>解30x-≥可得3,x≥解40x->可得4,x<34,x∴≤<∴ x的取值范围是3 4.≤<x故答案为:34x≤<【点睛】)a b≥>”是解题的关键.0,02、2x≥【分析】根据二次根式有意义的条件可直接进行求解.【详解】∴20x-≥,∴2x≥;故答案为2x≥.【点睛】本题主要考查二次根式有意义的条件,熟练掌握二次根式有意义的条件是解题的关键.3、12【分析】根据二次根式的性质计算即可求解.【详解】解:222((2)4312-=-⨯=⨯=,故答案为:12.【点睛】此题考查的是二次根式的化简,掌握二次根式的性质是解题关键.4、2.828【分析】=【详解】=≈⨯=.2 1.414 2.828故答案为:2.828【点睛】本题主要考查了二次根式的性质,熟练掌握二次根式的性质是解题的关键.5、【分析】先将二次根式化为最简,然后合并同类二次根式即可.【详解】=故填【点睛】本题考查了二次根式的加减运算,属于基础题,掌握二次根式的化简及同类二次根式的合并是解决本题的关键.三、解答题1、(1)m 2+5n 2,2mn ;(2)当m =1,n =2时,x=13;当m =2,n =1时,x =7;(3)√2+√3.【解析】【分析】(1)利用完全平方公式展开可得到用m 、n 表示出a 、b ;(2)利用(1)中结论得到4=2mn ,利用x 、m 、n 均为正整数得到{π=1π=2 或{π=2π=1,然后利用x =m 2+3n 2计算对应x 的值;(3)设√5+2√6=m +n √6,两边平方5+2√6=(π+π√6)2,可得{π2+6π2=5ππ=1消去n 得π4−5π2+6=0,可求m =√2或m=√3即可. 【详解】解:(1)设a +b √5=(m +n √5)2=m 2+5n 2+2mn √5(其中a 、b 、m 、n 均为整数), 则有a =m 2+5n 2,b =2mn ;故答案为m 2+5n 2,2mn ;(2)∵π+4√3=(π+π√3)2=π2+3π2+2ππ√3∴4=2mn ,∴mn =2,∵x 、m 、n 均为正整数,∴{π=1π=2 或{π=2π=1, 当m =1,n =2时,x =m 2+3n 2=1+3×4=13;当m =2,n =1时,x =m 2+3n 2=4+3×1=7;即x 的值为为13或7;(3)设√5+2√6=m +n √6,∴5+2√6=(π+π√6)2,∴{π2+6π2=52ππ=2, ∴π=1π,π2+6(1π)2=5,∴π4−5π2+6=0,∴(m 2-2)(m 2-3)=0,∴m =√2,m =√3,∴π=√22,π=√33. ∴{π=√2π=√3 或{π=√3π=√2∴√5+2√6=√2+√22√6=√2+√3,√5+2√6=√3+√33×√6=√3+√2. 故答案为√2+√3.【点睛】本题考查二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.一元高次方程,二元方程组,在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2、3√2+1【解析】【分析】根据二次根式的化简、零指数幂的计算和负指数幂的计算得出结果.【详解】原式=3√2−1+2=3√2+1.【点睛】本题考查实数的运算,解题的关键是掌握各类运算法则.3、(1)4;(2)2√2−3√3【解析】【分析】(1)先计算乘法,然后计算加法,即可得到答案;(2)先计算乘法和除法,然后计算减法,即可得到答案.【详解】解:(1)原式=5-3+2=4;(2)原式=√24×13−3√2×√62=√8−3√3=2√2−3√3;【点睛】本题考查了二次根式的加减乘除混合运算,平方差公式,解题的关键是熟练掌握运算法则正确的进行计算.4、−3√2−9【解析】【分析】根据二次根式的混合运算法则计算即可.【详解】解:原式=−√3×√6+(−√3)×3√3=−√3×6−3√3×3=−3√2−9.【点睛】本题考查二次根式的混合运算,熟练掌握该知识点是解题关键.5、(1)4√3−189;(2)3−2√2;(3){π=5π=9;(4)1≤π<32 【解析】【分析】(1)根据二次根式的性质化简,有理数的乘方,绝对值的计算法则进行求解即可;(2)根据分母有理数,立方根,绝对值,零指数幂的计算法则求解即可;(3)利用加减消元法解方程即可;(4)先求出每个不等式的解集,然后求出不等式组的解集即可.【详解】解:(1)√27+(−13)2−|2−√3| =3√3+19−(2−√3) =3√3+19−2+√3 =4√3−189;(2)√2−√3+|√2−√3|−√−83+(3.14−π)0 √2+√3(√2−√3)(√2+√3)+√3−√2+2+1=√2+√32−3+√3−√2+3=−√2−√3+√3−√2+3=3−2√2;(3){2π−π=1①−3π+2π=3②把①×2得:4π−2π=2③,用③+②得π=5,把π=5代入①得10−π=1,解得π=9,∴方程组的解为:{π=5π=9; (4){5π−3<π+3①π+12≤2π−1② 解不等式①得:π<32,解不等式②得:π≥1,∴不等式组的解集为:1≤π<32.【点睛】本题主要考查了解二元一次方程组,一元一次不等式组,实数的运算,分母有理化等等,熟知相关计算法则是解题的关键.。
2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)

2024年最新人教版初二数学(下册)模拟考卷及答案(各版本)一、选择题:每题1分,共5分1. 下列数中,既是有理数也是无理数的是( )A. 0B. 3/2C. √2D. 52. 已知函数f(x)=x²3x+2,那么f(1)= ( )A. 0B. 2C. 3D. 23. 在三角形ABC中,AB=AC,那么角B等于角C的( )A. 1/2B. 1C. 2D. 无法确定4. 下列哪个数是最大的( )A. √3B. √2C. √5D. √45. 已知函数f(x)=2x+3,那么f(2)= ( )A. 1B. 1C. 2D. 2二、判断题:每题1分,共5分1. 0是整数,也是有理数。
( )2. 任何一个正整数都能被表示为两个质数的和。
( )3. 两条平行线的斜率相等。
( )4. 任何两个奇数之和都是偶数。
( )5. √3是整数。
( )三、填空题:每题1分,共5分1. 2³=_______2. 已知函数f(x)=3x2,那么f(2)=_______3. 在三角形ABC中,AB=AC,那么角B等于_______4. 1/2的倒数是_______5. 2的平方根是_______四、简答题:每题2分,共10分1. 请简述有理数的定义。
2. 请简述平行线的性质。
3. 请简述一次函数的性质。
4. 请简述勾股定理。
5. 请简述概率的定义。
五、应用题:每题2分,共10分1. 已知函数f(x)=x²2x+1,求f(3)的值。
2. 在三角形ABC中,AB=3,AC=4,BC=5,求三角形ABC的面积。
3. 一个袋子里有3个红球,2个绿球,求摸出一个红球的概率。
4. 解方程:2x+3=7。
5. 已知函数f(x)=2x+1,求f(3)的值。
六、分析题:每题5分,共10分1. 已知函数f(x)=x²4x+3,求f(x)的最小值。
2. 在三角形ABC中,AB=AC,BC=6,求三角形ABC的面积。
人教版八年级数学下册第18章平行四边形专项训练2(含答案)

人教版八年级数学下册第18章平行四边形专项训练2(含答案)专训1.矩形性质与判定的灵活运用名师点金:矩形是特殊的平行四边形,它具有一般平行四边形的所有性质,同时还具有一些独特的性质.它的性质可归结为三个方面:(1)从边看:矩形的对边平行且相等;(2)从角看:矩形的四个角都是直角;(3)从对角线看:矩形的对角线互相平分且相等.判定一个四边形是矩形可从两个角度考虑:一是判定它有三个角为直角;二是先判定它为平行四边形,再判定它有一个角为直角或两条对角线相等.利用矩形的性质与判定求线段的长(转化思想)1.如图,将矩形纸片ABCD的四个角向内折起,点A,点B落在点M处,点C,点D落在点N处,恰好拼成一个无缝隙无重叠的四边形EFGH,若EH=3 cm,EF=4 cm,求AD的长.(第1题)利用矩形的性质与判定判断线段的数量关系2.如图,在△ABC中,∠A=90°,D是AC上的一点,BD=DC,P是BC 上的任意一点,PE⊥BD,PF⊥AC,E,F为垂足.试判断线段PE,PF,AB之间的数量关系,并说明理由.(第2题)利用矩形的性质与判定证明角相等3.如图,在▱ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.(1)求证:四边形BFDE是矩形;(2)若CF=3,BF=4,DF=5,求证:AF平分∠DAB.(第3题)利用矩形的性质与判定求面积4.如图,已知点E是▱ABCD中BC边的中点,连接AE并延长交DC的延长线于点F.(1)连接AC,BF,若∠AEC=2∠ABC,求证:四边形ABFC为矩形;(2)在(1)的条件下,若△AFD是等边三角形,且边长为4,求四边形ABFC 的面积.(第4题)专训2.菱形性质与判定的灵活运用名师点金:菱形具有一般平行四边形的所有性质,同时又具有一些特性,可以归纳为三个方面:(1)从边看:对边平行,四边相等;(2)从角看:对角相等,邻角互补;(3)从对角线看:对角线互相垂直平分,并且每一条对角线平分一组对角.判定一个四边形是菱形,可先判定这个四边形是平行四边形,再判定一组邻边相等或对角线互相垂直,也可直接判定四边相等.利用菱形的性质与判定求菱形的高1.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.(1)求证:四边形ADCE是菱形;(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)(第1题)利用菱形的性质与判定求菱形对角线长2.如图,在矩形AFCG中,BD垂直平分对角线AC,交CG于D,交AF 于B,交AC于O.连接AD,BC.(1)求证:四边形ABCD是菱形;(2)若E为AB的中点,DE⊥AB,求∠BDC的度数;(3)在(2)的条件下,若AB=1,求菱形ABCD的对角线AC,BD的长.(第2题)利用菱形的性质与判定解决周长问题3.如图,在Rt△ABC中,∠ACB=90°,D,E分别为AB,AC边的中点,连接DE,将△ADE绕点E旋转180°,得到△CFE,连接AF.(1)求证:四边形ADCF是菱形;(2)若BC=8,AC=6,求四边形ABCF的周长.(第3题)利用菱形的性质与判定解决面积问题4.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F.(1)求证:△AEF≌△DEB;(2)证明四边形ADCF是菱形;(3)若AC=4,AB=5,求菱形ADCF的面积.(第4题)专训3.正方形性质与判定的灵活运用名师点金:正方形既是矩形,又是菱形,它具有矩形﹨菱形的所有性质,判定一个四边形是正方形,只需保证它既是矩形又是菱形即可.利用正方形的性质解决线段和差倍分问题1.已知:在正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC(或它们的延长线)于点M,N.(1)如图①,当∠MAN绕点A旋转到BM=DN时,易证:BM+DN=MN.当∠MAN绕点A旋转到BM≠DN时,如图②,请问图①中的结论是否还成立?如果成立,请给予证明;如果不成立,请说明理由.(2)当∠MAN绕点A旋转到如图③的位置时,线段BM,DN和MN之间有怎样的数量关系?请写出你的猜想,并证明.(第1题)利用正方形的性质证明线段位置关系2.如图,在正方形ABCD中,对角线AC,BD相交于点O,E,F分别在OD,OC上,且DE=CF,连接DF,AE,AE的延长线交DF于点M.求证:AM⊥DF.(第2题)正方形性质与判定的综合运用3.如图,P,Q,R,S四个小球分别从正方形的四个顶点A,B,C,D同时出发,以同样的速度分别沿AB,BC,CD,DA的方向滚动,其终点分别是B,C,D,A.(1)不管滚动多长时间,求证:连接四个小球所得的四边形PQRS总是正方形.(2)四边形PQRS在什么时候面积最大?(3)四边形PQRS在什么时候面积为原正方形面积的一半?并说明理由.(第3题)专训4.特殊平行四边形性质与判定的灵活运用名师点金:特殊平行四边形的性质区别主要从边﹨角及对角线三个方面进行区分;而判定主要从建立在其他特殊四边形的基础上再附加什么条件方面进行判定.矩形的综合性问题a.矩形性质的应用1.如图,将矩形纸片ABCD沿对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E.(1)试找出一个与△AED全等的三角形,并加以证明;(2)若AB=8,DE=3,P为线段AC上的任意一点,PG⊥AE于点G,PH⊥EC 于点H,试求PG+PH的值.(第1题)b.矩形判定的应用2.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:(1)四边形OCED是矩形;(2)OE=BC.(第2题)c.矩形性质和判定的应用3.如图①,在△ABC中,AB=AC,点P是BC上任意一点(不与B,C重合),PE⊥AB,PF⊥AC,BD⊥AC.垂足分别为E,F,D.(1)求证:BD=PE+PF.(2)当点P在BC的延长线上时,其他条件不变.如图②,BD,PE,PF之间的上述关系还成立吗?若不成立,请说明理由.(第3题)菱形的综合性问题a.菱形性质的应用4.已知:如图,在菱形ABCD中,F是BC上任意一点,连接AF交对角线BD于点E,连接EC.(1)求证:AE=EC.(2)当∠ABC=60°,∠CEF=60°时,点F在线段BC上的什么位置?并说明理由.(第4题)b.菱形判定的应用5.如图,在Rt△ABC中,∠B=90°,BC=53,∠C=30°.点D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t s(t>0).过点D作DF⊥BC 于点F,连接DE,EF.(1)求证:AE=DF.(2)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由.(3)当t为何值时,△DEF为直角三角形?请说明理由.(第5题)c.菱形性质和判定的应用6.(1)如图①,纸片▱ABCD中,AD=5,S▱ABCD=15.过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为()A.平行四边形B.菱形C.矩形D.正方形(2)如图②,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.①求证:四边形AFF′D是菱形;②求四边形AFF′D的两条对角线的长.(第6题)正方形的综合性问题a.正方形性质的应用7.如图,在正方形ABCD中,G是BC上任意一点,连接AG,DE⊥AG 于E,BF∥DE交AG于点F,探究线段AF,BF,EF三者之间的数量关系,并说明理由.(第7题)b.正方形判定的应用8.两个长为2 cm,宽为1 cm的矩形摆放在直线l上(如图①),CE=2 cm,将矩形ABCD绕着点C顺时针旋转α角,将矩形EFGH绕着点E逆时针旋转相同的角度.(1)当旋转到顶点D,H重合时(如图②),连接AE,CG,求证:△AED≌△GCD;(2)当α=45°时(如图③),求证:四边形MHND为正方形.(第8题)答案专训11.解:由折叠的性质知∠HEM=∠AEH,∠BEF=∠FEM,∴∠HEF=∠HEM+∠FEM=12×180°=90°.同理可得∠EHG=∠HGF=∠EFG=90°,∴四边形EFGH为矩形.∴HG∥EF,HG=EF.∴∠GHN=∠EFM.又∵∠HNG=∠FME=90°,∴△HNG≌△FME.∴HN=MF.又∵HN=HD,∴HD=MF.∴AD =AH+HD=HM+MF=HF.∵HF=EH2+EF2=32+42=5(cm),∴AD=5 cm.点拨:此题利用折叠提供的角相等,可证明四边形EFGH为矩形,然后利用三角形全等来证明HN=MF,进而证明HD=MF,从而将AD转化为直角三角形EFH的斜边HF,进而得解,体现了转化思想.(第2题)2.解:PE+PF=AB.理由:过点P作PG⊥AB于G,交BD于O,如图所示.∵PG ⊥AB ,PF ⊥AC ,∠A =90°,∴∠A =∠AGP =∠PFA =90°.∴四边形AGPF 是矩形.∴AG =PF ,PG ∥AC.∴∠C =∠GPB.又∵BD =DC ,∴∠C =∠DBP.∴∠GPB =∠DBP.∴OB =OP.∵PG ⊥AB ,PE ⊥BD ,∴∠BGO =∠PEO =90°. 在△BGO 和△PEO 中,⎩⎨⎧∠BGO =∠PEO ,∠GOB =∠EOP ,OB =OP ,∴△BGO ≌△PEO.∴BG =PE. ∵AB =BG +AG =PE +PF.3.证明:(1)∵四边形ABCD 是平行四边形,∴AB ∥CD. ∴BE ∥DF.又∵BE =DF , ∴四边形BFDE 是平行四边形. ∵DE ⊥AB , ∴∠DEB =90°.∴四边形BFDE 是矩形.(2)∵四边形ABCD 是平行四边形, ∴AB ∥DC ,AD =BC. ∴∠DFA =∠FAB.由(1)易得△BCF 为直角三角形, 在Rt △BCF 中,由勾股定理,得 BC =CF2+BF2=32+42=5, ∴AD =BC =DF =5. ∴∠DAF =∠DFA. ∴∠DAF =∠FAB , 即AF 平分∠DAB.4.(1)证明:∵四边形ABCD 为平行四边形,∴AB ∥DC.∴∠ABE =∠ECF. 又∵点E 为BC 的中点,∴BE =CE. 在△ABE 和△FCE 中,∵⎩⎨⎧∠ABE =∠FCE ,BE =CE ,∠AEB =∠FEC ,∴△ABE ≌△FCE.∴AB =CF.又AB∥CF,∴四边形ABFC为平行四边形.∴AE=EF.∵∠AEC为△ABE 的外角,∴∠AEC=∠ABC+∠EAB.又∵∠AEC=2∠ABC,∴∠ABC=∠EAB.∴AE=BE.∴AE+EF=BE+EC,即AF=BC.∴四边形ABFC为矩形.(2)解:∵四边形ABFC是矩形,∴AC⊥DF.又∵△AFD是等边三角形,∴CF=CD=DF2=2.∴AC=42-22=2 3.∴S四边形ABFC=23×2=4 3.专训21.(1)证明:∵AE∥CD,CE∥AB,∴四边形ADCE是平行四边形,又∵∠ACB =90°,D是AB的中点,∴CD=BD=AD,∴平行四边形ADCE是菱形.(2)解:如图,过点D作DF⊥CE,垂足为点F,则DF即为菱形ADCE的高,∵∠B=60°,CD=BD,∴△BCD是等边三角形,∴∠BCD=60°.∵CE∥AB,∴∠BCE=180°-∠B=120°,∴∠DCE=60°,又∵CD=BC=6,∴在Rt△CDF中,易求得DF=33,即菱形ADCE的高为3 3.(第1题)2.(1)证明:∵BD垂直平分AC,∴OA=OC,AD=CD,AB=BC.∵四边形AFCG是矩形,∴CG∥AF.∴∠CDO=∠ABO,∠DCO=∠BAO.∴△COD≌△AOB(AAS).∴CD=AB.∴AB=BC=CD=DA.∴四边形ABCD是菱形.(2)解:∵E为AB的中点,DE⊥AB,∴DE垂直平分AB.∴AD=DB.又∵AD=AB,∴△ADB为等边三角形,∴∠DBA =60°.∵CD ∥AB ,∴∠BDC =∠DBA =60°.(3)解:由菱形性质知,∠OAB =12∠BAD =30°.在Rt △OAB 中,AB =1,∴OB =12,∴OA =32.∴BD =1,AC = 3.3.(1)证明:∵将△ADE 绕点E 旋转180°得到△CFE ,∴AE =CE ,DE =FE.∴四边形ADCF 是平行四边形.∵D ,E 分别为AB ,AC 边的中点,∴DE 是△ABC 的中位线.∴DE ∥BC.∵∠ACB =90°,∴∠AED =90°.∴DF ⊥AC.∴四边形ADCF 是菱形.(2)解:在Rt △ABC 中,BC =8,AC =6,∴AB =10.∵点D 是AB 边的中点,∴AD =5.∵四边形ADCF 是菱形,∴AF =FC =AD =5.∴四边形ABCF 的周长为8+10+5+5=28.4.(1)证明:∵E 是AD 中点,∴AE =DE. ∵AF ∥BC ,∴∠FAE =∠BDE ,又∵∠AEF =∠DEB ,∴△AEF ≌△DEB(ASA ).(2)证明:由(1)知,△AEF ≌△DEB ,则AF =DB ,∵D 是BC 的中点,∴DB =DC ,∴AF =CD ,又∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC =90°,D 是BC 的中点,∴AD =DC =12BC ,∴四边形ADCF 是菱形.(3)解:设菱形ADCF 的DC 边上的高为h ,则Rt △ABC 斜边BC 上的高也为h ,∵BC =52+42=41,∴DC =12BC =412,h =4×541=2041,∴菱形ADCF的面积为:DC·h =412×2041=10.专训31.解:(1)仍有BM +DN =MN 成立.证明如下: 如图(1),过点A 作AE ⊥AN ,交CB 的延长线于点E, 易证△ABE ≌△ADN ,∴DN =BE ,AE =AN. 又∵∠MAN =45°,∴∠EAM =∠NAM =45°,AM =AM ,∴△EAM ≌△NAM.∴ME =MN.∵ME =BE +BM =DN +BM ,∴BM +DN =MN .(2)DN -BM =MN.证明如下: 如图(2),在DN 上截取DE =BM ,连接AE.∵四边形ABCD 是正方形,∴∠ABM =∠D =90°,AB =AD. 又∵BM =DE ,∴△ABM ≌△ADE.∴AM =AE ,∠BAM =∠DAE.∵∠DAB =90°,∴∠MAE =90°. ∵∠MAN =45°,∴∠EAN =45°=∠MAN.又∵AM =AE ,AN =AN , ∴△AMN ≌△AEN.∴MN =EN. ∴DN =DE +EN =BM +MN. ∴DN -BM =MN.(1)(2)(第1题)2.证明:∵AC ,BD 是正方形ABCD 的两条对角线,∴AC ⊥BD ,OA =OD =OC =OB.∵DE =CF ,∴OE =OF.在Rt △AOE 与Rt △DOF 中,⎩⎨⎧OA =OD ,∠AOE =∠DOF =90°,OE =OF ,∴Rt △AOE ≌Rt △DOF.∴∠OAE =∠ODF.∵∠DOF =90°,∴∠DFO +∠FDO =90°.∴∠DFO +∠FAE =90°.∴∠AMF =90°,即AM ⊥DF.3.(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB =BC =CD =DA.又∵不管滚动多长时间,AP =BQ =CR =DS ,∴SA =PB =QC =RD.∴△ASP ≌△BPQ ≌△CQR ≌△DRS.∴PS =QP =RQ =SR ,∠ASP =∠BPQ.∴不管滚动多长时间,四边形PQRS 是菱形.又∵∠APS +∠ASP =90°,∴∠APS +∠BPQ =90°.∴∠QPS =180°-(∠APS +∠BPQ)=180°-90°=90°.∴不管滚动多长时间,四边形PQRS 总是正方形.(2)解:当P ,Q ,R ,S 在出发时或在到达终点时面积最大,此时的面积就等于原正方形ABCD 的面积.(3)解:当P ,Q ,R ,S 四点运动到正方形四边中点时,四边形PQRS 的面积是原正方形ABCD 面积的一半.理由:设原正方形ABCD 的边长为a.当PS 2=12a 2时,在Rt △APS 中,AS =a -SD =a -AP. 由勾股定理,得AS 2+AP 2=PS 2,即(a -AP)2+AP 2=12a 2, 解得AP =12a.同理可得BQ =CR =SD =12a.∴当P ,Q ,R ,S 四点运动到正方形ABCD 各边中点时,四边形PQRS 的面积为原正方形面积的一半.专训41.解:(1)△AED ≌△CEB′.证明:∵四边形ABCD 是矩形,∴BC =DA ,∠B =∠D. 由折叠的性质,知BC =B′C ,∠B =∠B′, ∴B′C =DA ,∠B′=∠D. 在△AED 和△CEB′中,⎩⎨⎧∠DEA =∠B′EC ,∠D =∠B′,DA =B′C ,∴△AED ≌△CEB′.(第1题)(2)如图,延长HP 交AB 于点M ,则PM ⊥AB. ∵∠1=∠2,PG ⊥AB′,∴PM =PG. ∵CD ∥AB ,∴∠2=∠3,∴∠1=∠3,∴AE=CE=8-3=5.在Rt△ADE中,DE=3,AE=5,∴AD=52-32=4.∵PH+PM=AD,∴PG+PH=AD=4.2.证明:(1)∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形.∵四边形ABCD是菱形,∴AC⊥BD.∴∠DOC=90°.∴四边形OCED是矩形.(2)∵四边形ABCD是菱形,∴BC=CD.∵四边形OCED是矩形,∴OE=CD,∴OE=BC.(第3题)3.(1)证明:如图,过点B作BH⊥FP交FP的延长线于点H.∵BD⊥AC,PF⊥AC,BH⊥PF,∴四边形BDFH是矩形.∴BD=HF.∵AB=AC,∴∠ABC =∠C.∵PE⊥AB,PF⊥AC,∴∠PEB=∠PFC=90°.∴∠EPB=∠FPC.又∵∠HPB=∠FPC,∴∠EPB=∠HPB.∵PE⊥AB,PH⊥BH,∴∠PEB=∠PHB =90°.又∵PB=PB,∴△PEB≌△PHB.∴PE=PH,∴BD=HF=PF+PH=PF+PE.即BD=PE+PF.(2)解:不成立,此时PE=BD+PF.理由:过点B作BH⊥PF交PF的延长线于点H.与(1)同理可得PE=PH,BD =HF.∴PE=FH+FP=BD+PF.(第4题)4.(1)证明:连接AC,如图.∵BD是菱形ABCD的对角线,∴BD是线段AC的垂直平分线,∴AE =EC.(2)解:点F 是线段BC 的中点. 理由:∵四边形ABCD 是菱形, ∴AB =CB. 又∵∠ABC =60°, ∴△ABC 是等边三角形, ∴∠BAC =60°. ∵AE =EC , ∴∠EAC =∠ACE. ∵∠CEF =60°, ∴∠EAC =30°, ∴∠EAC =∠EAB.∴AF 是△ABC 的角平分线. ∴BF =CF.∴点F 是线段BC 的中点.5.(1)证明:在△DFC 中,∠DFC =90°,∠C =30°,DC =2t , ∴DF =t ,又∵AE =t ,∴AE =DF.(2)解:能.理由如下:∵AB ⊥BC ,DF ⊥BC ,∴AE ∥DF. 又∵AE =DF ,∴四边形AEFD 为平行四边形.在Rt △ABC 中,设AB =x ,则由∠C =30°,得AC =2x ,由勾股定理,得AB 2+BC 2=AC 2,即x 2+(53)2=4x 2,解得x =5(负根舍去), ∴AB =5. ∴AC =2AB =10. ∴AD =AC -DC =10-2t.由已知得点D 从点C 运动到点A 的时间为10÷2=5(s ),点E 从点A 运动到点B 的时间为5÷1=5(s ).若使▱AEFD 为菱形,则需AE =AD ,即t =10-2t ,解得t =103.符合题意. 故当t =103 s 时,四边形AEFD 为菱形.(3)解:①当∠EDF =90°时,四边形EBFD 为矩形. 在Rt △AED 中,∠ADE =∠C =30°,∴AD =2AE ,即10-2t =2t ,解得t =52.符合题意. ②当∠DEF =90°时,由(2)知EF∥AD,∴∠ADE=∠DEF=90°.∵∠A=90°-∠C=60°,∴∠AED=30°.∴AE=2AD,即t=2(10-2t),解得t=4.符合题意.③当∠EFD=90°时,△DEF不存在.综上所述,当t=52s或4 s时,△DEF为直角三角形.6.(1)C(2)①证明:∵AF綊DF′,∴四边形AFF′D是平行四边形.∵S▱ABCD=AD·AE=15,AD=5,∴AE=3.∵AE=3,EF=4,∠E=90°,∴AF=AE2+EF2=32+42=5.∵AD=5,∴AD=AF,∴四边形AFF′D是菱形.②解:如图,连接AF′,DF,在Rt△AEF′中,AE=3,EF′=EF+FF′=4+5=9,∴由勾股定理可得AF′=310.在Rt△DFE′中,FE′=EE′-EF=5-4=1,DE′=AE=3,∴由勾股定理得DF=10,∴四边形AFF′D的两条对角线的长分别是310和10.(第6题)7.解:线段AF,BF,EF三者之间的数量关系是AF=BF+EF,理由如下:∵四边形ABCD是正方形,∴AB=AD,∠DAB=∠ABC=90°.∴∠DAE+∠BAF=90°.∵DE⊥AG于E,BF∥DE交AG于F,∴∠AFB=∠DEF=∠AED=90°,∴∠ADE+∠DAE=90°,∴∠ADE =∠BAF. 在△ABF 和△DAE 中,⎩⎨⎧∠BAF =∠ADE ,∠AFB =∠DEA ,AB =DA ,∴△ABF ≌△DAE. ∴BF =AE.∵AF =AE +EF ,∴AF =BF +EF. 8.证明:(1)∵CD =CE =DE =2 cm , ∴∠CDE =60°.又∵四边形ABCD 和四边形EHGF 是矩形, ∴∠ADC =∠GDE =90°,∴∠ADE =∠GDC =150°.在△AED 和△GCD 中,⎩⎨⎧AD =GD ,∠ADE =∠GDC ,DE =DC ,∴△AED ≌△GCD. (2)∵α=45°,∴∠NCE =∠NEC =45°, ∴∠CNE =90°,CN =NE , ∴∠HND =90°.∴∠H =∠D =∠HND =90°, ∴四边形MHND 是矩形.又∵CD =HE ,CN =NE ,∴HN =ND. ∴四边形MHND 是正方形.。
人教版八年级数学下册期末复习课件:专项训练一 二次根式的性质及运算 (共13张PPT)

专项训练一 二次根式的性质及运算
重难突破
ቤተ መጻሕፍቲ ባይዱ
类型 1 二次根式的非负性
1.要使 4-a2=a-4 成立,则 a 的取值范围是
A.a≤4
B.a≤-4
C.a≥4
D.一切实数
2.已知实数 x、y 满足1-x+ y-2=0,则代数式(x-y)2019 的值为
A.1
B.-1
C.2019
D.-2019
类型 2 二次根式的化简 6.化简: (1) -144×-169; 解:原式= 144×169= 144× 169=12×13=156. (2)-13 225; 解:原式=-13×15=-5.
(3)-12 1024×5; 解:原式=-12 322×5=-12×32 5=-16 5. (4) 18m2n.
11.计算: (1)14-1- 12+( 2+1)( 2-1)+ 2× 18; 解:原式=4-2 3+2-1+ 2×3 2=5-2 3+6=11-2 3. (2)(1+ 3)( 2- 6)-(2 3-1)2.
解:原式= 2- 6+ 6-3 2-(12-4 3+1)=-2 2-12+4 3-1=-2 2+ 4 3-13.
解:根据新定义,得 7※( 2※ 3)= 7※ 3= 72- 32= 7-3=2.
15.先化简,再求值:6x xy+3y xy3-4y xy+ 36xy,其中 x= 21-1,y= 1 2+1.
解:原式=(6 xy+3 xy)-(4 xy+6 xy)=- xy.∵x= 21-1= 2+1,y= 21+1= 2-1,∴- xy=- 2+1 2-1=-1.
解:∵a=
2+1,b=
2-1,∴a+b=2
2,a-b=2,ab=
2022年人教版八年级数学下册第十八章-平行四边形专项测试试题

人教版八年级数学下册第十八章-平行四边形专项测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,正方形ABCD 的面积为256,点F 在AD 上,点E 在AB 的延长线上,Rt CEF 的面积为200,则BE 的长为( )A .10B .11C .12D .152、如图,ABCD 的对角线交于点O ,E 是CD 的中点,若32ABCDS =,则DOE S △的值为( )A .2B .4C .8D .163、已知Rt ABC △中,90ACB ∠=︒,54B ∠=︒,CD 是斜边AB 上的中线,则ACD ∠的度数是( )A.18︒B.36︒C.54︒D.72︒4、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AE⊥BC,垂足为点E,则AE的长是()A.B.C.485D.2455、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是()A.2.5 B.6 C.6.5 D.136、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A.6 B.6.5 C.10 D.137、如图,长方形纸片ABCD中,AB=3cm,AD=9cm,将此长方形纸片折叠,使点D与点B重合,点C落在点H的位置,折痕为EF,则△ABE的面积为()A.6cm2B.8cm2C.10cm2D.12cm28、如图菱形ABCD,对角线AC,BD相交于点O,若BD=8,AC=6,则AB的长是()A.5 B.6 C.8 D.109、在□ABCD中,AC=24,BD=38,AB=m,则m的取值范围是()A.24<m<39 B.14<m<62 C.7<m<31 D.7<m<12AB ,则BC的长为10、如图,将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF,若6()A.2 B.C.4 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在四边形ABCD中,AB=BC=CD=DA=5cm,对角线AC,BD相交于点O,且AC=8cm,则四边形ABCD 的面积为______cm2.2、如图,在△ABC中,∠ACB=90°,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC=7,空白部分面积为16,则图中阴影部分的面积是 _____.3、如图,在四边形ABCD 中,90ABC DCB ∠+∠=︒,,E F 分别是,AD BC 的中点,分别以,AB CD 为直径作半圆,这两个半圆面积的和为8π,则EF 的长为_______.4、如图,将n 个边长都为1的正方形按如图所示摆放,点A 1,A 2,…,An 分别是正方形的中心,则n 个正方形重叠形成的重叠部分的面积和为_____.5、在平行四边形ABCD 中,BF 平分∠ABC ,交AD 于点F ,CE 平分∠BCD ,交AD 于点E ,AB =6,EF =2,则BC 的长为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在平行四边形ABCD 中,2BC AB =,点E 、F 分别是BC 、AD 的中点.(1)求证:C ABE DF ≌△△;(2)当AE CE =时,在不添加辅助线的情况下,直接写出图中等于B 的2倍的所有角.2、如图,在平行四边形ABCD 中,8cm AB =,16cm BC =.30B ∠=︒.点P 在BC 上由点B 向点C 出发,速度为每秒2cm ;点Q 在边AD 上,同时由点D 向点A 运动,速度为每秒1cm .当点P 运动到点C 时,点P ,Q 同时停止运动.连接PQ ,设运动时间为t 秒.(1)当t 为何值时,四边形ABPO 为平行四边形?(2)设四边形ABPQ 的面积为y ,求y 与t 之间的函数关系式.(3)当t 为何值时,四边形ABPQ 的面积是四边形ABCD 的面积的四分之三?求出此时PQD ∠的度数.(4)连接AP ,是否存在某一时刻t ,使ABP △为等腰三角形?若存在,请求出此刻t 的值;若不存在,请说明理由.3、在平面直角坐标系中,过A (0,4)的直线a 垂直于y 轴,点M (9,4)为直线a 上一点,若点P 从点M 出发,以每秒2cm 的速度沿直线a 向左移动,点Q 从原点同时出发,以每秒1cm 的速度沿x 轴向右移动,(1)几秒后PQ 平行于y 轴?(2)在点P 、Q 运动的过程中,若线段OQ =2AP ,求点P 的坐标.4、如图,在Rt△ABC 中,∠ACB =90°,D 为AB 中点,,BE CD CE AB ∥∥.(1)试判断四边形BDCE 的形状,并证明你的结论;(2)若∠ABC =30°,AB =4,则四边形BDCE 的面积为 .5、已知:在ABC ∆中,点D 、点E 、点F 分别是AB 、AC 、BC 的中点,连接DE 、DF .(1)如图1,若AC BC =,求证:四边形DECF 为菱形;(2)如图2,过C 作CG AB ∥交DE 延长线于点G ,连接EF ,AG ,在不添加任何辅助线的情况下,请直接写出图中所有与ADG ∆面积相等的平行四边形.---------参考答案-----------一、单选题1、C【解析】先证明Rt△CDF≌Rt△CBE,故CE=CF,根据△CEF的面积计算CE,根据正方形ABCD的面积计算BC,根据勾股定理计算BE.【详解】解:∵∠ECF=90°,∠DCB=90°,∴∠BCE=∠DCF,∴BCE DCF BC DCCDF CBE∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△CDF≌△CBE,故CF=CE.因为Rt△CEF的面积是200,即12•CE•CF=200,故CE=20,正方形ABCD的面积=BC2=256,得BC=16.根据勾股定理得:BE.故选:C.【点睛】本题考查了正方形,等腰直角三角形面积的计算,考查了直角三角形中勾股定理的运用,本题中求证CF=CE是解题的关键.2、B【解析】【分析】根据平行四边形的性质可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得S△DOE=4,进而可得答案.S ,解:∵四边形ABCD是平行四边形,32ABCD∴S△BOC=S△AOD=S△COD=S△AOB=8,∵点E是CD的中点,S△COD=4,∴S△DOE=12故选:B.【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键.3、B【解析】【分析】由题意根据三角形的内角和得到∠A=36°,由CD是斜边AB上的中线,得到CD=AD,根据等腰三角形的性质即可得到结论.【详解】解:∵∠ACB=90°,∠B=54°,∴∠A=36°,∵CD是斜边AB上的中线,∴CD=AD,∴∠ACD=∠A=36°.故选:B.【点睛】本题考查直角三角形的性质与三角形的内角和,熟练掌握直角三角形的性质即直角三角形斜边的中线等于斜边的一半是解题的关键.4、D【解析】【分析】根据菱形的性质得出BO、CO的长,在Rt△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.【详解】解:∵四边形ABCD是菱形,∴CO=12AC=3,BO=12BD=4,AO⊥BO,∴BC,∴S菱形ABCD=16824 22BD AC⋅=⨯⨯=,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=24245 BC=,故选:D.【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.5、C【解析】【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答.【详解】解:由勾股定理得,斜边13,所以,斜边上的中线长113 6.52=⨯=.故选:C.【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,解题的关键是熟记性质.6、B【解析】【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:∵直角三角形两直角边长为5和12,13=,∴此直角三角形斜边上的中线的长=132=6.5.故选:B.【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键.7、A【分析】根据折叠的条件可得:BE DE =,在Rt BAE 中,利用勾股定理就可以求解. 【详解】将此长方形折叠,使点B 与点D 重合,9cm AD =,9BE AE ∴=-,根据勾股定理得:229(9)AE AE +=-, 解得:4(cm)AE =.21436(cm )2ABES∴=⨯⨯=. 故选:A . 【点睛】本题考查了利用勾股定理解直角三角形,掌握直角三角形两直角边的平方和等于斜边的平方是解题的关键. 8、A 【解析】 【分析】由菱形的性质可得OA =OC =3,OB =OD =4,AO ⊥BO ,由勾股定理求出AB . 【详解】解:∵四边形ABCD 是菱形,AC =6,BD =8, ∴OA =OC =3,OB =OD =4,AO ⊥BO ,在Rt △AOB 中,由勾股定理得:5AB =,【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键.9、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得1122AE CE AC===,1192BE DE BD===,然后在ABE中,利用三角形三边的关系即可确定m的取值范围.【详解】解:如图所示:∵四边形ABCD为平行四边形,∴1122AE CE AC===,1192BE DE BD===,在ABE中,AB m=,∴19121912m-<<+,即731m<<,故选:C.【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键.10、D【解析】【分析】根据菱形及矩形的性质可得到∠BAC的度数,从而根据直角三角形的性质求得BC的长.【详解】解:∵四边形AECF为菱形,∴∠FCO=∠ECO,EC=AE,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt△EBC中,EC=2EB,又∵EC=AE,AB=AE+EB=6,∴EB=2,EC=4,∴Rt△BCE中,BC故选:D.【点睛】本题主要考查了菱形的性质以及矩形的性质,解决问题的关键是根据折叠以及菱形的性质发现特殊角,根据30°的直角三角形中各边之间的关系求得BC的长.二、填空题1、24【解析】【分析】根据题意作图,得出四边形ABCD 为菱形,再根据菱形的性质进行求解面积即可. 【详解】解:根据题意作图如下:由题意得四边形ABCD 为菱形,AC BD ∴⊥,且平分, 8AC =,4OA =,由勾股定理:3OB ==,6BD =∴,2118624()22ABCDSAC BD cm ∴=⋅⋅=⨯⨯=, 故答案为:24. 【点睛】本题考查了菱形的判定及形,勾股定理,解题的关键是判断四边形是菱形. 2、995【解析】 【分析】根据余角的性质得到FAC ABC ∠=∠,根据全等三角形的性质得到FAHABNS S=,推出ABC FNCH S S ∆=四边形,根据勾股定理得到222AC BC AB +=,解方程组得到665ABCS=,接着由图可知空白部分为重叠部分,阴影部分为非重叠部分,所以2倍的空白部分与阴影部分面积和等于三个正方形与三角形面积和.结合665BC AC =即可得出结论. 依此即可求解. 【详解】 解:如图,四边形ABGF 是正方形,90FAB AFG ACB ∴∠=∠=∠=︒, 90FAC BAC FAC ABC ∴∠+∠=∠+∠=︒,FAC ABC ∴∠=∠,()FAH ABN ASA ∴≅,FAHABNS S∴=,3=ABCFNCH SS S ∴=四边形,∵316ABGF S S S =-=正方形空白,即216ABCAB S-=,21162AB AC BC ∴-⋅=, 在ABC 中,90ACB ∠=︒,222AC BC AB ∴+=,7AC BC +=,222()249AC BC AC BC AC BC ∴+=++⋅=, 2249AB AC BC ∴+⋅=,665BC AC ∴⋅=, 阴影部分的面积和= 三个正方形面积+三角形面积-2倍空白部分面积=2222112()22AB AC BC AC BC AB AC BC +++--32AC BC =36625=⨯ 995=. 故答案为:995. 【点睛】本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用. 3、4 【解析】 【分析】根据题意连接BD ,取BD 的中点M ,连接EM 、FM ,EM 交BC 于N ,根据三角形的中位线定理推出EM =12AB ,FM =12CD ,EM ∥AB ,FM ∥CD ,推出∠ABC =∠ENC ,∠MFN =∠C ,求出∠EMF =90°,根据勾股定理求出ME 2+FM 2=EF 2,根据圆的面积公式求出阴影部分的面积即可.【详解】解:连接BD,取BD的中点M,连接EM、FM,延长EM交BC于N,∵∠ABC+∠DCB=90°,∵E、F、M分别是AD、BC、BD的中点,∴EM=12AB,FM=12CD,EM∥AB,FM∥CD,∴∠ABC=∠ENC,∠MFN=∠C,∴∠MNF+∠MFN=90°,∴∠NMF=180°-90°=90°,∴∠EMF=90°,由勾股定理得:ME2+FM2=EF2,∴阴影部分的面积是:12π(ME2+FM2)=12EF2π=8π,∴EF=4.故答案为:4.【点睛】本题主要考查对勾股定理,三角形的内角和定理,多边形的内角和定理,三角形的中位线定理,圆的面积,平行线的性质,面积与等积变形等知识点的理解和掌握,能正确作辅助线并求出ME2+FM2的值是解答此题的关键.4、1 4 n【解析】【分析】根据题意可得,阴影部分的面积是正方形的面积的14,已知两个正方形可得到一个阴影部分,则n 个这样的正方形重叠部分即为(n -1)个阴影部分的和. 【详解】解:由题意可得一个阴影部分面积等于正方形面积的14,即是14,n 个这样的正方形重叠部分(阴影部分)的面积和为:()11144n n -⨯-=. 故答案为:14n -. 【点睛】本题考查了正方形的性质,解题的关键是得到n 个这样的正方形重叠部分(阴影部分)的面积和的计算方法,难点是求得一个阴影部分的面积. 5、10或14##14或10 【解析】 【分析】利用BF 平分∠ABC , CE 平分∠BCD ,以及平行关系,分别求出AB AF =、DE DC =,通过BF 和CE 是否相交,分两类情况讨论,最后通过边之间的关系,求出BC 的长即可. 【详解】解: 四边形ABCD 是平行四边形,AD BC ∴=,6AB CD ==,AD BC ∥,AFE FBC ∴∠=∠,DEC ECB ∠=∠,BF 平分∠ABC , CE 平分∠BCD ,ABF FBC ∴∠=∠,DCE ECB ∠=∠,AFE ABF ∴∠=∠,DCE DEC ∠=∠,∴由等角对等边可知:6==,DE DC==,6AF AB情况1:当BF与CE相交时,如下图所示:AD AF DE EF=+-,∴=,10AD∴=,10BC情况2:当BF与CE不相交时,如下图所示:AD AF DE EF=++AD,14∴=∴=,BC14故答案为:10或14.【点睛】本题主要是考查了平行四边形的性质,熟练运用平行关系+角平分线证边相等,是解决本题的关键,还要注意根据BF 和CE 是否相交,本题分两类情况,如果没考虑仔细,会漏掉一种情况. 三、解答题1、(1)证明见解析;(2),,,.BAD AFC AEC BCD 【分析】(1)先证明,,,AB CD BD AD BC 再证明,BE DF =从而可得结论;(2)证明,ABE DCF 是等边三角形,再分别求解,B ∠ ,,,,BAD AFC AEC BCD 从而可得答案. 【详解】证明(1) 平行四边形ABCD 中,,,,,AB CD BD AD BC点E 、F 分别是BC 、AD 的中点,,BE DF ∴=∴ C ABE DF ≌△△(2) 2BC AB =,,,AD BC AB DC,AB BE CE CD DFAF,AE CE = C ABE DF ≌△△,AB BE CE CD DF AF AE CF,ABE DCF 是等边三角形, 60,BAE BEADFCDCFDB120,AECAFC四边形ABCD 是平行四边形,,AD BC ∥ 而60,B D 120BAD BCD ,所以等于B 的2倍的角有:,,,.BAD AFC AEC BCD【点睛】 本题考查的是全等三角形的判定与性质,等边三角形的判定与性质,平行四边形的性质,证明“,ABE DCF 是等边三角形”是解(2)的关键.2、(1)163;(2)y =S 四边形ABPQ =2t +32(0<t ≤8);(3)t =8,75PQD ∠=;(4)当t =4或ABP △为等腰三角形,理由见解析.【分析】(1)利用平行四边形的对边相等AQ =BP 建立方程求解即可;(2)先构造直角三角形,求出AE ,再用梯形的面积公式即可得出结论;(3)利用面积关系求出t ,即可求出DQ ,进而判断出DQ =PQ ,即可得出结论;(4)分三种情况,利用等腰三角形的性质,两腰相等建立方程求解即可得出结论.【详解】解:(1)∵在平行四边形ABCD 中,8cm AB =,16cm BC =,由运动知,AQ =16−t ,BP =2t ,∵四边形ABPQ 为平行四边形,∴AQ =BP ,∴16−t =2t∴t =163, 即:t =163s 时,四边形ABPQ 是平行四边形; (2)过点A 作AE ⊥BC 于E ,如图,在Rt△ABE中,∠B=30°,AB=8,∴AE=4,由运动知,BP=2t,DQ=t,∵四边形ABCD是平行四边形,∴AD=BC=16,∴AQ=16−t,∴y=S四边形ABPQ=12(BP+AQ)•AE=12(2t+16−t)×4=2t+32(0<t≤8);(3)由(2)知,AE=4,∵BC=16,∴S四边形ABCD=16×4=64,由(2)知,y=S四边形ABPQ=2t+32(0<t≤8),∵四边形ABPQ的面积是四边形ABCD的面积的四分之三∴2t+32=34×64,∴t=8;如图,当t=8时,点P和点C重合,DQ=8,∵CD=AB=8,∴DP=DQ,∴∠DQC=∠DPQ,∴∠D=∠B=30°,∴∠DQP=75°;(4)①当AB=BP时,BP=8,即2t=8,t=4;②当AP=BP时,如图,∵∠B=30°,过P作PM垂直于AB,垂足为点M,∴BM=4,22242BPBP⎛⎫+=⎪⎝⎭,解得:BP,∴2t,∴t③当AB=A P时,同(2)的方法得,BP=∴2t=∴t=所以,当t=4或ABP为等腰三角形.【点睛】此题是四边形综合题,主要考查了平行四边形的性质,含30°的直角三角形的性质,等腰三角形的性质,解(1)的关键是利用AQ=BP建立方程,解(2)的关键是求出梯形的高,解(3)的关键是求出t,解(4)的关键是分类讨论的思想思考问题.3、(1)3秒后PQ平行于y轴;(2)9(,4)5或()3,4-.【分析】(1)设t 秒后PQ 平行于y 轴,先求出,AP OQ 的长,再根据矩形的判定与性质可得AP OQ =,由此建立方程,解方程即可得;(2)分①点P 在点A 右侧,②点P 在点A 左侧两种情况,分别根据2OQ AP =建立方程,解方程即可得.【详解】解:(1)(9,4)M ,9AM ∴=,设t 秒后PQ 平行于y 轴,()cm,92cm OQ t AP AM PM t ∴==-=-, AM 垂直于y 轴,OA 垂直于x 轴,PQ 平行于y 轴,∴四边形OAPQ 是矩形,AP OQ ∴=,即92t t -=,解得3t =,即3秒后PQ 平行于y 轴;(2)由题意得:经过b 秒后,2cm,cm PM b OQ b ==, AM 垂直于y 轴,点P 在直线AM 上,且点A 的坐标为(0,4)A ,∴点P 的纵坐标为4,①当点P 在点A 右侧时,(92)cm AP AM PM b =-=-,由2OQ AP =得:()292b b =-, 解得185b =,18992(cm)55AP ∴=-⨯=, ∴此时点P 的坐标为9(,4)5P ;②当点P 在点A 左侧时,(29)cm AP PM AM b =-=-,由2OQ AP =得:()229b b =-,解得6b =,2693(cm)AP ∴=⨯-=,∴此时点P 的坐标为(3,4)P -;综上,点P 的坐标为9(,4)5或()3,4-.【点睛】本题考查了坐标与图形、矩形的判定与性质等知识点,较难的是题(2),正确分两种情况讨论是解题关键.4、(1)四边形BDCE 是菱形,证明见解析;(2)【分析】(1)先证明四边形BDCE 是平行四边形,再利用直角三角形斜边上的中线等于斜边的一半,证明,CD BD =从而可得结论; (2)先求解,,AC BC 再求解,ACB BCD 的面积,再利用菱形的性质可得菱形的面积.【详解】证明:(1)四边形BDCE 是菱形,理由如下:,BE CD CE AB ∥∥,∴ 四边形BDCE 是平行四边形,∠ACB =90°,D 为AB 中点,,CD BD ∴=∴ 四边形BDCE 是菱形.(2) ∠ABC =30°,AB =4,∠ACB =90°,12,2AC AB BC ∴==== 122ABCS ∴=⨯⨯= D 为AB 中点, 1122BCD ABCS S ∴==⨯ 四边形BDCE 是菱形,2DBCBDCE S S ∴==菱形故答案为:【点睛】本题考查的是平行四边形的判定,菱形的判定与性质,直角三角形斜边上的中线的性质,含30的直角三角形的性质,勾股定理的应用,掌握“有一组邻边相等的平行四边形是菱形”是解本题的关键.5、(1)证明见详解;(2)与ADG 面积相等的平行四边形有ADFE 、DEFB 、DECF 、EFCG .【分析】(1)根据三角形中位线定理可得:∥DE BC ,DF AC ∥,12DE BC =,12DF AC =,依据平行四边形的判定定理可得四边形DECF 为平行四边形,再由BC AC =,可得DE DF =,依据菱形的判定定理即可证明;(2)根据三角形中位线定理及平行四边形的判定定理可得四边形DEFB 、DECF 、ADFE 是平行四边形,根据平行四边形的性质得出ADE 与各平行四边形面积之间的关系,再根据平行四边形的判定得出四边形EGCF 是平行四边形,根据其性质得到EG FC DE ==,根据等底同高可得2=ADG ADE SS ,据此即可得出与ADG 面积相等的平行四边形.【详解】解:(1)∵D 、E 、F 分别是AB 、AC 、BC 的中点,∴∥DE BC ,DF AC ∥,12DE BC =,12DF AC =, ∴四边形DECF 为平行四边形,∵BC AC =, DE DF ∴=,∴四边形DECF 为菱形;(2)∵D 、E 、F 分别是AB 、AC 、BC 的中点,∴∥DE BC ,DF AC ∥,EF AB ∥,12DE BC =,12DF AC =, 12EF AB =, 且AD BD =,AE CE =,BF CF =,∴四边形DEFB 、DECF 、ADFE 是平行四边形, ∴111222======ADE DEF EFC DBF ADFE DEFB DECF S S S S S S S ,∵∥DE BC ,∥∥CG EF AB ,∴四边形EGCF 是平行四边形,∴EG FC DE ==,∴2=ADG ADE S S ,∴====ADG ADFE DEFB DECF EFCG S S S S S∴与ADG 面积相等的平行四边形有ADFE 、DEFB 、DECF 、EFCG .【点睛】题目主要考查菱形及平行四边形的判定定理和性质,中位线的性质等,熟练掌握平行四边形及菱形的判定定理及性质是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§16 二次根式(专项训练)二次根式的定义:1.下列式子一定是二次根式的是( )A .2--xB .xC .22+xD .22-x最简二次根式的定义1.下列各式中属于最简二次根式的是( )A. 12+xB.222y x x +C. 12D.5.0 2.下列各式中是最简二次根式的是( ).A. CD3、下列二次根式中,属于最简二次根式是( ) AC4、在21、12 、x+2 、240x 、22y x +中,最简二次根式有( )个A 1 个B 2 个C 3 个D 4个 5、下列二次根式中属于最简二次根式的是( )A .44+aB .48C .14D .ba同类二次根式的定义1.若最简二次根式53-a 与3+a 是同类二次根式,则a= 。
2.下列二次根式化成最简二次根式后,能与2合并的是 ( )A.23 B.12 C.32 D.323.最简二次根式13+a 与2是同类二次根式,则a 的取值为二次根式取值范围1.式子21+-x x 中x 的取值范围是。
A . x ≥1 且 X ≠-2 B.x>1且x ≠-2 C.x ≠-2 D. .x ≥12.要使1213-+-x x 有意义,则x 应满足( ). A .21≤x ≤3 B .x ≤3且x ≠21 C .21<x <3 D .21<x ≤33 当22-+a a 有意义a 的取值范围是 ( )A .a ≥2B .a >2C .a ≠2D .a ≠-2 4.若2-x 是二次根式,则x 的取值范围是 A . x >2 B . x ≥2 C 、 x <2D . x ≤2A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠362()x y=+,则x-y的值为()A.-1 B.1 C.2 D.37x的取值范围是()A.x≥﹣25B.x≤25C. x≥25D. x≤-25二次根式的性质1.若2<x<3,化简xx-+-3)2(2的正确结果是 _ 。
2.若0<x<5,则5x-+=3、已知a、b、c满足054)3(2=-+-+-cba求:(1)a、b、c的值;(2)试问以a、b、c为边能否构成三角形?若能构成三角形,求出三角形的周长;若不能构成三角形,请说明理由.4.下列计算正确的是().A.224=-B.2C= D.3=-5、下列等式成立的是()A.9494+=+B.3327=C.3333=+D.4)4(2-=-6、下列计算:(16==;(26=;(31=;(41==,其中正确的有()A、1个B、2个C、3个D、4个7、二次计算:-⨯= .8.化简:-=二次根式的加减1、计算:=+-3)23(2()()())21234a a==•==2、计算:=-2)4( ;= 。
3.计算:⨯= . 4、.计算21-32+29的结果是 5、-- )A、->-、--、-=-、不能比较612=23=34=45=,,请你将猜想到的规律用含自然数n (n 1≥)的代数式表示出来是7、.计算:101()(2π--+-+-︱-6︱8、计算:9化简求值:已知:132-=x ,求12+-x x 的值;10计算(+ 11、计算:(10分) (515+20—2154+45)⨯512、先化简,再求值5x 5 - 54 4x5 +x 45x,其中x=10(6分)13.(6分)求值:已知x=13+,y=13-求下列各式的值:(1)222y xy x ++ (2) 22yx -14、(8分)计算:83211264+- 15、(9分)先化简,再求值:2221122442x x x x x x⎛⎫-÷ ⎪--+-⎝⎭,其中x =2 +316、(5)-+17、(5))54)(54()523(2-+-+--18.(6分)计算:22(2+21)-31227-19、(222++abb a )÷b a b a --22, 其中 22,22-=+=b a20、计算: (1)322748+-(2)212)31()23)(23(0+---+(3) 先化简,再求值:1112221222-++++÷--x x x x x x ,其中12+=x .§17 勾股定理(专项训练)考点一、已知两边求第三边1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为_____________. 2.已知直角三角形的两边长为3、2,则另一条边长是________________.3.在一个直角三角形中,若斜边长为5cm ,直角边的长为3cm ,则另一条直角边的长为( ). A .4cm B .4cm 或cm 34 C .cm 34 D .不存在4.在数轴上作出表示10的点.5.一种盛饮料的圆柱形杯,测得内部底面半径为2.5㎝,高为12㎝,吸管放进杯里, 杯口外面至少要露出4.6㎝,问吸管要做多长?考点二、利用列方程求线段的长1.把一根长为10㎝的铁丝弯成一个直角三角形的两条直角边,如果要使三角形的面积是9㎝2,那么还要准备一根长为____的铁丝才能把三角形做好.2.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3 B .4 C .5 D .53.如图,铁路上A ,B 两点相距25km ,C ,D 为两村庄,DA ⊥AB 于A ,CB ⊥AB 于B ,已知DA=15km ,CB=10km ,现在要在铁路AB 上建一个土特产品收购站E ,使得C ,D 两村到E 站的距离相等,则E 站应建在离A 站多少km 处?4.如图,某学校(A 点)与公路(直线L )的距离为300米,又与公路车站(D 点)的距离为500米,现要在公路上建一个小商店(C 点),使之与该校A 及车站D 的距离相等,求商店与车站之间的距离.考点三、综合其它考点的应用1.直角三角形中,以直角边为边长的两个正方形的面积为72cm ,82cm ,则以斜边为边长的正方形的面积为_________2cm .2.如图一个圆柱,底圆周长6cm ,高4cm ,一只蚂蚁沿外壁爬行,要从A 点爬到B 点,则最少要爬行 cm第2题 第5题 第6题3.小雨用竹杆扎了一个长80cm 、宽60cm 的长方形框架,由于四边形容易变形,需要用一根竹杆作斜拉杆将四边形定形,则斜拉杆最长需________cm .4.小杨从学校出发向南走150米,接着向东走了360米到九龙山商场,学校与九龙山商场的距离是 米.5.如图:带阴影部分的半圆的面积是多少?( 取3)6.已知,如图在ΔABC 中,AB=BC=CA=2cm ,AD 是边BC 上的高.求 ①AD 的长; ②ΔABC 的面积.7.在直角ΔABC 中,斜边长为2,周长为2+6,求ΔABC 的面积.8.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm .求AC 的长.9.已知:如图,△ABC 中,AB >AC ,AD 是BC 边上的高.求证:AB 2-AC 2=BC(BD-DC).10.已知直角三角形两直角边长分别为5和12, 求斜边上的高.11.小明想测量学校旗杆的高度,他采用如下的方法:先降旗杆上的绳子接长一些,让它垂到地面还多1米,然后将绳子下端拉直,使它刚好接触地面,测得绳下端离旗杆底部5米,你能帮它计算一下旗杆的高度.12.有一只鸟在一棵高4米的小树梢上捉虫子,它的伙伴在离该树12米,高20米的一棵大树的树梢上发出友好的叫声,它立刻以4米/秒的速度飞向大树树梢.那么这只鸟至少几秒才能到达大树和伙伴在一起.13. 如图∠B=90º,AB =16cm ,BC =12cm ,AD =21cm,CD=29cm 。
求四边形ABCD 的面积.68E C DBA14.如图,一个梯子AB 长2.5 米,顶端A 靠在墙AC 上,这时梯子下端B 与墙角C 距离为1.5米,梯子滑动后停在DE 的位置上,测得BD 长为0.5米,求梯子顶端A 下落了多少米?15.在加工如图的垫模时,请根据图中的尺寸,求垫模中AB 间的尺寸.考点四、判别一个三角形是否是直角三角形1.若△ABC 的三个外角的度数之比为3:4:5,最大边AB 与最小边BC 的关系是_________. 2.若一个三角形的周长123c m,一边长为33c m,其他两边之差为3c m,则这个三角形是_ 。
3.将直角三角形的三边扩大相同的倍数后,得到的三角形是 ( ). A.直角三角形 B.锐角三角形 C.钝角三角形 D.不是直角三角形 4.下列命题中是假命题的是( ).A .△ABC 中,若∠B =∠C -∠A ,则△ABC 是直角三角形. B .△ABC 中,若a 2=(b +c )(b -c ),则△ABC 是直角三角形.C .△ABC 中,若∠A ∶∠B ∶∠C =3∶4∶5则△ABC 是直角三角形.D .△ABC 中,若a ∶b ∶c =5∶4∶3则△ABC 是直角三角形. 5.在△ABC 中,2:1:1::=c b a ,那么△ABC 是( ).A .等腰三角形B .钝角三角形C .直角三角形D .等腰直角三角形 6.如图,四边形ABCD 中,F 为DC 的中点,E 为BC 上一点,且BC CE 41=.你能说明∠AFE 是直角吗?考点五、开放型试题1.在直线l 上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S 1、S 2、S 3、S 4,则S 1+S 2+S 3+S 4=_______.l 321S 4S 3S 2S 12.如图①,分别以直角三角形ABC 三边为直径向外作三个半圆,其面积分别用S 1、S 2、S 3表示,则不难证明S 1=S 2+S 3 .(1) 如图②,分别以直角三角形ABC三边为边向外作三个正方形,其面积分别用S1、S2、S3表示,那么S1、S2、S3之间有什么关系?(不必证明)(2) 如图③,分别以直角三角形ABC三边为边向外作三个正三角形,其面积分别用S1、S2、S3表示,请你确定S1、S2、S3之间的关系并加以证明;(3) 若分别以直角三角形ABC三边为边向外作三个正多边形,其面积分别用S1、S2、S3表示,请你猜想S1、S2、S3之间的关系?.3.图示是一种“羊头”形图案,其作法是,从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,和2′,…,依次类推,若正方形7的边长为1cm,则正方形1的边长为__________cm.§18 平行四边形(专项训练)1. 在四边形ABCD中,AB∥CD,∠A=∠C,求证:四边形ABCD是平行四边形.2. 在□ABCD中, ∠A+∠C=160°求∠A,∠C,∠B,∠D的度数3 .如图所示,四边形ABCD是平行四边形,BD⊥AD,求BC,CD及OB的长.4. 如图,在□ABCD中,E、F分别是BC、AD上的点,且AE∥CF,AE与CF相等吗?说明理由.5. 如图,在□ABCD中,对角线AC,BD相交于点O,MN是过O第3题图第4题图第5题图第7题图点的直线,交BC于M,交AD于N,BM=2,AN=2.8,求BC和AD的长.6.如图所示,已知ABCD的对角线交于O,过O作直线交AB、CD的反向延长线于E、F,求证:OE=OF.7.如图所示,在□ABCD中,O是对角线AC、BD的交点,BE⊥AC,DF⊥AC,垂足分别为E、F.那么OE与OF是否相等?为什么?8.如图所示,已知D是等腰三角形ABC底边BC上的一点,点E,F分别在AC,AB上,且DE∥AB,DF∥AC求证:DE+DF=AB9.如图,□ABCD O为D的对角线AC的中点,过点O作一条直线分别与AB、CD交于点M、N,•点E、F在直线MN上,且OE=OF.(1)图中共有几对全等三角形,请把它们都写出来;(2)求证:∠MAE=∠NCF.10.已知:如图所示,在ABCD中,E、F分别为AB、CD的中点,求证四边形AECF是平行四边形.11.如图所示,BD是ABCD的对角线,AE⊥BD于E,CF⊥BD于F,求证:四边形AECF为平行四边形.12. 如图所示,平行四边形ABCD的对角线A C、BD相交于点O,E、F是直线AC上的两点,并且AE=CF,求证:四边形BFDE是平行四边形.13. 如图,E F,是平行四边形ABCD的对角线AC上的点,CE AF.请你猜想:BE与DF有怎样的位置..关系和数量..关系?并对你的猜想加以证明:第8题图第10题图第11题图第12题图9题图AB CDEF第13题图14. 如图,在□ABCD 中,点E 是AD 的中点,BE 的延长线与CD 的延长线相交于点F (1)求证:△ABE ≌△DFE ;(2)试连结BD 、AF ,判断四边形ABDF 的形状,并证明你的结论.15. 如图所示,某城市部分街道示意图,AF ∥BC ,EC ⊥BC ,BA ∥DE ,BD ∥AE , EF=FC ,甲、乙两人同时从B 站乘车到F 站,甲乘1路车,路线是B →A →E →F , 乙乘2路,路线是B →D →C →F ,假设两车速度相同,途中耽误时间相同, 那么谁先到达F 站,请说明理由.16. 如图所示,已知AD 与BC 相交于E ,∠1=∠2=∠3,BD=CD ,∠ADB=90°,CH ⊥AB 于H ,CH 交AD 于F .(1)求证:CD ∥AB ;(2)求证:△BDE ≌△ACE ; (3)若O 为AB 中点,求证:OF=12BE .17. 已知如图:在ABCD 中,延长AB 到E ,延长CD 到F ,使BE =DF , 则线段AC 与EF 是否互相平分?说明理由。