材料力学 扭转答案

合集下载

材料力学自测题扭矩

材料力学自测题扭矩

(D)减小轴的长度 。
正确答案是

二、填空题
1、剪切胡克定律可表示为
,该定律的应用条件是

2、切应力互等定理可表述为

3、由 为
定理可知,圆轴扭转时在纵截面上有平行于轴线的切应力,在轴线处其切应力值 。
4、 GIP 称为圆轴的
,它反映圆轴的
能力。
5、扭转应力、变形公式 =T /IP 、 l Tdx/(GIP ) 的应用条件是
有四种答案:
(A) 实心圆轴; (B) 空心圆轴; (C) 二者一样; (D) 无法判断。
正确答案是

11、实心圆轴①和空心圆轴②,两轴材料、横截面面积、长度和所受扭矩均相同,则两轴的扭转角 之间的关系有四种答案:
(A) 1 2 ; (B) 1 2 ; (C) 1 2 ; (D)无法比较。
正确答案是
(D)沿螺旋面 3-3 破坏;
m
3
41
正确答案是

x
2
2
x
1
4
3
m
8、建立圆轴的扭转应力公式 =T /IP 时,“平面假设”起到的作用有下列四种答案:
(A)“平面假设”给出了横截面上内力与应力的关系 T
A
dA

(B)“平面假设”给出了圆轴扭转时的变形规律;
(C)“平面假设”使物理方程得到简化; (D)“平面假设”是建立切应力互等定理的基础。
正确答案是

9、建立圆轴扭转切应力公式 =T /IP 时,没有直接用到的关系式,现有四种答案:
(A)切应力 与扭矩的关系 T
A
dA

(B)剪切胡克定律;
(C)切应力互等定理;

土木工程师-公共基础-材料力学-扭转

土木工程师-公共基础-材料力学-扭转

土木工程师-公共基础-材料力学-扭转[单选题]1.外伸梁AB的弯矩图如图5-5-1下图所示,梁上载荷(图5-5-1上图)F、m的值为()。

[2017年真题]图5-5-1A.F=8kN,m=14kN·mB.F=8kN,m=6kN·mC.F=6kN,m=8kN·mD.F=6kN,m=14kN·m正确答案:A参考解析:设m处为截面C,则对C截面进行受力分析,由∑MC=0,-F×1=-8kN·m,解得F=8kN;对A截面进行受力分析,由∑MA=0,解得m=6-(-8)=14kN·m。

[单选题]2.悬臂梁的弯矩如图5-5-2所示,根据弯矩图推得梁上的载荷应为()。

[2016年真题]图5-5-2A.F=10kN,m=10kN·mB.F=5kN,m=10kN·mC.F=10kN,m=5kN·mD.F=5kN,m=5kN·m正确答案:B参考解析:弯矩图在支座C处有一个突变,突变大小即为支座C处的弯矩值,m =10kN·m。

弯矩图的斜率值即为剪力值,显然BC段截面剪力为零,AB段截面剪力为+5kN(顺时针),因此根据B点截面处的竖向力平衡,可算得:F=5kN。

[单选题]3.简支梁AB的剪力图和弯矩图如图5-5-3所示,该梁正确的受力图是()。

[2016年真题]图5-5-3 A.B.C.D.正确答案:C参考解析:弯矩图在中间处突变,则构件中间有集中力偶大小为50kN·m;剪力图中间有突变,则说明构件中间有集中力,大小为100kN。

根据中间截面处的左右两侧剪力(顺时针为正)与集中荷载的平衡,则集中荷载竖直向下,C项正确。

[单选题]4.承受均布载荷的简支梁如图5-5-4(a)所示,现将两端的支座同时向梁中间移动l/8,如图(b)所示。

两根梁的中点(l/2处)弯矩之比Ma/Mb 为()。

[2013年真题]图5-5-4(a)图5-5-4(b)A.16B.4C.2D.1正确答案:C参考解析:支座未移动前中点处弯矩Ma=ql2/8,移动后中点处弯矩变为:Mb=(-ql/8)×(l/16)+q(l-2l/8)2/8=ql2/16,故Ma/Mb=2。

材料力学拉伸与扭转题目答案

材料力学拉伸与扭转题目答案

75
2
3
1
A
B
C
P
40
80
80
变形相容条件 变形后三根杆与梁 仍绞接在一起。 变形几何方程
2 l2 l1 l3
2
3
1
A
B
C
l1
P
l2
l3
40
80
80
75
2 l2 l1 l3
补充方程
2 N 2 l2 N1l1 N3l3 EA EA EA
静力平衡方程
N1 N2 N3 P 0 2N2 4N3 P 0
2
3
1
A
B
C
P
40
80
80
N1
N2
N3
P
75
3、阶梯形圆杆AE段为空心,外径 D =140mm,内径 d=100mm。BC段为实心,直径 d=100mm。外力偶矩 mA=18KN.m,mB=32KN.m,mC=14KN.m。已知许用切应力 []=80MPa 。试校核轴的强度。
mA
D
d
A
E
mB mC
二、计算题
1:悬臂吊车如图所示。G=20KN,许用应力 []=120MPa,弹性模量E=200GPa。AB杆为圆钢。试设计 AB杆的直径并计算其伸长量l
A
C
300
3m
D B
2m
G
1、解:计算AB杆的轴力
A
mc 0
3N AB sin300 5G 0
C
300
D
NAB=66.7KN (1) 设计AB杆的直径
d
C B
mAB =18KN.m ,mBD =14KN.m
BC
M nBC Wn

材料力学 扭转答案

材料力学  扭转答案

3—1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。

试作轴的扭矩图。

解:kNkNkNkN返回3—2(3-3)圆轴的直径,转速为。

若该轴横截面上的最大切应力等于,试问所传递的功率为多大?解:故即又故返回3—3(3—5)实心圆轴的直径mm,长m,其两端所受外力偶矩,材料的切变模量。

试求:(1)最大切应力及两端截面间的相对扭转角;(2)图示截面上A,B,C三点处切应力的数值及方向;(3)C点处的切应变。

解:=返回3-4(3—6)图示一等直圆杆,已知,,,。

试求:(1)最大切应力;(2)截面A相对于截面C的扭转角。

解:(1)由已知得扭矩图(a)(2)返回3-5(3—12)长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。

实心轴直径为d;空心轴外径为D,内径为,且。

试求当空心轴与实心轴的最大切应力均达到材料的许用切应力),扭矩T相等时的重量比和刚度比。

解:重量比=因为即故故刚度比==返回3—6(3-15)图示等直圆杆,已知外力偶矩,,许用切应力,许可单位长度扭转角,切变模量。

试确定该轴的直径d。

解:扭矩图如图(a)(1)考虑强度,最大扭矩在BC段,且(1)(2)考虑变形(2)比较式(1)、(2),取返回3-7(3—16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。

外力偶矩,,。

已知:,,。

试校核该轴的强度和刚度。

解:扭矩图如图(a)(1)强度=,BC段强度基本满足=故强度满足。

(2)刚度BC段:BC段刚度基本满足.AE段:AE段刚度满足,显然EB段刚度也满足.返回3—8(3-17)习题3—1中所示的轴,材料为钢,其许用切应力,切变模量,许可单位长度扭转角。

试按强度及刚度条件选择圆轴的直径。

解:由3—1题得:故选用.返回3-9(3-18)一直径为d的实心圆杆如图,在承受扭转力偶矩后,测得圆杆表面与纵向线成方向上的线应变为。

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第6章 圆轴扭转

工程力学(静力学和材料力学)第2版课后习题答案 范钦珊主编 第6章 圆轴扭转
π× 80 3 17 ⎞ ⎛ × 10 −9 ⎜1 − ( ) 4 ⎟ = 2883 N·m 16 20 ⎠ ⎝
习题 6-6 图
τ 套 max =
Mx Wp 2
T2 ≤ 60 × 10 6 ×

Tmax ≤ T2 = 2883 N·m = 2.88 ×10 3 N·m
4
6-7 由同一材料制成的实心和空心圆轴,二者长度和质量均相等。设实心轴半径为 R0,空心圆轴的内、外半径分别为 R1 和 R2,且 R1/R2 =n;二者所承受的外加扭转力偶矩分 别为 Mes 和 Meh。若二者横截面上的最大剪应力相等,试证明:
该轴的扭转强度是安全的。
上一章
返回总目录
下一章
8
3
习题 6-5 图
解:1. τ 1 max =
Mx T T 3 × 10 3 × 16 = = = = 70.7 MPa WP WP π π× 0.06 3 d3 16
A1
2. M r =

ρ ⋅ τdA =

r
0
ρ⋅
2πM x r 4 Mx ρ ⋅ 2πρ d ρ = ⋅ 4 Ip Ip
Mr r4 r4 1 2π 2π 16r 4 15 = = = = 16 × ( ) 4 = = 6.25% 4 4 Mx 16 4I p 60 d d π 4⋅ 32 Mx T = 3. τ 2 max = =75.4MPa Wp 1 4⎞ π d3 ⎛ ⎜1 − ( ) ⎟ 16 ⎝ 2 ⎠
eBook
工程力学
(静力学与材料力学)
习题详细解答
(教师用书) (第 6 章) 范钦珊 唐静静
2006-12-18
1
第 6 章 圆轴扭转

《材料力学》扭转习题解

《材料力学》扭转习题解

第三章扭转习题解[习题3-1] 一传动轴作匀速转动, 转速n = 200r/min ,轴上装有五个轮子,主动轮 II 输入 的功率为60 kW ,从动轮,I ,山,IV ,V 依次输出18 kW ,12 kW ,22 kW 和8kW 。

试 作轴的扭图。

解:(1)计算各轮的力偶矩(外力偶矩)T e = 9.55 血n外力偶矩计算(kW 换算成kN.m )题目编号 轮子编号轮子作用功率(kW )转速r/mi nTe (kN.m ) 习题3-1I 从动轮 18 200 0.859II主动轮 60 200 2.865III从动轮 12 200 0.573IV从动轮 22 200 1.051V从动轮82000.382(2)作扭矩图。

用 595[习题3-2] —钻探机的功率为l0kW ,转速n = 180r/min 。

钻杆钻入土层的深度I = 40m 。

如土壤对钻杆的阻力可看作是均匀分布的力偶,试求分布力偶的集度 图。

资料个人收集整理,勿做商业用途 解:(1)求分布力偶的集度= 9.549x® =0.5305(kN m)180M e 0.5305 m = --- = ------l 40= 0.0133(kN /m)设钻杆轴为x 轴, 则:Z M x =0ml =Me1 4325A1 2 0055 1m 3.5 mLSC.3SZm ,并作钻杆的扭矩M e =9.549 丛n L7S mT 图(kN.m)(2)作钻杆的扭矩图T(x) = —mx =—牛X =-0.0133x 。

x<^[0,40] T(0) =0 ;T(40) = M e = —0.5 305kN m) 扭矩图如图所示。

[习题3-3]圆轴的直径d =50mm ,转速为120r/min 。

若该轴横截面上的最大切应力等于 60 MPa ,试问所传递的功率为多大? 资料个人收集整理,勿做商业用途 解:(1)计算圆形截面的抗扭截面模量: 1 3 W p =—血3 P16(2 )计算扭矩1 3 3 = 16®4159 倔=24544(mm ) 2= 60N / mm23T =60N/mm x 24544mm =1472640N ・mm = 1.473(kN ・m)(3)计算所传递的功率T = M e =9.549山=1.473(kN -m)n N k =1.473x120/9.549 =18.5(kW)[习题3-4]空心钢轴的外径 D = 100mm ,内径d =50mm 。

材料力学专项习题练习扭转

材料力学专项习题练习扭转

扭 转1. 一直径为1D 的实心轴,另一内径为d , 外径为D , 内外径之比为22d D α=的空心轴,若两轴横截面上的扭矩和最大切应力均分别相等,则两轴的横截面面积之比12/A A 有四种答案:(A) 21α-; (B)(C); (D)。

2. 圆轴扭转时满足平衡条件,但切应力超过比例极限,有下述四种结论: (A) (B) (C) (D) 切应力互等定理: 成立 不成立 不成立 成立 剪切胡克定律: 成立 不成立 成立 不成立3. 一内外径之比为/d D α=的空心圆轴,当两端承受扭转力偶时,若横截面上的最大切应力为τ,则内圆周处的切应力有四种答案:(A) τ ; (B) ατ; (C) 3(1)ατ-; (D) 4(1)ατ-。

4. 长为l 、半径为r 、扭转刚度为p GI 的实心圆轴如图所示。

扭转时,表面的纵向线倾斜了γ角,在小变形情况下,此轴横截面上的扭矩T 及两端截面的相对扭转角ϕ有四种答案:7. 图示圆轴料的切变模量(A) 43π128d G a ϕ(C) 43π32d G a ϕ8. 一直径为D重量比21W W 9. 想弹塑性材料, 等直圆轴的极限扭矩是刚开始出现塑性变形时扭矩的 倍。

10. 矩形截面杆扭转变形的主要特征是 。

1-10题答案:1. D 2. D 3. B 4. C 5. B 6. C 7. B 8. 0.479. 横截面上的切应力都达到屈服极限时圆轴所能承担的扭矩;4/3 10. 横截面翘曲11. 已知一理想弹塑性材料的圆轴半径为R ,扭转加载到整个截面全部屈服,将扭矩卸掉所产生的残余应力如图所示,试证明图示残余应力所构成的扭矩为零。

证:截面切应力 4103s R R ρρττρ⎛⎫=-≤≤ ⎪⎝⎭截面扭矩 04d 12πd 03Rs s A T A R ρρτρτρρ⎛⎫==-⋅= ⎪⎝⎭⎰⎰ 证毕。

12. 图示直径为d 的实心圆轴,两端受扭转力偶e M 用1/m C τγ=表示,式中C ,m 为由实验测定的已知常数,试证明该轴的扭转切应力计算公式为:1/e (31)/2π()23m 1mm mM m d ρρτ+=+s /3证:几何方面 d d xρϕγρ= 物理方面 1/1/d d mmC C x ρϕτγρ⎛⎫== ⎪⎝⎭静力方面 1//21/e 0d d 2πd d md mAM T A C x ρϕρτρρρρ⎛⎫==⋅⋅=⋅⋅ ⎪⎝⎭⎰⎰1//221/0d 2πd d m d mC x ϕρρ+⎛⎫= ⎪⎝⎭⎰(31)/1/()d 22π(31)d m mmd C m x mϕ+⎛⎫= ⎪+⎝⎭1/e (31)/(31)d d 2π()2mm m M m d x Cm ϕ++⋅⎛⎫=⎪⎝⎭⋅ 所以 1/e (31)/2π()23m 1mm mM m d ρρτ+=+ 证毕。

材料力学第三章扭转复习题

材料力学第三章扭转复习题

第三章 扭转1.等截面圆轴上装有四个皮带轮,如何安排合理,现有四种答案:(A ) 将C 轮与D 轮对调; (B ) 将B 轮与D 轮对调; (C ) 将B 轮与C 轮对调;(D ) 将B 轮与D 轮对调;然后将B 轮与C 轮对调;正确答案是 a 。

2.薄壁圆管受扭转时的剪应力公式为 ()t R T 22/πτ= ,(R 为圆管的平均半径,t 为壁厚)。

关于下列叙述,(1) 该剪应力公式可根据平衡关系导出;(2) 该剪应力公式可根据平衡、几何、物理三方面条件导出; (3) 该剪应力公式符合“平面假设”;(4) 该剪应力公式仅适用于R t <<的圆管。

现有四种答案: (A ) (1)、(3)对; (B ) (1)、(4)对; (C ) (2)、(3)对; (D ) 全对;正确答案是 b 。

3.建立圆轴的扭转应力公式 p p I T /ρτ=时,“平面假设”起到的作用于有 下列四种答案:(A ) “平面假设”给出了横截面上内力与应力的关系⎰=AdA T τρ;(B ) “平面假设”给出了圆轴扭转时的变形规律;(C ) “平面假设”使物理方程得到简化;(D ) “平面假设”是建立剪应力互等定理的基础。

正确答案是 。

4.满足平衡条件,但剪应力超过比例极限时,有下述四种结论:(A ) (B ) (C ) (D ) 剪应力互等定理: 成立 不成立 不成立 成立 剪切虎克定律 : 成立 不成立 成立 不成立 正确答案是 。

D5.一内、外直径分别为d 、D 的空心圆轴,其抗扭截面系数有四种答案:(A )()()16/16/33d D W t ππ-=;(B )()()32/32/33d DW t ππ-=;(C )()[]()4416/d D D W t-=π; (D )()()32/32/44d D W tππ-=;正确答案是 c 。

6.一内外径之比为D d /=α的空心圆轴, 当两端受扭转力偶矩时,横截面的最大剪应为τ,则内圆周处的剪应力有四种答案: (A )τ; (B )ατ;(C ) ()τα31-; (D )()τα41-正确答案是 b 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3-1 一传动轴作匀速转动,转速,轴上装有五个轮子,主动轮Ⅱ输入的功率为60kW,从动轮,Ⅰ,Ⅲ,Ⅳ,Ⅴ依次输出18kW,12kW,22kW和8kW。

试作轴的扭矩图。

解:kN
kN
kN
kN
返回
3-2(3-3)圆轴的直径,转速为。

若该轴横截面上的最大切应力等于,试问所传递的功率为多大?
解:故



返回
3-3(3-5)实心圆轴的直径mm,长m,其两端所受外力偶矩,材料的切变模量。

试求:
(1)最大切应力及两端截面间的相对扭转角;
(2)图示截面上A,B,C三点处切应力的数值及方向;
(3)C点处的切应变。

解:=
返回
3-4(3-6)图示一等直圆杆,已知,,,。

试求:
(1)最大切应力;
(2)截面A相对于截面C的扭转角。

解:(1)由已知得扭矩图(a)
(2)
返回
3-5(3-12)长度相等的两根受扭圆轴,一为空心圆轴,一为实心圆轴,两者材料相同,受力情况也一样。

实心轴直径为d;空心轴外径为D,内径为,
且。

试求当空心轴与实心轴的最大切应力均达到材料的许用切应力),扭矩T相等时的重量比和刚度比。

解:重量比=
因为



刚度比=
=
返回
3-6(3-15) 图示等直圆杆,已知外力偶矩,,许用切应力,许可单位长度扭转角,切变模量。

试确定该轴的直径d。

解:扭矩图如图(a)
(1)考虑强度,最大扭矩在BC段,且
(1)
(2)考虑变形
(2)比较式(1)、(2),取
返回
3-7(3-16) 阶梯形圆杆,AE段为空心,外径D=140mm,内径d=100mm;BC段为实心,直径d=100mm。

外力偶矩,,。

已知:,,。

试校核
该轴的强度和刚度。

解:扭矩图如图(a)
(1)强度
=
,BC段强度基本满足
=
故强度满足。

(2)刚度
BC段:
BC段刚度基本满足。

AE段:
AE段刚度满足,显然EB段刚度也满足。

返回
3-8(3-17) 习题3-1中所示的轴,材料为钢,其许用切应力,切
变模量,许可单位长度扭转角。

试按强度及刚度条件选择圆轴的直径。

解:由3-1题得:
故选用。

返回
3-9(3-18) 一直径为d的实心圆杆如图,在承受扭转力偶矩后,测得圆杆表面与纵向线成方向上的线应变为。

试导出以,d和表示的切变模量G的表达式。

解:圆杆表面贴应变片处的切应力为
圆杆扭转时处于纯剪切状态,图(a)。

切应

(1)
对角线方向线应变:
(2)
式(2)代入(1):
返回
3-10(3-19)有一壁厚为25mm、内径为250mm的空心薄壁圆管,其长度为1m,作用在轴两端面内的外力偶矩为180。

试确定管中的最大切应力,并求管内的应变能。

已知材料的切变模量。

解:
3-11(3-21)簧杆直径mm的圆柱形密圈螺旋弹簧,受拉力作用,弹簧的平均直径为mm,材料的切变模量。

试求:
(1)簧杆内的最大切应力;
(2)为使其伸长量等于6mm所需的弹簧有效圈数。

解:,

因为
故圈
返回
3-12(3-23)图示矩形截面钢杆承受一对外力偶矩。

已知材料的切变模量,试求:
.
'. (1)杆内最大切应力的大小、位置和方向;
(2)横截面矩边中点处的切应力;
(3)杆的单位长度扭转角。

解: , ,
由表得
MPa。

相关文档
最新文档