八年级数学选择题专项训练
【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)

【必刷题】2024八年级数学上册一元二次方程解法专项专题训练(含答案)试题部分一、选择题:1. 已知方程x^2 5x + 6 = 0,下列哪个选项是它的一个解?A. x = 2B. x = 3C. x = 4D. x = 52. 方程2x^2 4x + 1 = 0的解为:A. x = 1B. x = 1/2C. x = 1/2D. x = 13. 下列哪个方程是一元二次方程?A. x^2 + 3x 2 = 0B. 2x + 5 = 0C. 3x^3 2x^2 + x 1 = 0D. x^2 + y^2 = 14. 一元二次方程x^2 3x + 1 = 0的解为:A. x = 1,x = 2B. x = 1,x = 1C. x = 2,x = 2D. x = 3,x = 35. 方程x^2 4x + 4 = 0的解是:A. x = 2B. x = 2C. x = 0D. x = 2(重根)6. 已知方程x^2 (2a+1)x + a^2 = 0,若a为正数,则方程的解为:A. x = a,x = 1B. x = a,x = aC. x = a+1,x = a1D. x = 2a,x = 2a7. 方程x^2 5x + 6 = 0的解中,较大的是:A. 2B. 3C. 4D. 58. 若方程x^2 (2k+1)x + k^2 = 0有两个不相等的实数根,则k 的取值范围是:A. k > 0B. k < 0C. k ≠ 0D. k = 09. 方程x^2 2x 3 = 0的解为:A. x = 3,x = 1B. x = 3,x = 1C. x = 3,x = 1D. x = 3,x = 110. 方程x^2 6x + 9 = 0的解是:A. x = 3B. x = 3C. x = 0D. x = 3(重根)二、判断题:1. 一元二次方程的解一定是两个实数根。
2. 方程x^2 2x + 1 = 0的解为x = 1。
初二数学选择题练习题

初二数学选择题练习题1. 下列哪组数中,有有理数又有无理数?A. 1,2,3B. 2,π,-5C. 1,√2,√3D. -1,0,12. 计算下列各式的值:(2 + 3) × 4 - 5 ÷ 5 =A. 7B. 11C. 15D. 203. 下列各组数中,哪组数互为相反数?A. 3,5B. 2,-2C. 1,1D. 6,74. 若 3x - 2 = 7,则 x 的值是多少?A. 1B. 3C. 4D. 55. 一个三角形的两边长为 4 cm 和 5 cm,夹角的度数为 30°,求第三边长。
A. 3 cmB. 4 cmC. 5 cmD. 不确定6. 小明买了一件原价为 100 元的商品,打了 8 折后再打 5 折,最后需要支付多少钱?A. 38 元B. 40 元C. 42 元D. 45 元7. 若一个角的度数是其补角度数的 2 倍,求这个角度数。
A. 60°B. 90°C. 120°D. 150°8. 下列那个算式不正确?A. 32 ÷ 4 × 2 = 16B. 27 ÷ 3 - 5 = 4C. 5 × 3 - 2 = 13D. 4 - 5 × 3 = -119. 若 2x + 3 = 9,求 x 的值。
A. 3B. 6C. 9D. 1210. 判断下列各组数中,哪组数中无理数的个数最多?A. √2,√3,√5B. √10,√17,√21C. √6,√8,√10D. √1,√4,√9以上是初二数学选择题练习题,希望对你的学习有所帮助。
[必刷题]2024八年级数学上册分数应用专项专题训练(含答案)
![[必刷题]2024八年级数学上册分数应用专项专题训练(含答案)](https://img.taocdn.com/s3/m/7d968d5902d8ce2f0066f5335a8102d276a2612a.png)
[必刷题]2024八年级数学上册分数应用专项专题训练(含答案)试题部分一、选择题:1. 下列分数中,与1/2相等的分数是()A. 2/4B. 3/6C. 4/8D. 5/102. 若a/b是一个真分数,那么下面哪个选项一定是正确的?()A. a > bB. a < bC. a = bD. 无法确定3. 下列分数中,哪个分数的值大于1/2而小于1?()A. 3/8B. 5/8C. 7/8D. 9/104. 将分数2/3、4/6、6/9、8/12通分后,分母最小是()A. 9B. 12D. 365. 两个互质的正整数相乘,它们的乘积的分数单位是()A. 1B. 1/2C. 1/3D. 1/46. 下列分数中,哪个分数是假分数?()A. 5/4B. 3/5C. 7/8D. 9/107. 若分数a/b的值在2/3和3/4之间,那么下面哪个选项是正确的?()A. a < 2b/3B. a > 3b/4C. a = bD. a < b8. 下列分数中,哪个分数是最简分数?()A. 8/12B. 9/12C. 10/12D. 11/129. 将分数1/2、2/3、3/4、4/5通分后,分子最小的是()B. 2/3C. 3/4D. 4/510. 下列分数中,哪个分数与1/3相加等于1?()A. 2/3B. 1/2C. 2/5D. 3/4二、判断题:1. 两个分数相加,若分母相同,则它们的和的分母不变。
()2. 任何分数的分子大于分母时,这个分数一定是假分数。
()3. 两个真分数相乘,得到的积一定是真分数。
()4. 分数单位相同的两个分数,它们的大小关系取决于分子的大小。
()5. 一个分数的分母越大,这个分数就越小。
()三、计算题:1. 计算:1/3 + 1/42. 计算:2/5 1/43. 计算:1/2 × 3/44. 计算:2/3 ÷ 1/65. 计算:5/8 + 3/86. 计算:7/9 2/97. 计算:3/5 × 4/78. 计算:6/11 ÷ 2/39. 计算:1/6 + 1/310. 计算:5/12 1/411. 计算:1/5 × 2/312. 计算:3/8 ÷ 1/413. 计算:4/9 + 2/914. 计算:7/10 1/515. 计算:2/7 × 5/616. 计算:8/15 ÷ 2/517. 计算:1/8 + 3/818. 计算:5/12 1/619. 计算:3/5 × 2/720. 计算:9/16 ÷ 3/4四、应用题:1. 小明有3/4升的水,他倒出了1/2升,还剩下多少升水?2. 一块长方形地的长是5/8千米,宽是2/3千米,这块地的面积是多少平方千米?3. 一个班级有40人,其中1/4的学生参加了数学竞赛,参加数学竞赛的学生有多少人?4. 一桶果汁有1升,倒出了1/3升后,剩下的果汁与原来的比例是多少?5. 一本书共有5/6小时读完,如果小明每天读1/12小时,他需要多少天读完这本书?6. 一辆汽车以1/2的速度行驶,它在1/3小时内可以行驶多少千米?7. 一个工厂生产一批产品,如果每天生产1/5的批次,需要5天完成,这个工厂每天生产多少批次的产品?8. 一个长方体的长、宽、高分别是4/5米、2/3米、3/4米,求这个长方体的体积。
【必刷题】2024八年级数学上册一元一次方程专项专题训练(含答案)

【必刷题】2024八年级数学上册一元一次方程专项专题训练(含答案)试题部分一、选择题:1. 下列哪个选项是一元一次方程?()A. 2x + 3y = 6B. 3x^2 4x + 1 = 0C. 5x 7 = 0D. x^3 + 2x = 92. 解方程3x 7 = 11,x的值是()A. 3B. 4C. 5D. 63. 若方程5x 2 = 3x + 1的解为x = a,则a的值是()A. 0.5B. 1C. 1.5D. 24. 下列哪个方程的解是x = 2?()A. 2x + 4 = 0B. 3x 6 = 0C. 4x + 8 = 0D. 5x 10 = 05. 将方程2(x 3) = 4x + 10化简后,得到的一元一次方程是()A. 2x 6 = 4x + 10B. 2x 6 = 2x + 5C. 2x 6 = 4x 2D. 2x 6 = 4x 106. 若方程3(x 2) + 4 = 7的解为x = a,则a的值是()A. 3B. 4C. 5D. 67. 解方程4(x 1) + 3 = 2x + 5,x的值是()A. 1B. 2C. 3D. 48. 下列哪个方程的解是x = 0?()A. 2x + 3 = 3B. 3x 4 = 4C. 4x + 5 = 5D. 5x 6 = 69. 方程2x 5 = 3(x + 1)的解是()A. x = 2B. x = 1C. x = 1D. x = 210. 若方程5(x 1) 3 = 2x + 2的解为x = a,则a的值是()A. 1B. 2C. 3D. 4二、判断题:1. 方程3x + 4 = 7的解是x = 1。
()2. 一元一次方程的解一定是整数。
()3. 方程2(x 3) = 4x 2化简后,得到的一元一次方程是2x 6 = 4x 2。
()4. 方程5x 3 = 2(x + 1)的解是x = 1。
()5. 解方程时,移项要变号。
()三、计算题:1. 解方程:3x 7 = 142. 解方程:5 2x = 3 + x3. 解方程:4(x 2) = 3x + 24. 解方程:2(x + 3) 5 = 7 x5. 解方程:6 3(x 1) = 2x + 16. 解方程:3(x + 2) 2 = 4x 17. 解方程:7 2(x + 3) = 3x 58. 解方程:4x 3(2 x) = 7 + x9. 解方程:5(x 1) 2x = 3x + 410. 解方程:2(x 3) + 4x = 3(x + 2)11. 解方程:4(x 2) + 3x = 7 x12. 解方程:3x 2(2 x) = 5 + x13. 解方程:6x 3(2 + x) = 9 2x14. 解方程:5 3(x 1) = 2(x + 2)15. 解方程:4(x + 1) 3x = 7 2x16. 解方程:2(x 4) + 3 = 3x 517. 解方程:3(x + 1) 4 = 2x + 218. 解方程:5x 2(3 x) = 7 + x19. 解方程:4x 3(2 x) = 8 x20. 解方程:6(x 1) 2x = 4(x + 1)四、应用题:1. 小华买了3本书和2支笔花了27元,若一支笔3元,求一本书的价格。
湘教版八年级上册数学第2章三角形选择题训练(解析版)

第2章三角形选择题训练1.三角形的内角和等于()A.90°B.180°C.270°D.360°2.下列长度的三条线段,能组成三角形的是()A.2,2,4B.5,6,12C.5,7,2D.6,8,103.将一副三角板按如图所示的位置摆放在直尺上,则∠1的度数为()A.60°B.65°C.75°D.85°4.如图,在△ABC中,AD平分∠BAC交BC于点D,∠B=30°,∠ADC=70°,则∠C的度数是()A.50°B.60°C.70°D.80°5.判断命题“如果n<1,那么n 2﹣1<0”是假命题,只需举出一个反例.反例中的n可以为()A.﹣2B.﹣C.0D.6.下列命题是假命题的是()A.平行四边形既是轴对称图形,又是中心对称图形B.同角(或等角)的余角相等C.线段垂直平分线上的点到线段两端的距离相等D.正方形的对角线相等,且互相垂直平分7.若一个等腰三角形的两边长分别为2,4,则第三边的长为()A.2B.3C.4D.2或48.如图,在△ABC中AC=BC,点D和E分别在AB和AC上,且AD=AE.连接DE,过点A的直线GH与DE平行,若∠C=40°,则∠GAD的度数为()A.40°B.45°C.55°D.70°9.如图,在△ABC中,AB=AC,∠A=30°,直线a∥b,顶点C在直线b上,直线a交AB于点D,交AC与点E,若∠1=145°,则∠2的度数是()A.30°B.35°C.40°D.45°10.如图,△ABC中,AC=BC<AB.若∠1、∠2分别为∠ABC、∠ACB的外角,则下列角度关系何者正确()A.∠1<∠2B.∠1=∠2C.∠A+∠2<180°D.∠A+∠1>180°11.如图,DE是△ABC的边AB的垂直平分线,D为垂足,DE交AC于点E,且AC=8,BC=5,则△BEC的周长是()A.12B.13C.14D.1512.如图,在△ABC中,DE是AC的垂直平分线,且分别交BC,AC于点D和E,∠B=60°,∠C=25°,则∠BAD为()A.50°B.70°C.75°D.80°13.如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.∠A=∠D B.AC=DF C.AB=ED D.BF=EC14.如图,D是AB上一点,DF交AC于点E,DE=FE,FC∥AB,若AB=4,CF=3,则BD的长是()A.0.5B.1C.1.5D.215.如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM.下列结论:①AC=BD;②∠AMB=40°;③OM平分∠BOC;④MO平分∠BMC.其中正确的个数为()A.4B.3C.2D.116.如图,在等边三角形ABC中,AE=CD,CE与BD相交于点G,EF⊥BD于点F,若EF=2,则EG的长为()A.B.C.D.417.下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙18.如图,AB⊥CD,且AB=CD.E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF=c,则AD的长为()A.a+c B.b+c C.a﹣b+c D.a+b﹣c19.如图,在△ABC中,∠ACB为钝角.用直尺和圆规在边AB上确定一点D.使∠ADC=2∠B,则符合要求的作图痕迹是()A.B.C.D.20.已知锐角∠AOB,如图,(1)在射线OA上取一点C,以点O为圆心,OC长为半径作,交射线OB于点D,连接CD;(2)分别以点C,D为圆心,CD长为半径作弧,交于点M,N;(3)连接OM,MN.根据以上作图过程及所作图形,下列结论中错误的是()A.∠COM=∠COD B.若OM=MN.则∠AOB=20°C.MN∥CD D.MN=3CD21.如图,在△ABC中,AC=BC,∠A=40°,观察图中尺规作图的痕迹,可知∠BCG的度数为()A.40°B.45°C.50°D.60°22.如图,已知AB=AC,AB=5,BC=3,以A,B两点为圆心,大于AB的长为半径画圆弧,两弧相交于点M,N,连接MN与AC相交于点D,则△BDC的周长为()A.8B.10C.11D.1323.通过如下尺规作图,能确定点D是BC边中点的是()A.B.C.D.24.如图,在Rt△ABC中,∠ACB=90°,分别以点B和点C为圆心,大于BC的长为半径作弧,两弧相交于D、E两点,作直线DE交AB于点F,交BC于点G,连结CF.若AC=3,CG=2,则CF 的长为()A.B.3C.2D.25.如图,AD是△ABC的外角∠EAC的平分线,AD∥BC,∠B=32°,则∠C的度数是()A.64°B.32°C.30°D.40°26.如图,在△ABC中,BE是∠ABC的平分线,CE是外角∠ACM的平分线,BE与CE相交于点E,若∠A=60°,则∠BEC是()A.15°B.30°C.45°D.60°27.如图,点D在BC的延长线上,DE⊥AB于点E,交AC于点F.若∠A=35°,∠D=15°,则∠ACB的度数为()A.65°B.70°C.75°D.85°28.下列四个命题:①两直线平行,内错角相等;②对顶角相等;③等腰三角形的两个底角相等;④菱形的对角线互相垂直其中逆命题是真命题的是()A.①②③④B.①③④C.①③D.①29.下列命题是假命题的是()A.三角形两边的和大于第三边B.正六边形的每个中心角都等于60°C.半径为R的圆内接正方形的边长等于RD.只有正方形的外角和等于360°30.下列长度的3根小木棒不能搭成三角形的是()A.2cm,3cm,4cm B.1cm,2cm,3cmC.3cm,4cm,5cm D.4cm,5cm,6cm31.用三个不等式a>b,ab>0,<中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.332.如图,∠EOF的顶点O是边长为2的等边△ABC的重心,∠EOF的两边与△ABC的边交于E,F,∠EOF=120°,则∠EOF与△ABC的边所围成阴影部分的面积是()33.如图,墙上钉着三根木条a,b,C,量得∠1=70°,∠2=100°,那么木条a,b所在直线所夹的锐角是()A.5°B.10°C.30°D.70°34.如图,已知∠AOB.按照以下步骤作图:①以点O为圆心,以适当的长为半径作弧,分别交∠AOB的两边于C,D两点,连接CD.②分别以点C,D为圆心,以大于线段DC的长为半径作弧,两弧在∠AOB内交于点E,连接CE,DE.③连接OE交CD于点M.下列结论中错误的是()A.∠CEO=∠DEO B.CM=MDC.∠OCD=∠ECD D.S四边形OCED=CD?OE35.已知n是正整数,若一个三角形的3边长分别是n+2、n+8、3n,则满足条件的n的值有()A.4个B.5个C.6个D.7个36.如图,∠ACB=90°,AC=BC.AD⊥CE,BE⊥CE,垂足分别是点D、E,AD=3,BE=1,则DE 的长是()第2章三角形选择题训练参考答案与试题解析1.【分析】根据三角形的内角和定理进行解答便可.【解答】解:因为三角形的内角和等于180度,故选:B.【点评】本题主要考查了三角形的内角和定理,熟记“三角形的内角和等于180度“是解题的关键.2.【分析】根据三角形两边之和大于第三边可以判断各个选项中的三天线段是否能组成三角形,本题得以解决.【解答】解:∵2+2=4,∴2,2,4不能组成三角形,故选项A错误,∵5+6<12,∴5,6,12不能组成三角形,故选项B错误,∵5+2=7,∴5,7,2不能组成三角形,故选项C错误,∵6+8>10,∴6,8,10能组成三角形,故选项D正确,故选:D.【点评】本题考查三角形三边关系,解答本题的关键是明确三角形两边之和大于第三边.3.【分析】利用三角形外角性质(三角形的一个外角等于不相邻的两个内角和)解题或利用三角形内角和解题皆可.【解答】解:如图:∵∠BCA=60°,∠DCE=45°,∴∠2=180°﹣60°﹣45°=75°,∵HF∥BC,∴∠1=∠2=75°,故选:C.【点评】主要考查了一副三角板所对应的角度是60°,45°,30°,90°和三角形外角的性质.本题容易,解法很灵活.4.【分析】由∠B=30°,∠ADC=70°,利用外角的性质求出∠BAD,再利用AD平分∠BAC,求出∠BAC,再利用三角形的内角和,即可求出∠C的度数.【解答】解:∵∠B=30°,∠ADC=70°∴∠BAD=∠ADC﹣∠B=70°﹣30°=40°∵AD平分∠BAC∴∠BAC=2∠BAD=80°∴∠C=180°﹣∠B﹣∠BAC=180°﹣30°﹣80°=70°故选:C.【点评】本题考查了三角形的外角性质定理,角平分线的定义以及三角形的内角和定理,本题较为综合,但难度不大.5.【分析】反例中的n满足n<1,使n 2﹣1≥0,从而对各选项进行判断.【解答】解:当n=﹣2时,满足n<1,但n2﹣1=3>0,所以判断命题“如果n<1,那么n2﹣1<0”是假命题,举出n=﹣2.故选:A.【点评】本题考查了命题与定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【分析】由平行四边形的性质得出A是假命题;由同角(或等角)的余角相等,得出B是真命题;由线段垂直平分线的性质和正方形的性质得出C、D是真命题,即可得出答案.【解答】解:A.平行四边形既是轴对称图形,又是中心对称图形;假命题;B.同角(或等角)的余角相等;真命题;C.线段垂直平分线上的点到线段两端的距离相等;真命题;D.正方形的对角线相等,且互相垂直平分;真命题;故选:A.【点评】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.7.【分析】分4是腰长与底边两种情况,再根据三角形任意两边之和大于第三边讨论求解即可.【解答】解:①4是腰长时,三角形的三边分别为4、4、2,能组成三角形,所以,第三边为4;②4是底边时,三角形的三边分别为2、2、4,∵2+2=4,∴不能组成三角形,综上所述,第三边为4.故选:C.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于要分情况讨论.8.【分析】根据等腰三角形和平行线的性质即可得到结论.【解答】解:∵AC=CB,∠C=40°,∴∠BAC=∠B=(180°﹣40°)=70°,∵AD=AE,∴∠ADE=∠AED=(180°﹣70°)=55°,∵GH∥DE,∴∠GAD=∠ADE=55°,故选:C.【点评】本题考查了等边三角形的性质,平行线的性质,熟练掌握等腰三角形的性质是解题的关键.9.【分析】先根据等腰三角形的性质和三角形的内角和可得∠ACB=75°,由三角形外角的性质可得∠AED的度数,由平行线的性质可得同位角相等,可得结论.【解答】解:∵AB=AC,且∠A=30°,∴∠ACB=75°,在△ADE中,∵∠1=∠A+∠AED=145°,∴∠AED=145°﹣30°=115°,∵a∥b,∴∠AED=∠2+∠ACB,∴∠2=115°﹣75°=40°,故选:C.【点评】本题主要考查了等腰三角形的性质,平行线的性质,题目比较基础,熟练掌握性质是解题的关键.10.【分析】由AC=BC<AB,得∠A=∠ABC<∠ACB,再由三角形的外角性质定理和三角形的内角和可得正确答案.【解答】解:∵AC=BC<AB,∴∠A=∠ABC<∠ACB,∵∠1、∠2分别为∠ABC、∠ACB的外角,∴∠2=∠A+∠ABC,∴∠A+∠2=∠A+∠A+∠ABC<∠ACB+∠A+∠ABC=180°,故选:C.【点评】本题考查了等腰三角形的性质定理,三角形的外角性质定理及三角形的内角和,这些都是一些基础知识点,难度不大.11.【分析】直接利用线段垂直平分线的性质得出AE=BE,进而得出答案.【解答】解:∵DE是△ABC的边AB的垂直平分线,∴AE=BE,∵AC=8,BC=5,∴△BEC的周长是:BE+EC+BC=AE+EC+BC=AC+BC=13.故选:B.【点评】此题主要考查了线段垂直平分线的性质,正确掌握线段垂直平分线的性质是解题关键.12.【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【解答】解:∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC﹣∠DAC=70°,故选:B.【点评】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.13.【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:选项A、添加∠A=∠D不能判定△ABC≌△DEF,故本选项正确;选项B、添加AC=DF可用AAS进行判定,故本选项错误;选项C、添加AB=DE可用AAS进行判定,故本选项错误;选项D、添加BF=EC可得出BC=EF,然后可用ASA进行判定,故本选项错误.故选:A.【点评】本题主要考查对全等三角形的判定,平行线的性质等知识点的理解和掌握,熟练地运用全等三角形的判定定理进行证明是解此题的关键,是一个开放型的题目,比较典型.14.【分析】根据平行线的性质,得出∠A=∠FCE,∠ADE=∠F,根据全等三角形的判定,得出△ADE ≌△CFE,根据全等三角形的性质,得出AD=CF,根据AB=4,CF=3,即可求线段DB的长.【解答】解:∵CF∥AB,∴∠A=∠FCE,∠ADE=∠F,在△ADE和△FCE中,∴△ADE≌△CFE(AAS),∴AD=CF=3,∵AB=4,∴DB=AB﹣AD=4﹣3=1.故选:B.【点评】本题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.15.【分析】由SAS证明△AOC≌△BOD得出∠OCA=∠ODB,AC=BD,①正确;由全等三角形的性质得出∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,得出∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,由AAS证明△OCG≌△ODH(AAS),得出OG=OH,由角平分线的判定方法得出MO平分∠BMC,④正确;由∠AOB=∠COD,得出当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM,由△AOC ≌△BOD得出∠COM=∠BOM,由MO平分∠BMC得出∠CMO=∠BMO,推出△COM≌△BOM,得OB=OC,而OA=OB,所以OA=OC,而OA>OC,故③错误;即可得出结论.【解答】解:∵∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD,即∠AOC=∠BOD,在△AOC和△BOD中,,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,②正确;作OG⊥MC于G,OH⊥MB于H,如图2所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中,,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM才平分∠BOC,假设∠DOM=∠AOM∵△AOC≌△BOD,∴∠COM=∠BOM,∵MO平分∠BMC,∴∠CMO=∠BMO,在△COM和△BOM中,,∴△COM≌△BOM(ASA),∴OB=OC,∵OA=OB∴OA=OC与OA>OC矛盾,∴③错误;正确的个数有3个;【点评】本题考查了全等三角形的判定与性质、三角形的外角性质、角平分线的判定等知识;证明三角形全等是解题的关键.16.【分析】由等边三角形的性质可得∠ABC=∠BAC=∠ACB=60°,AB=AC=BC,由“SAS”可证∠ACE=∠DBC,由外角的性质可得∠EGF=60°,由直角三角形的性质可求EG的长.【解答】解:∵△ABC是等边三角形∴∠ABC=∠BAC=∠ACB=60°,AB=AC=BC,∵AE=CD,∠BAC=∠ACB,AC=BC∴△AEC≌△CDB(SAS)∴∠ACE=∠DBC,∵∠EGF=∠BCG+∠DBC=∠BCG+∠ACE=∠ACB∴∠EGF=60°,且EF⊥BD∴∠FEG=30°∴EF=FG=2,EG=2FG∴EG=故选:B.【点评】本题考查了全等三角形的判定和性质,等边三角形的性质,直角三角形的性质,求∠EGF =60°是本题的关键.17.【分析】根据三角形全等的判定方法得出乙和丙与△ABC全等,甲与△ABC不全等.【解答】解:乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;【点评】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.18.【分析】只要证明△ABF≌△CDE,可得AF=CE=a,BF=DE=b,推出AD=AF+DF=a+(b﹣c)=a+b﹣c;【解答】解:∵AB⊥CD,CE⊥AD,BF⊥AD,∴∠AFB=∠CED=90°,∠A+∠D=90°,∠C+∠D=90°,∴∠A=∠C,∵AB=CD,∴△ABF≌△CDE,∴AF=CE=a,BF=DE=b,∵EF=c,∴AD=AF+DF=a+(b﹣c)=a+b﹣c,故选:D.【点评】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19.【分析】由∠ADC=2∠B且∠ADC=∠B+∠BCD知∠B=∠BCD,据此得DB=DC,由线段的中垂线的性质可得答案.【解答】解:∵∠ADC=2∠B且∠ADC=∠B+∠BCD,∴∠B=∠BCD,∴DB=DC,∴点D是线段BC中垂线与AB的交点,故选:B.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握三角形外角的性质、中垂线的性质及其尺规作图.20.【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【解答】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B选项正确;设∠MOA=∠AOB=∠BON=α,则∠OCD=∠OCM=,∴∠MCD=180°﹣α,又∵∠CMN=∠OCN=α,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点评】本题主要考查作图﹣复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.21.【分析】利用等腰三角形的性质和基本作图得到CG⊥AB,则CG平分∠ACB,利用∠A=∠B和三角形内角和计算出∠ACB,从而得到∠BCG的度数.【解答】解:由作法得CG⊥AB,∵AC=BC,∴CG平分∠ACB,∠A=∠B,∵∠ACB=180°﹣40°﹣40°=100°,∴∠BCG=∠ACB=50°.故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了等腰三角形的性质.22.【分析】利用基本作图得到MN垂直平分AB,利用线段垂直平分线的定义得到DA=DB,然后利用等线段代换得到△BDC的周长=AC+BC.【解答】解:由作法得MN垂直平分AB,∴DA=DB,∴△BDC的周长=DB+DC+BC=DA+DC+BC=AC+BC=5+3=8.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.23.【分析】作线段BC的垂直平分线可得线段BC的中点.【解答】解:作线段BC的垂直平分线可得线段BC的中点.由此可知:选项A符合条件,故选:A.【点评】本题考查作图﹣复杂作图,解题的关键是熟练掌握五种基本作图,属于中考常考题型.24.【分析】利用线段垂直平分线的性质得到FB=FC,CG=BG=2,FG⊥BC,再证明BF=CF,则CF 为斜边AB上的中线,然后根据勾股定理计算出AB,从而得到CF的长.【解答】解:由作法得GF垂直平分BC,∴FB=FC,CG=BG=2,FG⊥BC,∵∠ACB=90°,∴FG∥AC,∴BF=CF,∴CF为斜边AB上的中线,∵AB==5,∴CF=AB=.故选:A.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.25.【分析】根据平行线的性质求出∠EAD,根据角平分线的定义得到∠EAC=2∠EAD=64°,根据三角形的外角性质计算即可.【解答】解:∵AD∥BC,∴∠EAD=∠B=32°,∵AD是△ABC的外角∠EAC的平分线,∴∠EAC=2∠EAD=64°,∵∠EAC是△ABC的外角,∴∠C=∠EAC﹣∠B=64°﹣32°=32°,故选:B.【点评】本题考查的是平行线的性质、三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.26.【分析】根据角平分线的定义得到∠EBM=∠ABC、∠ECM=∠ACM,根据三角形的外角性质计算即可.【解答】解:∵BE是∠ABC的平分线,∴∠EBM=∠ABC,∵CE是外角∠ACM的平分线,∴∠ECM=∠ACM,则∠BEC=∠ECM﹣∠EBM=×(∠ACM﹣∠ABC)=∠A=30°,故选:B.【点评】本题考查的是三角形的外角性质、角平分线的定义,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.27.【分析】根据三角形外角与内角的关系及三角形内角和定理解答.【解答】解:∵DE⊥AB,∠A=35°∴∠AFE=∠CFD=55°,∴∠ACB=∠D+∠CFD=15°+55°=70°.故选:B.【点评】此题考查三角形外角与内角的关系:三角形的一个外角等于和它不相邻的两个内角的和.三角形内角和定理:三角形的三个内角和为180°.28.【分析】首先写出各个命题的逆命题,然后进行判断即可.【解答】解:①两直线平行,内错角相等;其逆命题:内错角相等两直线平行是真命题;②对顶角相等,其逆命题:相等的角是对顶角是假命题;③等腰三角形的两个底角相等,其逆命题:有两个角相等的三角形是等腰三角形是真命题;④菱形的对角线互相垂直,其逆命题:对角线互相垂直的四边形是菱形是假命题;故选:C.【点评】本题主要考查了写一个命题的逆命题的方法,首先要分清命题的条件与结论.29.【分析】利用三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和分别判断后即可确定正确的选项.【解答】解:A、三角形两边的和大于第三边,正确,是真命题;B、正六边形的每个中心角都等于60°,正确,是真命题;C、半径为R的圆内接正方形的边长等于R,正确,是真命题;D、所有多边形的外角和均为360°,故错误,是假命题,故选:D.【点评】本题考查了命题与定理的知识,解题的关键是了解三角形的三边关系、正多边形的外角和、正多边形的计算及正多边形的外角和等知识,难度不大.30.【分析】看哪个选项中两条较小的边的和大于最大的边即可.【解答】解:A、2+3>4,能构成三角形,不合题意;B、1+2=3,不能构成三角形,符合题意;C、4+3>5,能构成三角形,不合题意;D、4+5>6,能构成三角形,不合题意.故选:B.【点评】此题考查了三角形三边关系,看能否组成三角形的简便方法:看较小的两个数的和能否大于第三个数.31.【分析】由题意得出3个命题,由不等式的性质再判断真假即可.【解答】解:①若a>b,ab>0,则<,真命题;②若ab>0,<,则a>b,真命题;③若a>b,<,则ab>0,真命题;∴组成真命题的个数为3个;故选:D.【点评】本题考查了命题与定理、不等式的性质、命题的组成、真命题和假命题的定义;熟练掌握命题的组成和不等式的性质是解题的关键.32.【分析】连接OB、OC,过点O作ON⊥BC,垂足为N,由点O是等边三角形ABC的内心可以得到∠OBC=∠OCB=30°,结合条件BC=2即可求出△OBC的面积,由∠EOF=∠BOC,从而得到∠EOB=∠FOC,进而可以证到△EOB≌△FOC,因而阴影部分面积等于△OBC的面积.【解答】解:连接OB、OC,过点O作ON⊥BC,垂足为N,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点O为△ABC的内心∴∠OBC=∠OBA=∠ABC,∠OCB=∠ACB.∴∠OBA=∠OBC=∠OCB=30°.∴OB=OC.∠BOC=120°,∵ON⊥BC,BC=2,∴BN=NC=1,∴ON=tan∠OBC?BN=×1=,∴S△OBC=BC?ON=.∵∠EOF=∠AOB=120°,∴∠EOF﹣∠BOF=∠AOB﹣∠BOF,即∠EOB=∠FOC.在△EOB和△FOC中,,∴△EOB≌△FOC(ASA).∴S阴影=S△OBC=故选:C.【点评】此题考查了等边三角形的性质、等腰三角形的性质、三角函数的定义、全等三角形的判定与性质、三角形的内心、三角形的内角和定理,有一定的综合性,作出辅助线构建全等三角形是解题的关键.33.【分析】根据对顶角相等求出∠3,根据三角形内角和定理计算,得到答案.【解答】解:∠3=∠2=100°,∴木条a,b所在直线所夹的锐角=180°﹣100°﹣70°=10°,故选:B.【点评】本题考查的是三角形内角和定理、对顶角的性质,掌握三角形内角和等于180°是解题的关键.34.【分析】利用基本作图得出角平分线的作图,进而解答即可.【解答】解:由作图步骤可得:OE是∠AOB的角平分线,∴∠CEO=∠DEO,CM=MD,S四边形OCED=CD?OE,但不能得出∠OCD=∠ECD,故选:C.【点评】本题考查了作图﹣基本作图:熟练掌握5种基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).35.【分析】分两种情况讨论::①若n+2<n+8≤3n,②若n+2<3n≤n+8,分别依据三角形三边关系进行求解即可.【解答】解:①若n+2<n+8≤3n,则,解得,即4≤n<10,∴正整数n有6个:4,5,6,7,8,9;②若n+2<3n≤n+8,则,解得,即2<n≤4,∴正整数n有2个:3和4;综上所述,满足条件的n的值有7个,故选:D.【点评】本题主要考查了三角形三边关系的运用,在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.36.【分析】根据条件可以得出∠E=∠ADC=90°,进而得出△CEB≌△ADC,就可以得出BE=DC,就可以求出DE的值.【解答】解:∵BE⊥CE,AD⊥CE,∴∠E=∠ADC=90°,∴∠EBC+∠BCE=90°.∵∠BCE+∠ACD=90°,∴∠EBC=∠DCA.在△CEB和△ADC中,,∴△CEB≌△ADC(AAS),∴BE=DC=1,CE=AD=3.∴DE=EC﹣CD=3﹣1=2故选:B.【点评】本题考查全等三角形的判定和性质、熟练掌握全等三角形的判定和性质是解决问题的关键,学会正确寻找全等三角形,属于中考常考题型.。
八年级“我爱数学”竞赛专题练习及答案

八年级“我爱数学”竞赛专项训练(1)(实 数)一、选择题1、如果自然数a 是一个完全平方数,那么与a 之差最小且比a 大的一个完全平方数是( ) A. a +1B. a 2+1C. a 2+2a+1D. a+2+12、在全体实数中引进一种新运算*,其规定如下:①对任意实数a 、b 有a *b=(a +b )(b -1)②对任意实数a 有a *2=a *a 。
当x =2时,[3*(x *2)]-2*x +1的值为 ( ) A. 34B. 16C. 12D. 63、已知n 是奇数,m 是偶数,方程有整数解x 0、y 0。
则( )A. x 0、y 0均为偶数B. x 0、y 0均为奇数C. x 0是偶数y 0是奇数D. x 0是奇数y 0是偶数4、设a 、b 、c 、d 都是非零实数,则四个数-ab 、ac 、bd 、cd ( ) A. 都是正数B. 都是负数C. 两正两负D. 一正三负或一负三正5、满足等式的正整数对的个数是( ) A. 1B. 2C. 3D. 46、已知p 、q 均为质数,且满足5p 2+3q=59,由以p +3、1-p +q 、2p +q -4为边长的三角形是 A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形7、一个六位数,如果它的前三位数码与后三位数码完全相同,顺序也相同,由此六位数可以被( )整除。
A. 111B. 1000C. 1001D. 11118、在1、2、3……100个自然数中,能被2、3、4整除的数的个数共( )个 A. 4 B. 6C. 8D. 16二、填空题 1、若,则S 的整数部分是____________________2、M 是个位数字不为零的两位数,将M 的个位数字与十位数字互换后,得另一个两位数N ,若M -N 恰a ⎩⎨⎧=+=+m y x n y 281120042003200320032003=+--+xy x y x y y x 20011198********⋯⋯++=S是某正整数的立方,则这样的数共___个。
八年级数学下册一次函数的实际应用选择题专项练习 含答案

八年级数学下册一次函数的实际应用选择题专项练习1.甲、乙两人在笔直的人行道上同起点、同终点、同方向匀速步行1800米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人间的距离y(米)与甲出发后步行的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了22.5分钟;③乙用9分钟追上甲;④乙到达终点时,甲离终点还有270米.其中正确的结论有()A.1个B.2个C.3个D.4个2.已知弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系如图所示,则弹簧不挂物体时的长度为()A.12cm B.11cm C.10cm D.9cm3.2021年环青龙湖半程马拉松的赛程是21.0975公里,甲乙两选手的行程y(千米)随时间x(时)变化的图象(全程)如图所示.有下列说法:①第1小时两人都跑了10千米;②起跑1小时过后,甲在乙的后面;③在起跑后的0.5至1.5小时,甲比乙跑得更慢;④乙比甲先到达终点.其中正确的说法有()A.1个B.2个C.3个D.4个4.A、B两地相距80km,甲、乙两人沿同一条路从A地到B地.l1,l2分别表示甲、乙两人离开A地的距离s(km)与时间t(h)之间的关系.对于以下说法:①乙车出发1.5小时后甲才出发;②两人相遇时,他们离开A地20km;③甲的速度是40km/h,乙的速度是km/h;④当乙车出发2小时时,两车相距km.其中正确的结论是()A.①③B.①④C.②③D.②③④5.在我国川西高原某山脉间有一河流,当河流中的水位上升到一定高度时因河堤承压有溃堤的危险.于是水利工程师在此河段的某处河堤上修了一个排水的预警水库联通另一支流.当河流的水位超过警戒位时就有河水流入预警的水库中,当水库有一定量的积水后,就会自动打开水库的排水系统流入另一支流.当河流的水位低于警戒位时水库的排水系统的排水速度则变慢.假设预警水库的积水时间为x分钟,水库中积水量为y吨,图中的折线表示某天y与x的函数关系,下列说法中:①这天预警水库排水时间持续了80分钟;②河流的水位超过警戒位时预警水库的排水速度比进水速度少25吨/分;③预警水库最高积水量为1500吨;④河流的水位低于警戒位时预警水库的排水速度为30吨/分.其中正确的信息判断是()A.①④B.①③C.②③D.②④6.杆秤是我国传统的计重工具.如图,可以用秤砣到秤纽的水平距离,来得出秤钩上所挂物体的质量.称重时,若秤砣到秤纽的水平距离为x(单位:cm)时,秤钩所挂物重为y (单位:kg),则y是x的一次函数.下表记录了四次称重的数据,其中只有一组数据记录错误,它是()组数 1 2 3 4x/cm 1 2 4 7y/kg0.80 1.05 1.65 2.30A.第1组B.第2组C.第3组D.第4组7.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回,设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度为()A.10米/秒B.11米/秒C.12米/秒D.13米/秒8.在一条公路上每隔100千米有一个仓库(如图),共有五个仓库.1号仓库存有10吨货物,2号仓库存有20吨货物,5号仓库存有40吨货物,其余两个仓库是空的.现在想把所有的货物集中存放在一个仓库里,如果每吨货物运输1千米需要0.5元的运费,那么最少要花()元运费才行.A.5000 B.5500 C.6000 D.65009.甲、乙两人在笔直的公路上同起点、同终点、同方向匀速步行1200米,先到终点的人原地休息.已知甲先出发3分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为40米/分;②乙用9分钟追上甲;③整个过程中,有4个时刻甲乙两人的距离为90米;④乙到达终点时,甲离终点还有280米.其中正确的结论有()A.①③B.①②④C.①③④D.①②③④10.一辆轿车和一辆货车分别从甲、乙两地同时出发,匀速相向而行,相遇后继续前行,已知两车相遇时轿车比货车多行驶了90千米,设行驶的时间为x(小时),两车之间的距离为y(千米),图中的折线表示从两车出发至轿车到达乙地这一过程中y与x之间的函数关系,根据图象提供的信息,以下选项中正确的个数是()①甲乙两地的距离为450千米;②轿车的速度为70千米/小时;③货车的速度为45千米/小时;④点C的实际意义是轿车出发5小时后到达乙地,此时两车间的距离为300千米.A.1 B.2 C.3 D.411.在A、B两地之间有汽车站C(C在直线AB上),甲车由A地驶往C站,乙车由B地驶往A地,两车同时出发,匀速行驶甲、乙两车离C站的距离y1,y2(千米)与行驶时间x(小时)之间的函数图象如图所示,则下列结论:①A、B两地相距360千米;②甲车速度比乙车速度快15千米/时;③乙车行驶11小时后到达A地;④两车行驶4.4小时后相遇.其中正确的结论有()A.1 B.2个C.3个D.4个12.甲、乙两地之间是一条直路,在全民健身活动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从乙地往甲地,两人同时出发,王浩月先到达目的地,两人之间的距离s(km)与运动时间t(h)的函数关系大致如图所示,下列说法中错误的是()A.两人出发1小时后相遇B.赵明阳跑步的速度为8km/hC.王浩月到达目的地时两人相距10kmD.王浩月比赵明阳提前1.5h到目的地13.甲、乙两车分别从A、B两地同时出发,甲车匀速前往B地,到达B地立即以另一速度按原路匀速返回到A地;乙车匀速前往A地.设甲、乙两车距A地的路程为y千米,甲车行驶的时间为x小时,y与x之间的关系如图所示,对于以下说法:①甲车从A地到达B地的行驶时间为2小时;②甲车返回时,y与x之间的关系式是y=﹣100x+550;③甲车返回时用了3个小时;④乙车到达A地时,甲车距A地的路程是170千米.其中正确的结论是()A.①②B.②③C.③④D.②③④14.甲、乙两船沿直线航道AC匀速航行.甲船从起点A出发,同时乙船从航道AC中途的点B出发,向终点C航行.设t小时后甲、乙两船与B处的距离分别为d1,d2,则d1,d2与t的函数关系如图.下列说法:①乙船的速度是40千米/时;②甲船航行1小时到达B处;③甲、乙两船航行0.6小时相遇;④甲、乙两船的距离不小于10千米的时间段是0≤t≤2.5.其中正确的说法的是()A.①②B.①②③C.①②④D.①②③④15.甲、乙两辆摩托车同时从相距40km的A、B两地出发,相向而行、图中l1,l2、分别表示甲、乙两辆摩托车到A地的距离s(km)与行驶时间t(h)的函数关系.则下列说法错误的是()A.乙摩托车的速度较快B.经过0.6小时甲摩托车行驶到A、B两地的中点C.经过小时两摩托车相遇D.当乙摩托车到达A地时,甲摩托车距离B地km16.甲、乙两车从A地驶向B地,并以各自的速度匀速行驶,甲车比乙车早行驶2h,并且甲车途中休息了0.5h,如图是甲、乙两车行驶的距离y(km)与时间x(h)的函数图象,有以下结论:①m=1;②a=40;③甲车从A地到B地共用了7小时;④当两车相距50km时,乙车用时为h.其中正确结论的个数是().A.4 B.3 C.2 D.117.一个装有进水管和出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min 内既进水又出水,接着关闭进水管直到容器内的水放完,每分钟的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x(单位:min)之间的关系如图所示,则下列说法中错误的是()A.每分钟进水5LB.每分钟出水3.75LC.容器中水为25L的时间是8min或14minD.第2或min时容器内的水恰为10升18.有甲、乙两车从A地出发去B地,甲比乙车早出发,如图中m1、m2分别表示两车离开A地的距离y(km)与行驶时间t(h)之间的函数关系.现有以下四个结论:①m1表示甲车,m2表示乙车;②乙车出发4小时后追上甲车;③两车相距100km的时间只有甲车出发11小时的时候;④若两地相距260km,则乙车先到达B地,其中正确的是()A.①②③④B.②③④C.①②③D.①②④19.有一个进水管和一个出水管的容器,从某时刻开始5分钟内只进水不出水,在随后的20分钟内既进水又出水,在第25分钟开始只出水不进水,每分钟的进水量和出水量是两个常数,容器内水量(L)与时间(min)之间的函数关系如图所示,求在第33分钟时,容器内剩余水量为()A.8 B.10 C.12 D.1420.小明从家步行到学校需走的路程为1800米.图中的折线OAB反映了小明从家步行到学校所走的路程s(米)与时间t(分钟)的函数关系,根据图象提供的信息,判断下列说法中错误的是()A.小明从家步行到学校共用了20分钟B.小明从家步行到学校的平均速度是90米/分C.当t<8时,s与t的函数解析式是s=120tD.小明从家出发去学校步行15分钟时,到学校还需步行360米参考答案1.解:由图可得,甲步行的速度为:180÷3=60米/分,故①正确,乙走完全程用的时间为:1800÷(12×60÷9)=22.5(分钟),故②正确,乙追上甲用的时间为:12﹣3=9(分钟),故③正确,乙到达终点时,甲离终点距离是:1800﹣(3+22.5)×60=270米,故④正确,故选:D.2.解:设弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=kx+b,∵该函数经过点(6,15),(20,22),∴,解得,即弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式为y=0.5x+12,当x=0时,y=12,即弹簧不挂物体时的长度为12cm,故选:A.3.解:由图象可得,第1小时两人相遇,都跑了10千米,故①正确;由纵坐标看出,起跑后1小时后,甲在乙的后面,故②正确;由纵坐标看出,起跑后0.5小时,甲在乙的前面,起跑后1小时,乙追上甲,起跑后1.5小时,乙在甲的前面,所以在起跑后的0.5至1.5小时,甲比乙跑得更慢,故③正确;④起跑后2小时,乙到达终点,2小时后,甲才到达终点,所以乙比甲先到达终点,故④正确;故选:D.4.解:由图可得,乙车出发1.5小时后甲已经出发一段时间,故①错误;两人相遇时,他们离开A地20km,故②正确;甲的速度是(80﹣20)÷(3﹣1.5)=40(km/h),乙的速度是40÷3=(km/h),故③正确;当乙车出发2小时时,两车相距:[20+40×(2﹣1.5)]﹣×2=(km),故④正确;故选:D.5.解:由图象得:0~10分,水库开始积水,10~30分,水库有一定量的积水,水库的排水系统打开,30~80分时,水库停止进水,只排水,这天预警水库排水时间持续了80﹣10=70分钟,故①错误;=25(吨/分),也就是水位超过警戒位时预警水库的排水速度比进水速度少25吨/分,②正确;从图象看出预警水库积水量为1500吨时停止进水,并不能反映出预警水库的最高积水量,③错误;从图象看出河流的水位低于警戒位时预警水库的排水速度为1500÷(80﹣30)=30(吨/分),④正确.故选:D.6.解:设y=kx+b,把x=1,y=0.80,x=2,y=1.05代入可得:,解得,∴y=0.25x+0.55,当x=4时,y=0.25×4+0.55=1.55,∴第3组数据不在这条直线上,当x=7时,y=0.25×7+0.55=2.30,∴第4组数据在这条直线上,故选:C.7.解:设甲车的速度为v1m/s,乙车的速度为v2m/s,由图象可知:开始时,乙车与甲车相距300米,乙车用100秒追上了甲车,∴100v1+300=100v2,装完货物后,甲乙两车行驶了20秒后,两车相距500米,∴20v1+20v2=500,∴,解得:,故选:B.8.解:设把所有的货物集中存放在x号仓库里,需要的总运费为w元,当x≤2时,w=10×(x﹣1)×100×0.5+20×(2﹣x)×100×0.5+40×(5﹣x)×100×0.5=﹣2500x+11500,∵﹣2500<0,∴w随x的增大而减小,∴当x=2时,w取得最小值,最小值=﹣2500×2+11500=6500;当2<x≤5时,w=10×(x﹣1)×100×0.5+20×(x﹣2)×100×0.5+40×(5﹣x)×100×0.5=﹣500x+7500,∵﹣500<0,∴w随x的增大而减小,∴当x=5时,w取得最小值,最小值=﹣500×5+7500=5000.∵6500>5000,∴最少要花5000元运费才行.故选:A.9.解:由题意可得:甲步行的速度为=40(米/分);故①结论正确;由图可得,甲出发9分分钟时,乙追上甲,故乙用6分钟追上甲,故②结论错误;由函数图象可得:当y=90时,有4个时刻甲乙两人的距离为90米,故③结论正确;设乙的速度为x米/分,由题意可得:9×40=(9﹣3)x,解得x=60,∴乙的速度为60米/分;∴乙走完全程的时间==20(分),乙到达终点时,甲离终点距离是:1200﹣(3+20)×40=280(米),故④结论错误;故正确的结论有①③④共3个.故选:C.10.解:由图可得,甲乙两地的距离为150×3=450(千米),故①正确;∵两车相遇时轿车比货车多行驶了90千米,两车相遇时正好是3小时,∴轿车每小时比货车多行驶30千米,∴轿车的速度为:[450÷3﹣30]÷2+30=90(千米/小时),故②错误;货车的速度为:[450÷3﹣30]÷2=60(千米/小时),故③错误;轿车到达乙地用的时间为:450÷90=5(小时),此时两车间的距离为:60×5=300(千米),故④正确;由上可得,正确的是①④,故选:B.11.解:①A、B两地相距=360+80=440(千米),故①错误,②甲车的平均速度==60(千米/小时),乙车的平均速度==40(千米/小时),∴甲车速度比乙车速度快60﹣40=20(千米/小时),故②错误•,③440÷40=11(小时),∴乙车行驶11小时后到达A地,故③正确,④设t小时相遇,则有:(60+40)t=440,∴t=4.4(小时),∴两车行驶4.4小时后相遇,故④正确,故选:B.12.解:由图象可知,两人出发1小时后相遇,故选项A正确;赵明阳跑步的速度为24÷3=8(km/h),故选项B正确;王浩月的速度为:24÷1﹣8=16(km/h),王浩月从开始到到达目的地用的时间为:24÷16=1.5(h),故王浩月到达目的地时两人相距8×1.5=12(km),故选项C错误;王浩月比赵明阳提前3﹣1.5=1.5h到目的地,故选项D正确;故选:C.13.解:①300÷(180÷1.5)=2.5(小时),所以甲车从A地到达B地的行驶时间是2.5小时,故①错误;②设甲车返回时y与x之间的函数关系式为y=kx+b,∴,解得:,∴y与x之间的函数关系式是y=﹣100x+550,故②正确;③5.5﹣2.5=3,∴甲车返回时用了3个小时,故③正确;④乙车的速度为(300﹣180)÷1.5=80(千米/小时),300÷80=3.75,x=3.75时,y=﹣100×3.75+550=175千米,所以乙车到达A地时甲车距A地的路程是175千米,故④错误,所以②③正确,故选:B.14.解:乙船从B到C共用时3小时,走过路程为120千米,因此乙船的速度是40千米/时,①正确;乙船经过0.6小时走过0.6×40=24千米,甲船0.6小时走过60﹣24=36千米,所以甲船的速度是36÷0.6=60千米/时,开始甲船距B点60千米,因此经过1小时到达B点,②正确;航行0.6小时后,甲乙距B点都为24千米,但是乙船在B点前,甲船在B点后,二者相距48千米,因此③错误;开始后,甲乙两船之间的距离越来越小,甲船经过1小时到达B点,此时乙离B地40千米,航行2.5小时后,甲离B地:60×1.5=90千米,乙离B地:40×2.5=100千米,此时两船相距10千米,当2.5<t≤3时,甲乙的距离小于10,因此④正确;综上所述,正确的说法有①②④.故选:C.15.解:由图象可得,乙摩托车的速度较快,故选项A正确;经过0.6小时甲摩托车行驶到A、B两地的中点,故选项B正确;甲车的速度为40÷1.2=(km/h),乙车的速度为:40÷1=40(km/h),故甲乙两车相遇的时间为:=(小时),故选项C错误;当乙摩托车到达A地时,甲摩托车距离B地×(1.2﹣1)=km,故选项D正确;故选:C.16.解:由题意,得m=1.5﹣0.5=1,故①结论正确;120÷(3.5﹣0.5)=40(km/h),则a=40,故②结论正确;设甲车休息之后行驶路程y(km)与时间x(h)的函数关系式为y=kx+b,由题意,得:,解得,当y=260时,260=40x﹣20,解得:x=7,∴甲车从A地到B地共用了7小时,故③结论正确;当1.5<x≤7时,y=40x﹣20.设乙车行驶的路程y与时间x之间的解析式为y=k'x+b',由题意得:,解得,∴y=80x﹣160.当40x﹣20﹣50=80x﹣160时,解得:x=,当40x﹣20+50=80x﹣160时,解得:x=,∴,,所以乙车行驶小时或小时,两车恰好相距50km,故④结论错误.∴正确结论的个数是3个.故选:B.17.解:A.每分进水的速度为:20÷4=5(L/min);B.出水管的出水速度是每分钟5﹣==3.75(L/min);C.设当4≤x≤12时,求y与x的函数解析式为y=kx+b,根据题意得,解得,∴y=x+15(4≤x≤12);设tmin时该容器内的水恰好为25升,根据题意得,t+15=25或30﹣3.75×(t﹣12)=25,解得t=8或.即容器中水为25L的时间是8min或min;D.设m分钟时该容器内的水恰好为10升,根据题意得,5m=10或30﹣3.75×(m﹣12)=10,解得m=2或,即第2或min时容器内的水恰为10升.故说法中错误的是C.故选:C.18.解:由题意可得,m1表示甲车,m2表示乙车,故①正确;甲的速度为160÷4=40(km/h),乙车的速度为120÷(4﹣2)=60(km/h),设乙车出发a小时后追上甲车,60a=40(a+2),解得,a=4,即乙车出发4小时后追上甲车,故②正确;当t=2时,甲乙两车相距40×2=80(km),故两车相距100km的时间只有在两车相遇之后,设甲车出发b小时时,两车相距100km,60(b﹣2)﹣40b=100,解得,b=11,即两车相距100km的时间只有甲车出发11小时的时候,而如果甲车出发不到11小时乙就到达B地,则此小题的说法错误,故③错误;260÷40=6.5(小时),260÷60=4(小时),∵6.5>4+2,∴若两地相距260km,则乙车先到达B地,故④正确;故选:D.19.解:当5≤x<25时,设y=kx+b,将(5,30),(15,40)代入得,解得:,故y=x+25,当x=25时,设y=25+25=50,当25≤x<35时,设y=k1x+b1,将(25,50),(35,0)代入,解得:,故y=﹣5x+175,当x=33时,设y=﹣5×33+175=10,故选:B.20.解:由图象可知,小明从家步行到学校共用了20分钟,故A正确;根据图象,小明从家步行到学校共用了20分钟,所以小明的平均速度为1800÷20=90(米/分),故B正确;当1<8时,小明走的路程为960米,速度为960÷8=120(米/分),s与t的函数解析式是s=120t,故C正确;当8≤t≤20时,设s=kt+b,将(8,960)、(20,1800)代入,得:,解得:,∴s=70t+400;当t=15时,s=1450,1800﹣1450=350(米),∴当小明从家出发去学校步行15分钟时,到学校还需步行350米,故D错误.故选:D.。
八年级数学选择题习题集

八年级数学选择题习题集1. 如果一角是另外一角的两倍,那么两个角分别是多少度?a) 30度和60度b) 45度和90度c) 60度和120度d) 90度和180度2. 一个三角形的两个角是30度和60度,那么第三个角是多少度?a) 30度b) 60度c) 90度d) 120度3. 一个矩形的宽度是6厘米,长度是12厘米,那么它的面积是多少平方厘米?a) 18平方厘米b) 24平方厘米c) 36平方厘米d) 72平方厘米4. 如果一个正方形的边长是8厘米,那么它的周长是多少厘米?a) 16厘米b) 24厘米d) 64厘米5. 如果一个圆的半径是5厘米,那么它的直径是多少厘米?a) 5厘米b) 10厘米c) 15厘米d) 25厘米6. 一个长方体的长、宽和高分别是3厘米,4厘米和5厘米,那么它的体积是多少立方厘米?a) 12立方厘米b) 20立方厘米c) 35立方厘米d) 60立方厘米7. 如果一个直角三角形的一条直角边长是5厘米,另一条直角边长是12厘米,那么斜边长是多少厘米?a) 7厘米b) 13厘米c) 17厘米d) 25厘米8. 一个正方形的面积是36平方厘米,那么它的边长是多少厘米?b) 6厘米c) 9厘米d) 12厘米9. 如果一个圆的周长是18π厘米,那么它的半径是多少厘米?a) 3厘米b) 6厘米c) 9厘米d) 12厘米10. 一个长方体的体积是120立方厘米,长和宽的比是2:3,那么它的高是多少厘米?a) 4厘米b) 5厘米c) 6厘米d) 8厘米请阅读以上习题并选择最合适的答案。
在纸上写下选择的字母,并将答案放入答题框内。
祝你好运!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级数学选择题专项训练
选择题
1.直角三角形一直角边长为12,另两条边长均为自然数,则其周长为.
A30B28C56D不能确定
2.直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的.斜边长
A4cmB8cmC10cmD12cm
3.已知一个Rt△的两边长分别为3和4,则第三边长的平方是
A25B14C7D7或25
4.等腰三角形的腰长为10,底长为12,则其底边上的高为
A13B8C25D64
5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是
6.将直角三角形的三条边长同时扩大同一倍数,得到的三角形是
A钝角三角形B锐角三角形C直角三角形D等腰三角形.
7.如图小方格都是边长为1的正方形,则四边形ABCD的面积是
A25B12.5C9D8.5
8.三角形的三边长为,则这个三角形是
A等边三角形B钝角三角形
C直角三角形D锐角三角形.
9.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,
AB=50米,如果要在这块空地上种植草皮,按每平方米草皮元计算,那么共需要资金.
A50元B600元C1200元D1500元
10.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为.
A12B7C5D13
感谢您的阅读,祝您生活愉快。