机器视觉检测讲解

合集下载

机器视觉检测的过程和原理

机器视觉检测的过程和原理

机器视觉检测的过程和原理
机器视觉检测是指利用计算机视觉技术对图像或视频进行分析和理解,从中提取出所需要的信息或对象的过程。

它一般包括以下几个步骤:
1. 图像采集:通过摄像头或其他图像采集设备获取图像或视频。

2. 图像预处理:对采集到的图像进行预处理,包括去噪、增强、边缘检测等。

3. 物体检测:利用目标检测算法,对图像中的物体或感兴趣区域进行识别和标记。

4. 特征提取:从检测到的物体中提取关键特征,如颜色、纹理、形状等。

5. 特征匹配:将提取到的特征与数据库中的特征进行匹配,从而得到物体的种类或其他相关信息。

6. 结果分析与显示:根据匹配结果进行分析和判定,并将结果可视化显示出来,如在图像中标注物体位置、显示物体类别等。

机器视觉检测的原理主要包括以下几个方面:
1. 图像处理:利用数字图像处理技术对图像进行预处理,包括滤波、增强、边
缘检测等,以提高图像的质量和减少干扰。

2. 特征提取:从图像中提取关键特征,如颜色、纹理、形状等,通过分析这些特征可以对物体进行识别和分类。

3. 目标检测:采用目标检测算法,如基于深度学习的目标检测算法(如Faster R-CNN、YOLO等),通过对图像进行多次卷积、池化和全连接等操作,最终得到目标物体的位置和类别。

4. 特征匹配:将提取到的特征与数据库中的特征进行匹配,比较它们的相似性,从而确定物体的种类或相关信息。

5. 结果分析与显示:根据匹配结果进行分析和判定,并将结果可视化显示出来,如在图像中标注物体位置、显示物体类别等。

机器视觉检测解决方案

机器视觉检测解决方案

机器视觉检测解决方案机器视觉检测是一种利用计算机和视觉技术对图像和视频进行分析和处理的技术。

随着人工智能和计算机视觉技术的不断发展,机器视觉检测在各个领域得到了广泛的应用,例如工业自动化、智能交通、医疗诊断、农业等。

本文将介绍机器视觉检测的基本原理和常见的解决方案。

首先,机器视觉检测的基本原理是利用摄像机获取图像或视频,并通过图像处理算法对图像进行分析和识别。

其中,图像处理算法包括图像滤波、边缘检测、特征提取、目标检测等技术。

通过这些技术,机器可以实现对图像中的目标物体进行识别、跟踪和分析,从而实现各种应用场景下的自动化任务。

在工业自动化领域,机器视觉检测可以应用于产品质量检测、零件定位、物体计数等任务。

例如,利用机器视觉检测技术可以实现对产品表面缺陷的检测,提高产品质量的稳定性和一致性。

此外,还可以通过机器视觉检测技术实现对生产线上零件的定位和识别,从而实现自动化装配和加工。

在智能交通领域,机器视觉检测可以应用于交通监控、车辆识别、智能驾驶等任务。

例如,利用机器视觉检测技术可以实现对交通违法行为的监测和记录,提高交通管理的效率和准确性。

此外,还可以通过机器视觉检测技术实现对车辆的识别和跟踪,从而实现智能交通管理和车辆自动驾驶。

在医疗诊断领域,机器视觉检测可以应用于医学影像分析、疾病诊断、手术辅助等任务。

例如,利用机器视觉检测技术可以实现对医学影像的分割和特征提取,帮助医生进行疾病的诊断和治疗规划。

此外,还可以通过机器视觉检测技术实现对手术过程的实时监测和辅助,提高手术的安全性和精准度。

在农业领域,机器视觉检测可以应用于农作物生长监测、病虫害检测、果蔬分拣等任务。

例如,利用机器视觉检测技术可以实现对农作物生长状态的监测和分析,帮助农民进行精准的灌溉和施肥。

此外,还可以通过机器视觉检测技术实现对果蔬的外观和质量检测,提高农产品的品质和市场竞争力。

综上所述,机器视觉检测在各个领域都有着广泛的应用前景,通过不断创新和技术进步,相信机器视觉检测的解决方案会越来越多样化和智能化,为人们的生活和工作带来更多便利和效益。

机器视觉检测的内容有哪些

机器视觉检测的内容有哪些

深圳稻草人自动化培训
机器视觉检测的内容有哪些?
机器视觉检测主要是在一些不适合于人工作业的危险工作环境或人工视觉难以满足要求的场合,常用机器视觉来替代人工视觉;同时在大批量工业生产过程中,用人工视觉检查产品质量效率低且精度不高,用机器视觉检测方法可以大大提高生产效率和生产的自动化程度。

而且机器视觉易于实现信息集成,是实现计算机集成制造的基础技术。

那机器视觉检测项目的内容有哪些呢?
1.全瓶检测:合适的填充量;盖存在与否、高度、颜色、是否歪斜;标签存在与否、位置以及识别。

2.装箱内部检测:产品存在与否、放置、方向、计数和盖的正确性。

3.装箱外部检测:箱子装饰、ID和封盖位置;打印产品代码和日期/批号
4.正确的盖位置检测:盖检测:存在与否、高度、倾斜度、颜色、安全带完整性
5.产品ID验证:确保任何产品的ID 代码存在、可读、正确。

6.瓶颈测量:边到边、高度和螺纹宽度)检测玻璃瓶颈的宽度(E–边到边)、高度(H)和螺纹宽度(T)。

7.平面度检测:检查容器顶部是否在微调过程中因不均匀切割而导致出现头发、丝线或波浪状平面
8.污染物检测:检测容器侧壁上的任何缺陷,包括在注塑成型过程中堆积产生的灰尘、伤痕、污点以及内置或表面颗粒物质。

9.破碎的顶部检测:验证玻璃容器顶部没有空洞、芯片、丢失的玻璃和碎片。

还可确定软木的存在。

10.其他检测:条码/二维码验证、标签控制号(LCN)验证、倾斜标签检测、折角标签检测、标签存在检查等。

机器视觉检测系统【深度解读】

机器视觉检测系统【深度解读】

机器视觉检测系统现代工业自动化生产中涉及到各种各样的检验、生产监视和零件识别应用,如汽车零配件批量加工的尺寸检查和自动装配的完整性检查、电子装配线的元件自动定位、IC上的字符识别等。

通常这种带有高度重复性和智能性的工作是由肉眼来完成的,但在某些特殊情况下,如对微小尺寸的精确快速测量、形状匹配以及颜色辨识等,依靠肉眼根本无法连续稳定地进行,其它物理量传感器也难以胜任。

人们开始考虑用CCD照相机抓取图像后送入计算机或专用的图像处理模块,通过数字化处理,根据像素分布和亮度、颜色等信息来进行尺寸、形状、颜色等的判别。

这种方法是把计算机处理的快速性、可重复性与肉眼视觉的高度智能化和抽象能力相结合,由此产生了机器视觉检测技术的概念。

视觉检测技术是建立在计算机视觉研究基础上的一门新兴测试技术。

与计算机视觉研究的视觉模式识别、视觉理解等内容不同,视觉检测技术重点研究的是物体的几何尺寸及物体的位置测量,如轿车白车身三维尺寸的测量、模具等三维面形的快速测量、大型工件同轴度测量以及共面性测量等,它可以广泛应用于在线测量、逆向工程等主动、实时测量过程。

视觉检测技术在国外发展很快,早在20世纪80年代,美国国家标准局就曾预计未来90%的检测任务将由视觉检测系统来完成。

因此仅在80年代,美国就有100多家公司跻身于视觉检测系统的经营市场,可见视觉检测系统确实很有发展前途。

在近几届北京国际机床展览会上已经见到国外企业展出的应用视觉检测技术研制的先进仪器,如流动式光学三坐标测量机、高速高精度数字化扫描系统、非接触式光学三坐标测量机等。

2.机器视觉检测系统构成、分类及工作原理2.1 系统构成与工作原理(1)系统构成典型的视觉系统一般包括光源、镜头、CCD照相机、图像处理单元(或图像采集卡)、图像处理软件、监视器、通讯/输入输出单元等。

(2)工作原理视觉系统的输出并非图像视频信号,而是经过运算处理之后的检测结果(如尺寸数据)。

通常,机器视觉检测就是用机器代替肉眼来做测量和判断。

机器视觉检测的技术与应用

机器视觉检测的技术与应用

机器视觉检测的技术与应用随着人工智能技术的不断发展,机器视觉检测技术已经成为一个重要的研究领域,它可以利用计算机视觉技术对视频、图像等进行自动检测,识别和分析,以实现对各种对象的自动化处理。

首先,机器视觉检测技术是基于计算机视觉技术的发展而来的。

计算机视觉技术主要解决的问题有图像处理和图像分析。

图像处理主要是针对数字图像进行各种操作处理,如滤波、分割、补偿、变换等,以获得更好的图像品质;而图像分析则是利用从数字图像中提取的特征进行分类、检测、跟踪和识别等各种操作的过程。

机器视觉检测技术是在计算机视觉技术的基础上发展出来的,它主要解决的问题是利用计算机技术自动进行视频、图像等各种对象的检测和分析。

其次,机器视觉检测技术的应用十分广泛,不仅应用于计算机视觉和图像处理领域,还涉及到运动物体跟踪、车辆识别、人脸识别和动力学分析等许多领域。

其中,运动物体跟踪是机器视觉检测技术最为重要的应用之一。

在运动物体跟踪中,机器视觉检测技术可以通过追踪目标的运动轨迹,提高目标检测的准确性和鲁棒性。

车辆识别是另一个重要的应用领域,它可以通过机器视觉检测技术对车辆的型号、颜色和牌照等信息进行识别和分析,以维护社会的治安和交通秩序。

人脸识别领域也是机器视觉检测技术的一个重要应用领域。

机器视觉检测技术可以通过对人脸图像的分析和识别,来实现安全监控和人脸识别等多种应用。

最后,动力学分析也是机器视觉检测技术的一个重要应用领域。

在动力学分析中,机器视觉检测技术可以通过对物体的动力变化的分析和识别,来实现对物体的动态跟踪和控制,以实现实时控制和监测等。

综上所述,机器视觉检测技术的发展和应用前景十分广阔,它将为各个领域提供更加高效和精准的图像处理和分析技术,为人们的生活和工作带来更加高效和便利的服务。

机器视觉检测技术简介及特点

机器视觉检测技术简介及特点

机器视觉检测技术简介及特点机器视觉印刷质量检测是一种模拟人工检测方法和推断规律,但同时又具有更高检测精度和更好全都性的自动化检测方法。

一、机器视觉检测的特点1、机器视觉检测技术简介机器视觉,简而言之就是利用机器代替人工进行目标识别、推断与测量。

它是现代光学、电子学、软件工程、信号处理与系统掌握技术等多学科的交叉与融合。

光学采集设备:由工业摄像机、光源及配套图像采集卡等硬件组成。

主要作用是猎取通过采集位置的标签的数字图像,为后续的分析与处理供应素材,相当于人工检测的眼睛。

推断识别:由工业掌握计算机及植入的图像处理与分析软件、掌握软件构成。

是视觉检测的核心部分,最终形成缺陷的推断并能向后续执行机构发出指令。

自动掌握:最终将检测系统的结果变换成详细操作的硬件,比如常见的声光报警器、废品剔除装置或作标记的装置(如喷墨机、贴标机等)。

除此之外,印刷检测设备还必需有一套稳定的机械传输掌握平台,对于安装在印刷机上的在线检测系统而言,传输平台就是印刷机而对于离线检测系统,则需要单独配置传输平台,如复卷机、单张传输平台等。

2、印刷缺陷检测原理印刷缺陷检测主要依靠图像比对的方法进行。

如图2所示,上部图像是通过相机采集到的实时图像,而下部图像为事先采集并存储下来的标准图像。

检测时,首先将两幅图像通过定位等方法使其重合,然后进行逐点(逐像素)对比颜色(或亮度差异)。

当他们之间的差异超出事先设定的范围时即判为缺陷。

3、机器视觉检测特点一套高品质的机器视觉检测系统,必需具备以下几个必备条件:1)高品质的成像系统成像系统被称为视觉检测设备的“眼睛”,因此“眼睛”识别力量的好坏是评价成像系统的最关键指标。

通常,成像系统的评价指标主要体现在三个方面:能否发觉存在的缺陷基于图像方法进行的检测,所能够依据的最原始也是唯一的资料即是所采到的图像上的颜色(或者亮度)变化,除此之外,没有其他资料可供参考。

所以,一个高品质的成像系统首先应当是一个能充分表现被检测物表面颜色变化的成像系统。

机械制造行业的机器视觉检测技术

机械制造行业的机器视觉检测技术

机械制造行业的机器视觉检测技术机器视觉检测技术是指利用计算机科学和人工智能等相关技术,以摄像机等图像采集设备作为输入,对图像信息进行处理、分析和判断,实现对目标物体的检测、识别和测量等任务的技术手段。

在机械制造行业中,机器视觉检测技术被广泛应用于产品质量检验、自动化生产等领域,为企业提供了高效、准确、可靠的质量控制手段。

下文将就机械制造行业中机器视觉检测技术的应用和发展进行探讨。

一、机器视觉检测技术在机械制造行业的应用1. 产品质量检测在机械制造行业中,产品质量一直是企业关注的焦点。

传统的质量检测方法通常需要依靠人眼进行视觉判断,容易受到主观因素的影响,而且工作效率低下。

而机器视觉检测技术能够通过对图像信息的处理和分析,准确地检测产品的尺寸、形状、表面缺陷等质量指标,大大提高了质量检测的准确性和效率。

2. 自动化生产随着机器视觉检测技术的不断发展,越来越多的机械制造企业开始将其应用于自动化生产线。

通过在生产过程中加入机器视觉检测系统,可以实现对产品的自动检测和分类,提高生产线的自动化程度和生产效率。

3. 制造工艺优化机器视觉检测技术还可以应用于机械制造行业的制造工艺优化。

通过对工件的图像信息进行分析和处理,可以及时发现和纠正制造过程中的问题,提高工艺的稳定性和可靠性。

4. 环境监测机器视觉检测技术还可以应用于机械制造行业的环境监测。

例如,通过对工厂内部环境的图像信息进行分析和处理,可以实现对温度、湿度、空气质量等环境参数的实时监测和控制,为企业提供一个良好的生产环境。

二、机器视觉检测技术在机械制造行业的发展趋势1. 精度和速度的提升随着科学技术的进步和计算机性能的提升,机器视觉检测技术的精度和速度将得到进一步的提升。

未来的机器视觉检测系统将能够更加准确地检测和测量目标物体的各项参数,同时实现更快的处理速度。

2. 智能化的发展机器视觉检测技术将会向着更智能化的方向发展。

随着人工智能技术的应用,机器视觉检测系统可以学习和识别更多的图像特征,并根据不同的需求进行自主的决策和判断,提高系统的自主性和智能化水平。

视觉检测

视觉检测
典型结构
编辑
一个典型的机器视觉系统包括以下三大块:
照明
照明是影响机器视觉系统输入的重要因素,它直接影响输入数据的质量和应用效果。由于没有通用的机器视觉照明设备,所以针对每个特定的应用实例,要选择相应的照明装置,以达到最佳效果。光源可分为可见光和不可见光。常用的几种可见光源是白炽灯、日光灯、水银灯和钠光灯。可见光的缺点是光能不能保持稳定。如何使光能在一定的程度上保持稳定,是实用化过程中急需要解决的问题。另一方面,环境光有可能影响图像的质量,所以可采用加防护屏的方法来减少环境光的影响。照明系统按其照射方法可分为:背向照明、前向照明、结构光和频闪光照明等。其中,背向照明是被测物放在光源和摄像机之间,它的优点是能获得高对比度的图像。前向照明是光源和摄像机位于被测物的同侧,这种方式便于安装。结构光照明是将光栅或线光源等投射到被测物上,根据它们产生的畸变,解调出被测物的三维信息。频闪光照明是将高频率的光脉冲照射到物体上,摄像机拍摄要求与光源同步。
应用案例
编辑
在布匹的生产过程中,像布匹质量检测这种有高度重复性和智能性的工作只能靠人工检测来完成,在现代化流水线后面常常可看到很多的检测工人来执行这道工序,给企业增加巨大的人工成本和管理成本的同时,却仍然不能保证100 %的检验合格率(即“零缺陷”)。对布匹质量的检测是重复性劳动,容易出错且效率低。
FL = 4.8毫米x 305毫米/ 64毫米
FL = 1464毫米/ 64毫米
FL =按23毫米镜头的要求
FL = 0.19” x 12” / 2.5”
FL = 2.28” / 2.5”
FL = 0.912” x 25.4毫米/inch
FL =按23毫米镜头的要求
注:勿将工作距离与物体到像的距离混淆。工作距离是从工业镜头前部到被观察物体之间的距离。而物体到像的距离是CCD传感器到物体之间的距离。计算要求的工业镜头焦距时,必须使用工作距离
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

研究背景:产品表面质量是产品质量的重要组成部分,也是产品商业价值的重要保障。

产品表面缺陷检测技术从最初的依靠人工目视检测到现在以CCD 和数字图像处理技术为代表的计算机视觉检测技术,大致经历了三个阶段,分别是传统检测技术阶段、无损检测技术阶段、计算机视觉检测技术阶段。

[]传统检测技术(1)人工目视检测法(2)频闪检测法无损检测技术(1)涡流检测法(2)红外检测法(3)漏磁检测法计算机视觉检测技术(1)激光扫描检测法(2)CCD 检测法采用荧光管等照明设备,以一定方向照射到物体表面上,使用CCD摄像机来扫描物体表面,并将获得的图像信号输入计算机,通过图像预处理、缺陷区域的边缘检测、缺陷图像二值化等图像处理后,提取图像中的表面缺陷的相关特征参数,再进行缺陷图像识别,从而判断出是否存在缺陷及缺陷的种类信息等。

优点:实时性好,精确度高,灵活性好,用途易于扩充,非接触式无损检测。

基于机器视觉的缺陷检测系统优点:集成化生产缩短产品进入市场时间改进生产流程100%质量保证实时过程监控提高产量精确检测100%检测由于经济和技术原因国内绝大多数图像处理技术公司都以代理国外产品为主,没有或者很少涉足拥有自主知识产权的机器视觉在线检测设备,对视觉技术的开发应用停留在比较低端的小系统集成上,对需要进行大数据量的实时在线检测的研究很少也很少有成功案例,但是随着国内经济发展和技术手段不断提高对产品质量检测要求就更高,对在线检测设备的需求也就更大具有巨大的市场潜力。

机器视觉图像处理技术是视觉检测的核心技术铸件常见缺陷:砂眼气孔缩孔披缝粘砂冷隔掉砂毛刺浇不足缺陷变形问题的提出:1.水渍、污迹等不属于铸件缺陷,但由于其外观形貌与缺陷非常类似, 因此易被检测系统误识为缺陷。

从目前发表的文献来看,对于伪缺陷的识别率较低。

2.不同种缺陷之间可能存在形状、纹理等方面的相似性,造成缺陷误判。

国外研究发展现状:20 世纪90 年代后,基于机器视觉检测系统的自动化功能和实用化水平得到了进一步的提高。

1990 年芬兰Rautaruukki New Technology公司研制了Smartivis表面检测系统[],该系统具有自学习分类功能,应用机器学习方法对决策树结构进行自动设计优化。

1996 年美国Cognex公司研发了一套iLearn自学习分类器软件系统并应用于其研制了iS-2000 自动检测系统。

通过这两套系统的无缝衔接,极大地提高了检测系统实时的运算速度,有效的改进了传统自学习分类方法在算法执行速度、数据实时吞吐量、样本训练集规模及模式特征自动选择等方面的不足之处[]。

2004 年Parsytec公司发布了新一代表面质量检测产品Parsytec5i,该系统运用了自学习神经网络分类方法进行缺陷分类,将表面质量信息输入到支持决策信息中,不仅可以对产品的表面质量进行检测和评价,还能预测潜在质量问题,并将检测信息提供给使用者进行整合和利用[]国内研究发展现状:2005年北航周正干等人提出了一种新型的数学形态学滤波与计算机视觉算法相结合的缺陷自动提取方法。

2009 年北京科技大学徐科等采用线形激光进行连铸坯表面裂纹的在线检测,并用AdaBoosting分类器成功地实现了对表面裂纹、水痕、渣痕、氧化铁皮和振痕等5 种缺陷和伪缺陷样本的识别。

北京科技大学高效轧制国家工程研究中心研制开发了具有全部自主知识产权的冷轧带钢[ 1 9 - 2 0 ]和热轧带钢表面在线检测系统[ 2 1 ],并在生产线上得到成功应用。

《基于光度立体学的金属板带表面微小缺陷在线检测方法》徐科等机械工程学报2013检测示意图微小缺陷与常规缺陷同步检测装置关键点:二维图像上缺陷研究的关键是如何准确地分割出缺陷目标。

图像目标分割方法大多是为特定应用设计的,具有较强的针对性和局限性。

缺陷分割就是指将感兴趣的缺陷目标从被测表面的背景信息(如颜色、轮廓、亮度、形状)中分离出来,使缺陷直接成为分析和处理对象的过程,是视觉检测的关键。

缺陷分割是后续缺陷分析判别的基础,若分割中出现错误或误差而传播给后续的图像分析中,将导致检测错误或失败。

因此,缺陷分割性能的优劣直接影响着后续的研究工作的进行,是表面缺陷检测中的一项关键技术。

全局阈值分割双峰法、自适应迭代法和最大类间分割法东北林业大学纹理分割(可否获得高质量的图像,突出缺陷?)光源的作用是形成有利于后续检测算法复杂度降低和缺陷检测率提高的铸坯表面缺陷图像效果。

光源的选择直接关系到采集图像的质量和图像中能否明显表露存在的缺陷。

据统计,至少30%的图像质量和应用效果受到光源选择的直接影响。

采集到的理想图像应是完整的、均匀亮度、对比度强且没有畸变。

难点:由于生产环境而造成的伪缺陷的出现极大的影响了检测的精度和准确度,引起检测系统的误动作。

多维视角分析在上图一些步骤的基础上,增加了一些基于多维视角几何的分析步骤。

多维视角分析的核心思想是,它能够通过从不同的角度进行多维视角分析来获取待测物体的更多的信息。

它是一种在检测容易被误检的复杂对象时非常有用的方法,因为从不同角度对同一物体的两个或多个视角能够提高只通过一张图像来检测缺陷的方法的正确率。

(剔除伪缺陷,见文献[][][])图2 多角度获取图像信息特征提取:对于表面缺陷检测,在缺陷有效的分割之后,要进行缺陷的判别。

这里,缺陷的判别包括缺陷识别、缺陷分类、真伪缺陷判断、缺陷参数给出等问题。

如果将缺陷的判别过程看做是一个“黑盒子”,那么这个“黑盒子”的输入是陷图像的各种特征数据,输出是判别结果(类型、参数等)。

征去除无意义特征。

纹理特征提取:尽量缩小同类内样本特征值之间的差距,增大不同类间特征值的差距,有助于提高分类器的性能,降低分类器设计的复杂性。

Gabor滤波器:针对二维数字图像,二维的Gabor 滤波器具有优良的滤波性能,并与生物视系统有相近的特点。

二维Gabor 滤波器能够在方向、径向频率带宽以及中心频方面进行定制,因此在空间域和频率域都能获得极佳的分辨率。

计算量大。

小波变换:将纹理图像看成是二维信号,运用二维离散小波变换进行纹理图像的处理。

可将图像在频域上分解为低频子带(纹理的基本结构)和若干方向上的高频子带(纹理细节),然后提取各子带的特征形成特征向量。

统计几何特征提取方法《基于非基于非下采样Contourlet变换和PCNN的表面缺陷自动识别方法》周新星中国地质大学首先用NSCT对缺陷图像进行多尺度多方向分解; 然后将子带图像输入迭代点火,计算点火图的熵序列作为子图的特征,合并各子图特征得到原图的特征向量; 最后用支持向量机进行分类识别。

NSCT原理示意图PCNN 中单个神经元的模型分类:模式识别分类器。

(SVM与神经网络)表面缺陷检测的应用往往存在多种类型的表面缺陷,因此,缺陷识别问题通常是多类分类问题。

分类的难点在于分类器的设计。

目前常用的分类器方法大体可以分为两种:不需要学习的分类器和需要学习的分类器。

不需要学习的分类器通常基于统计的方法,如贝叶斯理论、距离判别、Fisher判别、k-邻近法、聚类分析、决策树分类等;需要学习的分类器如神经网络、支持向量机等。

不需要学习的分类器往往需要大样本支持,并且需要一定的先验知识,计算量大,速度慢,因此,在实时检测应用中往往难以实现。

(《注射制品表面缺陷在线检测与自动识别》华中科技大学材料成形与模具技术国家重点实验室2013 ,提出一种基于缺陷区域轮廓、制品轮廓、区域灰度等特征的缺陷自动识别算法。

缺陷分类判定规则)需要学习的分类器,如果经过充分的、具有代表性的样本学习训练后使分类器规则确定,则可用于实时在线的检测应用。

但神经网络的神经元层数及每层神经元的个数还是需要先验知识确定,且其计算原理基于最小方差理论,因此容易陷入局部最优,且其分类思想还是基于经验风险最小化原则。

支持向量机(SVM, Support Vector Machine)是在统计学习理论(SLT,tistical Learning Theory)的基础上发展起来的一种统计学习方法,其核心思想结构风险最小化取代传统分类器的经验风险最小化[148]。

支持向量机是一种建立在VC 维和结构最小化准则上的机器学习算法,通过学习,SVM 可以自动寻找那些对分类有较好区分能力的支持向量,由此构造出的分类器可以最大化类之间的间隔,使不同的样本能够被分类器分开。

因而有较好的推广性能和较高的分类精确率。

SVM 已被用于文本分类、孤立的手写体识别、语音识别、人脸识别、三维物体识别、遥感图像分析等。

支持向量机是一种高性能的分类算法,跟上面介绍的方法相比有明显的优势。

支持向量机(SVM, Support Vector Machine)是在统计学习理论(SLT,tistical Learning Theory)的基础上发展起来的一种统计学习方法,其核心思想结构风险最小化取代传统分类器的经验风险最小化虽然向量机是针对二分类问题的,由二分类器组合成的多分器在性能上也有很好的表现。

随着越来越多的对它的研究,将是机器学习中一项很有发展前景的技术。

通过多个二分类向量器的组合构造多分类向量器。

一对多一对一DAG SVM:核函数核参数惩罚因子降低训练时间减少向量机复杂程度多分类算法关键点:保证训练样本的质量,滤除噪声。

真伪缺陷判别方法:(国内研究现状)1.基于纹理的非模式图像伪缺陷甄别通常缺陷出现时,缺陷处的光学性能的改变呈现两面性:大多数区域的透射性能降低,而局部小区域的透射性能却增加。

透射性能增加的位置其图像区域灰度值呈偏亮的特征,由于这些偏亮的像素往往呈现离散的条纹状分布在缺陷核心的周围,其反映了缺陷核心的外围轮廓,将之称为缺陷纹理。

可以通过从实时图像中拟合出一个标准曲面D (i ,j),通过从实时图像与标准曲面的差来求取缺陷纹理。

(《产品表面缺陷在线检测方法研究及系统实现》彭向前华中科技大学2008)2.基于多幅图像的缺陷自动识别技术该方法将识别过程分为两步:缺陷提取和缺陷跟踪。

第一步利用传统方法在每幅图像中分离出潜在缺陷。

这一步保证真缺陷能全部提取出来,而不考虑伪缺陷的数量。

第二步力图找出同一试件不同图像中分离出的缺陷之间的相互关系。

如果第一步某一图像中分离出的某一缺陷在其他图像中都找不到相对应的缺陷区域,就定义该缺陷为伪缺陷,也就是说,真缺陷在不同图像中必须满足一定的几何关系。

多幅图像中的缺陷跟踪综合利用了极线约束、三维重建和三线性约束等立体视觉算法。

(《航空发动机叶片X射线数字图像分析的一种新方法》周正干等北京航天航空大学2006)3.基于B 样条曲线及极值修正的缺陷提取针对背景起伏大、对比度低、纹理复杂的图像容易出现大量伪缺陷。

利用B 样条曲线以及极值修正的方法,对列灰度曲线波形进行平滑优化,然后通过对提取的极值进行分析提取,确定缺陷的边界,最后分割和提取出缺陷。

相关文档
最新文档