2-2 离散型随机变量及其分布
合集下载
第二章 随机变量及其分布(第2讲)

分布函数还具有相当好的性质,有利于用数 学分析方法来处理;
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ
⎨
e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效
引入随机变量和分布函数,在随机现象与数 学分析之间搭起了桥梁。
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
连续型随机变量(random variables of continuous type)
四、几种重要的连续型分布 均匀分1. 布均的匀实分际布背景是: 并概f ( x率且)随=与取⎪⎩⎪⎨⎧机0b这值−1变a个在量小(其x ∈X它区a取[a,,间bb值)] 的在中是 记长区一 为任度个间意成概X(小正~率aU区比密,[ab间度。,)b上内]函,的数.
利用分布函数与概率密度函数之间的关系,可以求得服从均匀 分布的随机变量 X 的分布函数
f
(x)
=
⎪⎧ ⎨
1 3
,
⎪⎩0 ,
0≤ x≤3 其它
∫ ∫ 所求概率 P{0 ≤ X ≤ 2}=
2 f (x )dx =
0
2 0
1 3
dx
=
2 3
四、几种重要的连续型分布
2.指数分布
定义: 若随机变量X的概率密度函数
X
~
f
(
x)
=
⎧λ
⎨
e−λ
x
⎩0
x>0 x≤0
称 X 服从参数为λ的指数分布,记为X~E(λ) (λ>0),
学习内容
§2.1 随机变量 §2.2 离散型随机变量及其分布 §2.3 随机变量的分布函数 §2.4 连续型随机变量及其分布 §2.5 随机变量函数的分布
引言
§2.2节学习的分布律对于非离散型型随 机变量失效
2离散型随机变量的分布列

X的所有可能取值是0,1,2,3.
P(X=0)=
C36 C130
=
20 120
=
1 6
,
P(X=1)=
C62C14 C130
=
60 120
=
1 2
,
P(X=2)=
C
2 4
C16
C130
=
36 120
=
3 10
,
P(X=3)=
C34 C130
=
4 120
=
1 30
.
∴X的分布列为
X
0
1
2
3
1
1
3
1
P
6
栏目索引
X
x1
x2
…
xi
…
xn
P
p1
p2
…
pi
…
pn
此表称为离散型随机变量X的概率分布列,简称为X的分布列,有时
也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.
(2)分布列的性质
(i)pi③ ≥0 ,i=1,2,3,…,n;
n
(ii) pi 1. i 1
栏目索引
3.常见的离散型随机变量的概率分布
η
0
1
2
P
0.1
0.3
0.3
栏目索引
3 0.3
栏目索引
1-2 (2015北京朝阳一模改编)如图所示,某班一次数学测试成绩的茎叶 图和频率分布直方图都受到了不同程度的污损,其中,频率分布直方图 的分组区间分别为[50,60),[60,70),[70,80),[80,90),[90,100],据此解答以 下问题. (1)求全班人数及分数在[80,100]之间的频率; (2)现从分数在[80,100]之间的试卷中任取3份分析学生的失分情况,设 抽取的试卷分数在[90,100]的份数为X,求X的分布列.
2-2离散型随机变量及其分布律

松定理(第二章)和中心极限定理(第五章),利用这些定理
可以近似计算出它们的值.
3.泊松分布
定义 2.5 如果随机变量 X 的分布律为
P{X k} k e , k 0,1, 2,L , 0 ,
k!
就称 X 服从参数为 的泊松分布,记为 X ~ P() .
【注 1】 P{X
k
k}
e
0 , k 0,1, 2,L
一般地,在随机试验 E 中,如果样本空间 只包含两个
样本点
{1,2},且
X
0, 1,
若 =1 , 若 =2 ,
则 X ~ B(1, p) ,其中 p P{X 1} P({2}) .
在现实生活中,0 1两点分布有着广泛的应用.例如某产品 合格与不合格;某课程的考试及格与不及格;某事件 A 发生与 不发生等许多现象都能够刻划成 0 1两点分布.
§2 离散型随机变量及其分布律
一、离散型随机变量及其分布律的概念 定义 2.1 若随机变量 X 的取值为有限个或可列无限多个,就 称 X 为离散型随机变量.
定义 2.2 设 X 为离散型随机变量,其所有可能的取值为 x1, x2 ,L , xi ,L ,且
P{X xi} pi , i 1, 2,L .
的概率为 0.6 ,求该射手在 4 次射击中,命中目标次数 X 的
分布律,并问 X 取何值时的概率最大. 解 将每次射击看成一次随机试验,所需考查的试验结果只
有击中目标和没有击中目标,因此整个射击过程为 4 重的贝
努里试验.故由题意知, X ~ B(4, 0.6) ,即
P{X k} C4k 0.6k 0.44k , k 0,1, 2,3, 4 .
P{X
10}
2-2离散型随机变量的概率分布

实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就是 n重伯努利试验.
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
(3) 二项概率公式 若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
泊松资料
泊松分布的图形
泊松分布随机数演示
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
合理配备维修工人问题
例5 为了保证设备正常工作, 需配备适量的维修 工人 (工人配备多了就浪费 , 配备少了又要影响生 产),现有同类型设备300台,各台工作是相互独立的, 发生故障的概率都是0.01.在通常情况下一台设备 的故障可由一个人来处理(我们也只考虑这种情况 ) ,问至少需配备多少工人 ,才能保证设备发生故障 但不能及时维修的概率小于0.01?
把检查一只元件是否为一级品看成是一次试 验, 检查20只元件相当于做20 重伯努利试验.
解 以 X 记 20 只元件中一级品的只数, 则 X ~ b(20, 0.2), 因此所求概率为
P{ X k} 20(0.2)k (0.8)20k , k 0,1,,20. k
P{ X 0} 0.012 P{ X 4} 0.218 P{ X 8} 0.022 P{ X 1} 0.058 P{ X 5} 0.175 P{ X 9} 0.007 P{ X 2} 0.137 P{ X 6} 0.109 P{ X 10} 0.002 P{ X 3} 0.205 P{ X 7} 0.055
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2,), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
第二节 离散型随机变量及其分布

说明: 1) 泊松分布与二项分布的关系:这两个分布的数学模 型都是Bernoulli概型。Poisson分布是二项分布当n很大 p 很小时的近似计算。 2) Poisson分布主要用于描述一些稀有事件,如地震、 火山爆发、特大洪水等等。
例3.1.3 (进货问题)由某商店过去的销售记录知
道,海尔彩电每月的销售数可用参数为λ =5的泊 松分布来描述,为了以95%以上的把握保证月底不 脱销,问商店在月底至少应进多少台? 解:设每月的销售数为X,月底进N台,则
其概率分布为 P ( X 1) 3 10 即X服从两点分布。
7 P( X 0) 10
(2) 二项分布 B ( n, p )
背景:n 重Bernoulli 试验中,每次试验感兴 趣的事件A 在 n 次试验中发生的次数 —— X是一离散型随机变量
若P ( A ) = p , 则
Pn ( k ) P ( X k ) C p (1 p)
P{ X 1} 1 P{ X 0} =1 0.99
成功次数服从二项概率
400
0.9820
B(400, 0.01)
有百分之一的希望,就要做百分之百的努力!
(3) Poisson 分布 ( ) 或 P ( )
k! 其中 0 是常数,则称 X 服从参数为 的Poisson 分布,记作 ( ) 或 P ( )
k n k
n k
, k 0,1,, n
称 X 服从参数为n, p 的二项分布(也叫Bernolli 分布).记作
X ~ B( n, p)
0 – 1 分布是 n = 1 的二项分布.
例3.1.1 一大批产品的次品率为0.1,现从中取
出15件.试求下列事件的概率: B ={ 取出的15件产品中恰有2件次品 } C ={ 取出的15件产品中至少有2件次品 }
例3.1.3 (进货问题)由某商店过去的销售记录知
道,海尔彩电每月的销售数可用参数为λ =5的泊 松分布来描述,为了以95%以上的把握保证月底不 脱销,问商店在月底至少应进多少台? 解:设每月的销售数为X,月底进N台,则
其概率分布为 P ( X 1) 3 10 即X服从两点分布。
7 P( X 0) 10
(2) 二项分布 B ( n, p )
背景:n 重Bernoulli 试验中,每次试验感兴 趣的事件A 在 n 次试验中发生的次数 —— X是一离散型随机变量
若P ( A ) = p , 则
Pn ( k ) P ( X k ) C p (1 p)
P{ X 1} 1 P{ X 0} =1 0.99
成功次数服从二项概率
400
0.9820
B(400, 0.01)
有百分之一的希望,就要做百分之百的努力!
(3) Poisson 分布 ( ) 或 P ( )
k! 其中 0 是常数,则称 X 服从参数为 的Poisson 分布,记作 ( ) 或 P ( )
k n k
n k
, k 0,1,, n
称 X 服从参数为n, p 的二项分布(也叫Bernolli 分布).记作
X ~ B( n, p)
0 – 1 分布是 n = 1 的二项分布.
例3.1.1 一大批产品的次品率为0.1,现从中取
出15件.试求下列事件的概率: B ={ 取出的15件产品中恰有2件次品 } C ={ 取出的15件产品中至少有2件次品 }
2-2离散型随机变量及其分布律

解: 如果新药无效, 则任一病人自动痊愈的概率为p=0.3 设X表示10名病人中自动痊愈的人数 则 X ~ b (10, 0.3)
9 P ( X 9 ) C10 (0.3)9 (0.7)109 0.00138
P ( X 9) P ( X 9 ) P ( X 10 )
(3)二项分布的图形特点:X∽b(n,p)
Pk Pk
0
...
n=10, p=0.7
n
0
..
n=20, p=0.5
.. n
说明:
a. 对于固定n及p,随着k的增加 ,概率P(X=k) 先是随之增加, 并在(n+1)p或者[(n+1)p] 达到最大值,随后单调减少。 b. 如果p>0.5,图形高峰右偏;如果p<0.5,图形高峰左偏。
说明:
k P ( X k ) C n p k (1 p )n k 0 a. 可验证二项分布满足概率充分条件 n k k C n p (1 p )n k ( p+1-p )n 1 k 0
k b. 式Cn pk (1 p)nk 为二项式( p 1 p)n 一般项,故二项分布.
c. n 1, B(n, p)即为0 1分布, P( X k ) pk qnk (k 0,1)
k d . n次试验中至多出现m次( m n): P (0 X m ) C n p k q n k k 0 m
np p或np p 1 np p N e. 事件A最可能发生次数k 其它 [np p] k (即使概率P ( X k ) C n p k (1 p)n k 达到最大值的k .
启示:一次试验中概率很小,但在大量重复试验中几乎必然发生
9 P ( X 9 ) C10 (0.3)9 (0.7)109 0.00138
P ( X 9) P ( X 9 ) P ( X 10 )
(3)二项分布的图形特点:X∽b(n,p)
Pk Pk
0
...
n=10, p=0.7
n
0
..
n=20, p=0.5
.. n
说明:
a. 对于固定n及p,随着k的增加 ,概率P(X=k) 先是随之增加, 并在(n+1)p或者[(n+1)p] 达到最大值,随后单调减少。 b. 如果p>0.5,图形高峰右偏;如果p<0.5,图形高峰左偏。
说明:
k P ( X k ) C n p k (1 p )n k 0 a. 可验证二项分布满足概率充分条件 n k k C n p (1 p )n k ( p+1-p )n 1 k 0
k b. 式Cn pk (1 p)nk 为二项式( p 1 p)n 一般项,故二项分布.
c. n 1, B(n, p)即为0 1分布, P( X k ) pk qnk (k 0,1)
k d . n次试验中至多出现m次( m n): P (0 X m ) C n p k q n k k 0 m
np p或np p 1 np p N e. 事件A最可能发生次数k 其它 [np p] k (即使概率P ( X k ) C n p k (1 p)n k 达到最大值的k .
启示:一次试验中概率很小,但在大量重复试验中几乎必然发生
2-2离散型随机变量及其分布律

P(X=2)=C (0.05) (0.95) = 0.007125
思考:本例中的“有放回”改为”无放回” 思考: 本例中的“有放回”改为”无放回”? 不是伯努利试验。 各次试验条件不同,此试验就不是伯努利试验 此时, 各次试验条件不同,此试验就不是伯努利试验。此时, 1 2 只能用古典概型求解. 古典概型求解 只能用古典概型求解. C C
3. 泊松分布
定义 若一个随机变量 X 的概率分布为 λke−λ P{ X = k} = , k = 0,1,2,⋯, k! 则称 X 服从参数为 λ 的泊松分布, 泊松分布, 记为 X ~ P (λ ) 或 X ~ π (λ ). 易见, 易见,1) P { X = k } ≥ 0; ( k −λ ∞ ∞ ∞ λk λe −λ (2)∑P{X = k} = ∑ =e ∑ k! k=0 k ! k=0 k=0
泊松分布是常见的一种分布: 泊松分布是常见的一种分布: 地震 火山爆发 特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
4. 二项分布的泊松近似
很大时, 对二项分布 b( n, p ), 当试验次数 n 很大时, 计 算其概率很麻烦. 例如, 算其概率很麻烦 例如,b(5000, 0.001), 要计算
.
二、几种常见分布
1. 两点分布 只可能取x 设随机变量 X 只可能取 1与x2两个值 , 它的 分布律为 x x
X pi
p 1− p
1
2
0< p<1
则称 X 服从x1 , x2处参数为 的两点分布。 处参数为p的两点分布。
说明: 只可能取0与 两个值 说明:若随机变量 X 只可能取 与1两个值 , 它的 分布律为 0 1
则随机变量 X的分布律为 X 的分布律为
概率论§2.1 随机变量-§2.2离散型随机变量

0, w = (b1 , b2 ), (b1 , b3 ), (b2 , b3 ) 1, w = (a1 , b1 ), (a1 , b2 ), (a1 , b3 ) X = X (w ) = (a2 , b1 ), (a2 , b2 ), (a2 , b3 ) 2, w = (a1 , a2 )
18
分布函数的性质
(1) F(x)是x的不减函数 ,即
x1 x2 , F ( x1 ) F ( x2 )
(2)
F ( ) = lim F ( x ) = 0
x
F ( ) = lim F ( x ) = 1
x
理解:当x→+时,{X≤x}愈来愈趋于必然事件. (3)右连续性: 对任意实数 x0 ,
P ( X x ) = 1 P ( X x ) = 1 F ( x );
21
例1 设F1 ( x )与F2 ( x )分别为随机变量X 1与X 2
的分布函数,为了使 ( x ) = aF1 ( x ) bF2 ( x ) F
是某一随机变量的分布函数,则下列各组值 中应取(A)
3 2 ( A) a = , b = 5 5
连续型随机变量
如:“电视机的使用寿命”,实际中常遇到 的 24 “测量误差”等。
§2.2 离散型随机变量及其分布
定义 如果随机变量X 只取有限个或可列无限 多个不同可能值,则称X 为离散型随机变量. 例如, 抛一枚硬币,X 可取0,1有限个值。 可知X为一个离散型随机变量。 例如,电话交换台一天内接到的电话个数
F ( x0 0) = lim F ( x ) = F ( x0 )
x x0
19
如果一个函数满足上述三条性质,则一 定是某个随机变量 X 的分布函数。也就是说, 性质(1)-(3)是判别一个函数是否是某个随机 变量的分布函数的充分必要条件。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1) 对于发生概率低的事件, 如果试验独立进行多次, 事件必然发生; 不能轻视小概率事件.
(2) 若本例中400次射击中中靶不到两次, 可以认为 命中率不到0.02.
例4 80台同类型设备, 各台工作相互独立,发生故障 的概率都是0.01, 且一台设备的故障能由一人处理. 考虑两种配备维修工人的方法: 其一由4人维护, 每 人负责20台; 其二由三人共同维护80台. 比较这两种 方法在设备发生故障时不能及时维修的概率.
第二节 离散型随机变量 及其分布律
一、离散型随机变量的分布律 二、常见离散型随机变量的概率分布 三、小结
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2, ), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
P{ X xk } pk , k 1,2, . 称此为离散型随机变量X 的分布律.
的次品数,X~b( 1000 , 0.001 )
解 P{ X 2} 1 P{ X 0} P{ X 1}
1
(0.999)1000
C1 1000
(0.999)999
(0.001)
1 0.3676954 0.3680635 0.2642411
也可用泊松分布近似计算,得: np 1
P{ X 2} 1 P{ X 0} P{ X 1}
们做了2608次观察(每次时间为7.5秒)发现放射 性物质在规定的一段时间内, 其放射的粒子数X 服从泊松分布.
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
地震
火山爆发
特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
解 第一种方式. 记 X 为“第一人维护的20台中同 一时刻发生故障的台数”, Ai 表示事件“第 i 人维 护的20台中发生故障不能及时维修” (i = 1, 2, 3, 4),
则 X ~ b(20, 0.01), 且80台中发生故障不能及时维修的概率为
P( A1 A2 A3 A4 ) P( A1 ) P{ X 2}
P{X = 8} = 0.022 P{X = 9} = 0.007 P{X = 10} = 0.002
P{X = k} < 0.001, k > 10
图形:
规律: 当 k 增加时, 概 率 P{X = k} 先增并达 到最大值, 随后单调减 少.
例3 某人进行射击,设每次射击的命中率为0.02, 独立射击 400 次,试求至少击中两次的概率. 解 设击中的次数为 X ,
因此,当n很大时,有近似式:
n pk (1 p)nk ke (其中 np)
k
k!
即:n很大时,二项分布的概率值可以由泊松分布 的概率值近似计算。
例5 计算机硬件公司制造某种特殊型号的微型芯片,
次 品 率 达 0.1% , 各 芯 片 成 为 次 品 相 互 独 立 。 求 在
1000只产品中至少有2只次品的概率。以X记产品中
1
C
k 80
(0.01)k
(0.99)80
k
k0
= 0.0087
因此第二种方式更科学. 工作效率提高了.
另解 按第一种方法
而 X ~ b(20,0.01), 又 np 0.2,
故有 P{ X 2} (0.2)k k 0.2 0.0175.
k2
k!
即有 P( A1 A2 A3 A4 ) 0.0175.
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
泊松定理 设 0是一个常数,n是任意正整数,设
npn ,则对于任一固定的非负整数 k ,有:
lim n
n k
pnk
(1
pn )nk
k e
k!
证明 由 npn ,有:
n k
pnk (1
pn
)nk
X ~ b(1000, 0.0001),
故所求概率为 P{X 2} 1 P{X 0} P{X 1}
1 0.99991000 1000 0.0001 0.9999999 1
二项分布 np ( n )泊松分布
可利用泊松定理计算 1000 0.0001 0.1,
P{ X 2} 1 e0.1 0.1 e0.1 0.0047.
设 X 为20只产品中一级品的数量,
则 X ~ b(20, 0.2). 于是
P{ X
k}
C
k 20
(0.2)k
(0.8)20k
,k
0,1,
,20.
计算结果如下:
P{X = 0} = 0.012 P{X = 1} = 0.058 P{X = 2} = 0.137 P{X = 3} = 0.205
P{X = 4} = 0.218 P{X = 5} = 0.175 P{X = 6} = 0.109 P{X = 7} = 0.055
若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
k次
nk 次
AAA A A AAA
k1 次
nk1 次
得 A 在 n 次试验中发生 k 次的方式共有 n 种, k
0!
1!
4. 泊松分布
设随机变量所有可能取的值为0, 1, 2, ,而取各个
值的概率为
ke
P{X k}
, k 0,1,2, ,
k!
其中 0是常数.则称 X 服从参数为 的泊松分
布,记为 X ~ π( ).
泊松分布的图形
泊松分布的背景及应用
二十世纪初卢瑟福和盖克两位科学家在观察
与分析放射性物质放出的粒 子个数的情况时,他
1 e1 e1 0.2642411
结论:当n≥20,p≤0.05时,用
k e
k!
n pk (1 k
pn )nk
近似效果好。
5. 几何分布
若随机变量 X 的分布律为
X 1 2 k , p q 1, pk p qp qk1 p
则称 X 服从几何分布.
实例 设某批产品的次品率为 p,对该批产品做有放 回的抽样检查 , 直到第一次抽到一只次品为止 ( 在 此之前抽到的全是正品 ), 那么所抽到的产品数 X 是 一个随机变量 , 求X 的分布律. 解 X 所取的可能值是 1, 2, 3, .
则 X ~ b(400,0.02).
X 的分布律为
P{ X k} 400(0.02)k (0.98)400k , k 0,1, ,400. k
因此 P{X 2} 1 P{X 0} P{X 1} 1 (0.98)400 400(0.02)(0.98)399 0.9972.
说明: 对于本例的结果在实际中反映出这样两个问题:
设 P( A) p (0 p 1),此时P( A) 1 p.
将 E 独立地重复地进行n 次,则称这一串重 复的独立试验为n 重伯努利试验.
实例1 抛一枚硬币观察得到正面或反面. 若将硬 币抛 n 次,就是n重伯努利试验.
实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就 (3) 二项是概n重率伯公努式利试验.
1
1
1
P{ X
k}
1
C
k 20
(0.01)k
(0.99)20
k
k0
k0
= 0.0169
即 P( A1 A2 A3 A4 ) 0.0169.
第二种方式: 记 Y 为“80台中同一时刻发生故障的 台数”, 则 Y ~ b(80, 0.01) .
则80台中发生故障不能及时维修的概率为
3
P{Y
4}
2
0.125
3
4
0.0625 0.0625
二、常见离散型随机变量的概率分布
1.两点分布
设随机变量 X 只可能取0与1两个值 , 它的分布 律为
P{X = k} = pk(1p)1k k =0Hale Waihona Puke 1 0< p < 1.
表格形式为:
X
0
1
pk 1 p
p
则称 X 服从 (0—1) 分布或两点分布.
实例1 “抛硬币”试验,观察正、反两面情况.
说明
(1) pk 0, k 1,2, ;
(2) pk 1. k 1
离散型随机变量的分布律也可表示为 X ~ x1 x2 xn p1 p2 pn
X x1 x2 xn
pk
p1 p2 pn
例1 设一汽车在开往目的地的道路上需经过四 组信号灯,每组信号灯以1 2的概率允许或禁止汽 车通过.以 X 表示汽车首次停下时,它已通过的信 号灯的组数(设各组信号灯的工作是相互独立的), 求 X 的分布律.
n(n
1) (n k!
k
1)
n
k
(1
)nk
n
k [1 (1 1) (1 k 1)](1 )n (1 )k
k!
n
n
n
n
对任意固定的k,当n→∞时,
1 (1 1 ) (1 k 1) 1 (1 )n e
n
n
n
(1 )k 1
n
得证。
说明:
在 npn (常数)中,当n很大时,pn必定很小。
按第二种方法
以Y 记 80台中同一时刻发生故 障的台数.
则有 Y ~ b(80,0.01), 又 np 0.8,
故 80 台中发生故障而不能及时维修的概率为
(2) 若本例中400次射击中中靶不到两次, 可以认为 命中率不到0.02.
例4 80台同类型设备, 各台工作相互独立,发生故障 的概率都是0.01, 且一台设备的故障能由一人处理. 考虑两种配备维修工人的方法: 其一由4人维护, 每 人负责20台; 其二由三人共同维护80台. 比较这两种 方法在设备发生故障时不能及时维修的概率.
第二节 离散型随机变量 及其分布律
一、离散型随机变量的分布律 二、常见离散型随机变量的概率分布 三、小结
一、离散型随机变量的分布律
定义 设离散型随机变量X 所有可能取的值为 xk (k 1,2, ), X 取各个可能值的概率, 即事件 { X xk } 的概率, 为
P{ X xk } pk , k 1,2, . 称此为离散型随机变量X 的分布律.
的次品数,X~b( 1000 , 0.001 )
解 P{ X 2} 1 P{ X 0} P{ X 1}
1
(0.999)1000
C1 1000
(0.999)999
(0.001)
1 0.3676954 0.3680635 0.2642411
也可用泊松分布近似计算,得: np 1
P{ X 2} 1 P{ X 0} P{ X 1}
们做了2608次观察(每次时间为7.5秒)发现放射 性物质在规定的一段时间内, 其放射的粒子数X 服从泊松分布.
在生物学、医学、工业统计、保险科学及 公用事业的排队等问题中 , 泊松分布是常见的. 例如地震、火山爆发、特大洪水、交换台的电 话呼唤次数等, 都服从泊松分布.
地震
火山爆发
特大洪水
商场接待的顾客数 电话呼唤次数 交通事故次数
解 第一种方式. 记 X 为“第一人维护的20台中同 一时刻发生故障的台数”, Ai 表示事件“第 i 人维 护的20台中发生故障不能及时维修” (i = 1, 2, 3, 4),
则 X ~ b(20, 0.01), 且80台中发生故障不能及时维修的概率为
P( A1 A2 A3 A4 ) P( A1 ) P{ X 2}
P{X = 8} = 0.022 P{X = 9} = 0.007 P{X = 10} = 0.002
P{X = k} < 0.001, k > 10
图形:
规律: 当 k 增加时, 概 率 P{X = k} 先增并达 到最大值, 随后单调减 少.
例3 某人进行射击,设每次射击的命中率为0.02, 独立射击 400 次,试求至少击中两次的概率. 解 设击中的次数为 X ,
因此,当n很大时,有近似式:
n pk (1 p)nk ke (其中 np)
k
k!
即:n很大时,二项分布的概率值可以由泊松分布 的概率值近似计算。
例5 计算机硬件公司制造某种特殊型号的微型芯片,
次 品 率 达 0.1% , 各 芯 片 成 为 次 品 相 互 独 立 。 求 在
1000只产品中至少有2只次品的概率。以X记产品中
1
C
k 80
(0.01)k
(0.99)80
k
k0
= 0.0087
因此第二种方式更科学. 工作效率提高了.
另解 按第一种方法
而 X ~ b(20,0.01), 又 np 0.2,
故有 P{ X 2} (0.2)k k 0.2 0.0175.
k2
k!
即有 P( A1 A2 A3 A4 ) 0.0175.
上面我们提到
二项分布 np ( n )泊松分布
单击图形播放/暂停 ESC键退出
泊松定理 设 0是一个常数,n是任意正整数,设
npn ,则对于任一固定的非负整数 k ,有:
lim n
n k
pnk
(1
pn )nk
k e
k!
证明 由 npn ,有:
n k
pnk (1
pn
)nk
X ~ b(1000, 0.0001),
故所求概率为 P{X 2} 1 P{X 0} P{X 1}
1 0.99991000 1000 0.0001 0.9999999 1
二项分布 np ( n )泊松分布
可利用泊松定理计算 1000 0.0001 0.1,
P{ X 2} 1 e0.1 0.1 e0.1 0.0047.
设 X 为20只产品中一级品的数量,
则 X ~ b(20, 0.2). 于是
P{ X
k}
C
k 20
(0.2)k
(0.8)20k
,k
0,1,
,20.
计算结果如下:
P{X = 0} = 0.012 P{X = 1} = 0.058 P{X = 2} = 0.137 P{X = 3} = 0.205
P{X = 4} = 0.218 P{X = 5} = 0.175 P{X = 6} = 0.109 P{X = 7} = 0.055
若 X 表示 n 重伯努利试验中事件 A 发生的次数, 则 X 所有可能取的值为
0, 1, 2, , n.
当 X k (0 k n) 时, 即 A 在 n 次试验中发生了 k 次.
AAA AAA ,
k次
nk 次
AAA A A AAA
k1 次
nk1 次
得 A 在 n 次试验中发生 k 次的方式共有 n 种, k
0!
1!
4. 泊松分布
设随机变量所有可能取的值为0, 1, 2, ,而取各个
值的概率为
ke
P{X k}
, k 0,1,2, ,
k!
其中 0是常数.则称 X 服从参数为 的泊松分
布,记为 X ~ π( ).
泊松分布的图形
泊松分布的背景及应用
二十世纪初卢瑟福和盖克两位科学家在观察
与分析放射性物质放出的粒 子个数的情况时,他
1 e1 e1 0.2642411
结论:当n≥20,p≤0.05时,用
k e
k!
n pk (1 k
pn )nk
近似效果好。
5. 几何分布
若随机变量 X 的分布律为
X 1 2 k , p q 1, pk p qp qk1 p
则称 X 服从几何分布.
实例 设某批产品的次品率为 p,对该批产品做有放 回的抽样检查 , 直到第一次抽到一只次品为止 ( 在 此之前抽到的全是正品 ), 那么所抽到的产品数 X 是 一个随机变量 , 求X 的分布律. 解 X 所取的可能值是 1, 2, 3, .
则 X ~ b(400,0.02).
X 的分布律为
P{ X k} 400(0.02)k (0.98)400k , k 0,1, ,400. k
因此 P{X 2} 1 P{X 0} P{X 1} 1 (0.98)400 400(0.02)(0.98)399 0.9972.
说明: 对于本例的结果在实际中反映出这样两个问题:
设 P( A) p (0 p 1),此时P( A) 1 p.
将 E 独立地重复地进行n 次,则称这一串重 复的独立试验为n 重伯努利试验.
实例1 抛一枚硬币观察得到正面或反面. 若将硬 币抛 n 次,就是n重伯努利试验.
实例2 抛一颗骰子n次,观察是否 “出现 1 点”, 就 (3) 二项是概n重率伯公努式利试验.
1
1
1
P{ X
k}
1
C
k 20
(0.01)k
(0.99)20
k
k0
k0
= 0.0169
即 P( A1 A2 A3 A4 ) 0.0169.
第二种方式: 记 Y 为“80台中同一时刻发生故障的 台数”, 则 Y ~ b(80, 0.01) .
则80台中发生故障不能及时维修的概率为
3
P{Y
4}
2
0.125
3
4
0.0625 0.0625
二、常见离散型随机变量的概率分布
1.两点分布
设随机变量 X 只可能取0与1两个值 , 它的分布 律为
P{X = k} = pk(1p)1k k =0Hale Waihona Puke 1 0< p < 1.
表格形式为:
X
0
1
pk 1 p
p
则称 X 服从 (0—1) 分布或两点分布.
实例1 “抛硬币”试验,观察正、反两面情况.
说明
(1) pk 0, k 1,2, ;
(2) pk 1. k 1
离散型随机变量的分布律也可表示为 X ~ x1 x2 xn p1 p2 pn
X x1 x2 xn
pk
p1 p2 pn
例1 设一汽车在开往目的地的道路上需经过四 组信号灯,每组信号灯以1 2的概率允许或禁止汽 车通过.以 X 表示汽车首次停下时,它已通过的信 号灯的组数(设各组信号灯的工作是相互独立的), 求 X 的分布律.
n(n
1) (n k!
k
1)
n
k
(1
)nk
n
k [1 (1 1) (1 k 1)](1 )n (1 )k
k!
n
n
n
n
对任意固定的k,当n→∞时,
1 (1 1 ) (1 k 1) 1 (1 )n e
n
n
n
(1 )k 1
n
得证。
说明:
在 npn (常数)中,当n很大时,pn必定很小。
按第二种方法
以Y 记 80台中同一时刻发生故 障的台数.
则有 Y ~ b(80,0.01), 又 np 0.8,
故 80 台中发生故障而不能及时维修的概率为