巧添辅助线

合集下载

初中数学常用辅助线添加技巧

初中数学常用辅助线添加技巧

初中数学常⽤辅助线添加技巧⼈们从来就是⽤⾃⼰的聪明才智创造条件解决问题的,当问题的条件不够时,添加辅助线构成新图形,形成新关系,使分散的条件集中,建⽴已知与未知的桥梁,把问题转化为⾃⼰能解决的问题,这是解决问题常⽤的策略。

初中数学常⽤辅助线添加技巧⼀.添辅助线有⼆种情况:1按定义添辅助线:如证明⼆直线垂直可延长使它们相交后证交⾓为90°;证线段倍半关系可倍线段取中点或半线段加倍;证⾓的倍半关系也可类似添辅助线。

2按基本图形添辅助线:每个⼏何定理都有与它相对应的⼏何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质⽽基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防⽌乱添线,添辅助线也有规律可循。

举例如下:(1)平⾏线是个基本图形:当⼏何中出现平⾏线时添辅助线的关键是添与⼆条平⾏线都相交的等第三条直线(2)等腰三⾓形是个简单的基本图形:当⼏何问题中出现⼀点发出的⼆条相等线段时往往要补完整等腰三⾓形。

出现⾓平分线与平⾏线组合时可延长平⾏线与⾓的⼆边相交得等腰三⾓形。

(3)等腰三⾓形中的重要线段是个重要的基本图形:出现等腰三⾓形底边上的中点添底边上的中线;出现⾓平分线与垂线组合时可延长垂线与⾓的⼆边相交得等腰三⾓形中的重要线段的基本图形。

(4)直⾓三⾓形斜边上中线基本图形出现直⾓三⾓形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直⾓三⾓形的斜边则要添直⾓三⾓形斜边上的中线得直⾓三⾓形斜边上中线基本图形。

(5)三⾓形中位线基本图形⼏何问题中出现多个中点时往往添加三⾓形中位线基本图形进⾏证明当有中点没有中位线时则添中位线,当有中位线三⾓形不完整时则需补完整三⾓形; 当出现线段倍半关系且与倍线段有公共端点的线段带⼀个中点则可过这中点添倍线段的平⾏线得三⾓形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平⾏线得三⾓形中位线基本图形。

2020 年中考数学巧妙的添加辅助线

2020 年中考数学巧妙的添加辅助线

中考数学巧妙的添加辅助线这次给同学们带来的是数学辅助线,辅助线对于同学们来说并不陌生,解几何题的时候经常用到。

当题目给出的条件不够时,我们通过添加辅助线构成新图形,形成新关系,使分散的条件集中,建立已知与未知的桥梁,把问题转化为自己能解决的问题,这便是辅助线的作用。

一条巧妙的辅助线常常使一道难题迎而解。

所以我们要学会巧妙的添加辅助线。

一添辅助线有二种情况1、按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90°;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2、按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此“添线”应该叫做“补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1)平行线是个基本图形:当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2)等腰三角形是个简单的基本图形:当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3)等腰三角形中的重要线段是个重要的基本图形:出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(4)直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(5)三角形中位线基本图形几何问题中出现多个中点时往往添加三角形中位线基本图形进行证明当有中点没有中位线时则添中位线,当有中位线三角形不完整时则需补完整三角形;当出现线段倍半关系且与倍线段有公共端点的线段带一个中点则可过这中点添倍线段的平行线得三角形中位线基本图形;当出现线段倍半关系且与半线段的端点是某线段的中点,则可过带中点线段的端点添半线段的平行线得三角形中位线基本图形。

如何添辅助线解几何题

如何添辅助线解几何题

如何添辅助线解几何题添辅助线是解决几何题的常用方法之一,它可以帮助我们发现角、线段的关系,简化原问题,缩短思维过程,提高解题效率。

下面我将向大家介绍如何添辅助线解几何题。

一、加垂线垂线是一种常见的加辅助线的方法,它能够把原图分成两个或多个简单的图形,以便更好地研究它们的性质。

下面是一些常用的加垂线的情况:1.以一个点为圆心作圆,垂直于圆上一点所在的切线的垂线。

这种情况一般用于证明圆内角等于该圆对应圆心角的一半的情况。

2.连接角的顶点到对边的中点所在的垂线。

这种情况一般用于证明角平分线的性质。

3.连接一个角的顶点和对边两个点,与另一个角相交于一点的垂线。

这种情况一般用于证明垂线定理的性质。

4.连接一个角的顶点和另一个角的两个点,与对边相交于一点的垂线。

这种情况一般用于证明相似三角形定理的性质。

二、加平行线平行线是另一种常用的加辅助线的方法,它能够帮助我们研究线段的比例关系、角的对应关系等等。

下面是一些常用的加平行线的情况:1.通过两个点作一条直线,再以这条直线作为一边,与指定点相交于一点的平行线。

这种情况一般用于证明相似三角形定理的性质。

2.连接两个角顶点,将一个角补成一个平行四边形,再通过直线将平行四边形画成两个相等的三角形。

这种情况一般用于证明平行四边形的性质。

3.通过两个角顶点作一条直线,与给定角相交,再作一条平行于给定边的直线与另一条边相交。

这种情况一般用于证明三角形内角和定理的性质。

三、加辅助图形有时候,我们可以在原图的上或下方添加一些辅助图形,以便方便研究问题。

下面是一些常见的添加辅助图形的情况:1.在一个矩形的中心处添加一个正方形或三角形,以便更好地研究矩形的性质。

2.在一个圆的内部或外部添加一个三角形或四边形,以便更好地研究圆的性质。

3.在一个三角形的内部或外部添加一个菱形或梯形,以便更好地研究三角形的性质。

总的来说,添辅助线是解决几何问题的一种重要技巧,它可以缩短解题时间,简化思维过程,并有助于发现问题中隐藏的规律和特征。

初中数学三角形辅助线技巧

初中数学三角形辅助线技巧

初中数学三角形辅助线技巧
在解决初中数学中的三角形问题时,添加辅助线是一种常见的策略。

以下是一些常见的三角形辅助线添加技巧:
1. 中点连线:如果已知三角形的一个中点,可以通过连接这个中点到其他顶点来找到新的等腰三角形或平行四边形,从而简化问题。

2. 平行线:通过作平行线,可以构造新的平行四边形或相似三角形,从而利用这些图形的性质来解决问题。

3. 延长线:在某些情况下,延长线可以帮助我们找到新的角或线段,从而利用这些信息解决问题。

4. 作高:在直角三角形中,可以通过作高来找到新的线段或角,从而找到解决问题的线索。

5. 作角平分线:角平分线可以将一个角分为两个相等的角,从而帮助我们找到新的等腰三角形或平行线。

6. 构造全等三角形:通过添加辅助线,可以构造两个或多个全等的三角形,从而利用全等三角形的性质解决问题。

7. 倍长中线:在已知中点的情况下,可以通过倍长中线来找到新的等腰三角形或平行四边形。

8. 构造相似三角形:通过添加辅助线,可以构造两个相似的三角形,从而利用相似三角形的性质解决问题。

以上技巧并非一成不变,需要根据具体的问题和条件灵活运用。

在解决三角形问题时,多思考、多实践是提高解题能力的关键。

学会巧妙的添加辅助线

学会巧妙的添加辅助线

学会巧妙的添加辅助线一、添辅助线有二种情况:1. 按定义添辅助线:如证明二直线垂直可延长使它们相交后证交角为90。

;证线段倍半关系可倍线段取中点或半线段加倍;证角的倍半关系也可类似添辅助线。

2. 按基本图形添辅助线:每个几何定理都有与它相对应的几何图形,我们把它叫做基本图形,添辅助线往往是具有基本图形的性质而基本图形不完整时补完整基本图形,因此添线” 应该叫做补图”!这样可防止乱添线,添辅助线也有规律可循。

举例如下:(1) 平行线是个基本图形当几何中出现平行线时添辅助线的关键是添与二条平行线都相交的等第三条直线(2) 等腰三角形是个简单的基本图形当几何问题中出现一点发出的二条相等线段时往往要补完整等腰三角形。

出现角平分线与平行线组合时可延长平行线与角的二边相交得等腰三角形。

(3) 直角三角形斜边上中线基本图形出现直角三角形斜边上的中点往往添斜边上的中线。

出现线段倍半关系且倍线段是直角三角形的斜边则要添直角三角形斜边上的中线得直角三角形斜边上中线基本图形。

(4) 等腰三角形中的重要线段是个重要的基本图形出现等腰三角形底边上的中点添底边上的中线;出现角平分线与垂线组合时可延长垂线与角的二边相交得等腰三角形中的重要线段的基本图形。

(5) 全等三角形全等三角形有轴对称形,中心对称形,旋转形与平移形等;如果出现两条相等线段或两个档相等角关于某一直线成轴对称就可以添加轴对称形全等三角形:或添对称轴,或将三角形沿对称轴翻转。

当几何问题中出现一组或两组相等线段位于一组对顶角两边且成一直线时可添加中心对称形全等三角形加以证明,添加方法是将四个端点两两连结或过二端点添平行线(6) 相似三角形相似三角形有平行线型(带平行线的相似三角形),相交线型,旋转型;当出现相比线段重叠在一直线上时(中点可看成比为1)可添加平行线得平行线型相似三角形。

若平行线过端点添则可以分点或另一端点的线段为平行方向,这类题目中往往有多种浅线方法。

巧添辅助线 妙用中位线定理(初中数学)

巧添辅助线  妙用中位线定理(初中数学)

巧添辅助线妙用中位线定理在解与几何图形有关的问题中,若图中涉及多个中点,要注意联想三角形的中位线定理,来实现线段或角的转化.常见的构造中位线的方法有:已知三角形两边的中点,连接这两个中点;已知三角形一边的中点,在另一边上取中点,再连接两个中点;已知三角形一边的中点,过中点作其他两边任意一边的平行线.例1如图1,在△ABC中,D是BC上一点,E,F,G,H分别是BD,BC,AC,AD的中点.求证:EG,HF互相平分.图1证明:如图1,连接EH,GH,GF.因为E,F,G,H分别是BD,BC,AC,AD的中点,所以AB△HE△GF,HG△BC.所以HG△EF.所以四边形EFHG是平行四边形.所以EG,HF互相平分.例2如图2,在四边形ABCD中,AB=2,CD=3.若E,F分别是AD,BC的中点,则EF长的取值范围是()A.0<EF<1B.2<EF<3C.0.5<EF<2.5D.1<EF<5图2解析:如图2,连接AC,取AC的中点H,连接EH,FH.CD=1.5.因为E,H分别是AD,AC的中点,所以EH=12AB=1.同理,得FH=12在△EHF中,EH﹣FH<EF<EH+FH,即0.5<EF<2.5.故选C.例3如图3,在△ABC中,△A=40°,点D,E分别在AB,AC上,且BD=CE.若BE,CD的中点分别是M,N,直线MN分别交AB,AC于点P,Q,求△APQ的度数.图3解析:如图3,取BC的中点H,连接MH,NH.CE.因为M,H分别是BE,BC的中点,所以HM△CE,HM=12BD.同理,得HN△BD,HN=12因为BD=CE,所以HM=HN.所以△HMN=△HNM.因为HM△CE,所以△HMN=△AQP.同理,得△HNM=△APQ.×(180°﹣△A)=70°.所以△APQ=△AQP=12例4如图4,在△ABC中,△A=90°,AC>AB>4,点D,E分别在边AB,AC上.若BD =4,CE=3,取DE,BC的中点M,N,则线段MN的长为()A.2.5B.3C.4D.5图4解析:如图4,过点C作CH△AB,连接DN并延长交CH于点H,连接EH.因为BD△CH,所以△B=△NCH,△ECH+△A=180°.因为△A=90°,所以△ECH=90°.易证得△BDN△△CHN,所以CH=BD=4,DN=NH.在Rt△ECH中,由勾股定理,得EH5.EH=2.5.故选A.因为M,N分别是DE,DH的中点,所以MN=12。

第十二章第三讲全等的构造-巧添辅助线(教案)

第十二章第三讲全等的构造-巧添辅助线(教案)
三、教学难点与重点
1.教学重点
-核心知识:全等三角形的判定方法(SSS、SAS、ASA、AAS)及其在实际问题中的应用。
-巧添辅助线的方法及其应用,包括延长两边、构造平行线、利用特殊线段(中点、角平分线、高线)等。
-典型例题的分析与解答,强化全等三角形构造的解题技巧。
举例解释:在讲解全等三角形判定方法时,重点强调SAS判定法中,两边及其夹角必须一一对应相等。通过具体例题,如“已知三角形ABC中,AB=AC,点D在BC上,BD=DC,证明三角形ABD全等于三角形ACD”,让学生直观理解SAS判定法的应用。
其次,我发现学生们在分组讨论和实验操作环节,表现得非常积极。他们通过互相交流、探讨,不仅提高了自己的思考能力,还学会了如何团队合作。这一点让我深感欣慰,也证明了我的教学方法是有效的。
然而,我也注意到,在小组讨论过程中,有些学生较为内向,不愿意发表自己的观点。为了解决这个问题,我计划在今后的教学中,多关注这部分学生,鼓励他们大胆表达自己的看法,提高他们的自信心。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等三角形的基本概念、判定方法以及巧添辅助线的技巧。同时,我们也通过实践活动和小组讨论加深了对全等构造的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
最后,我认识到教学反思的重要性。通过反思,我可以发现自己在教学过程中的不足,及时调整教学方法,以便更好地满足学生的需求。同时,我也将继续学习,提高自己的教育教学水平,为学生们提供更优质的教学。
此外,对于教学难点和重点的把握,我认为自己在课堂上还需要进一步加强。在讲解全等三角形的判定方法和巧添辅助线的过程中,我应该更加明确地指出每个方法的关键点,并通过更多典型的例题来帮助学生巩固知识点。

高中几何添加辅助线的常用技巧

高中几何添加辅助线的常用技巧

高中几何添加辅助线的常用技巧
高中几何学习中,添加辅助线是解决许多问题的有效方法。

以下是几种常用的几何辅助线技巧:
1、平移辅助线:通过将线段或图形平移,将其移动到更方便处理的位置来简化问题。

比如,对于一条直线外一点的角平分线,我们可以通过平移这条直线,使该点与角的顶点重合,然后再画出该点到角两边的垂线,这样就可以得到角平分线。

2、垂线辅助线:通过向一条直线引垂线来解决问题。

比如,对于一条直线上一点到另一条直线的垂线,我们可以通过在该点处引垂线使两条直线相交,然后再利用垂线的性质来解题。

3、相似三角形辅助线:利用相似三角形的性质来解决问题。

比如,对于一条直线外一点到两条平行线的距离,我们可以利用相似三角形的性质,构造出一个相似三角形,然后利用相似三角形的对应边比相等的性质来求出所需的距离。

4、角平分线辅助线:通过构造角平分线来解决问题。

比如,对于一个三角形的内角平分线,我们可以通过构造该角的外角平分线,然后利用外角和内角的性质来求出该角的内角平分线。

5、中垂线辅助线:通过构造线段中点的垂线来解决问题。

比如,对于一个三角形的垂心,我们可以通过构造三角形三边的中垂线,然后利用中垂线的性质来求出垂心的位置。

这些技巧可以帮助学生更好地理解几何概念和解题思路,提高几何水平。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
精小班第十讲:巧添辅助线——倍长中线
【夯实基础】
例:ABC ∆中,AD 是BAC ∠的平分线,且BD=CD ,求证AB=AC 方法1:作D E ⊥AB 于E ,作D F ⊥AC 于F ,证明二次全等 方法2:辅助线同上,利用面积 方法3:倍长中线AD
【方法精讲】常用辅助线添加方法——倍长中线
△ABC 中 方式1: 延长AD 到E ,
AD 是BC 边中线 使DE=AD ,
连接BE
方式2:间接倍长
作CF ⊥AD 于F , 延长MD 到N , 作BE ⊥AD 的延长线于E 使DN=MD , 连接BE 连接CD
【经典例题】
例1:△ABC 中,AB=5,AC=3,求中线AD 的取值范围 提示:画出图形,倍长中线AD ,利用三角形两边之和大于第三边
例2:已知在△ABC 中,AB=AC ,D 在AB 上,E 在AC 的延长线上,DE 交BC 于F ,且DF=EF ,求证:BD=CE
方法1:过D 作DG ∥AE 交BC 于G ,证明ΔDGF ≌ΔCEF 方法2:过E 作EG ∥AB 交BC 的延长线于G ,证明ΔEFG ≌ΔDFB 方法3:过D 作DG ⊥BC 于G ,过E 作EH ⊥BC 的延长线于H 证明ΔBDG ≌ΔECH 例3:已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE=AC ,延长BE 交AC 于F ,求证:AF=EF
提示:倍长AD 至G ,连接BG ,证明ΔBDG ≌ΔCDA 三角形BEG 是等腰三角形
C
D
A
B
D A B
C E
D A
B
C F E
D C B
A N
D
C
B A
M
F
E
D
A
B
C
F
E
C A
B
D
2
例4:已知:如图,在ABC ∆中,AC AB ≠,D 、E 在BC 上,且DE=EC ,过D 作BA DF //交AE 于点F ,DF=AC. 求证:AE 平分BAC ∠ 提示:
方法1:倍长AE 至G ,连结DG 方法2:倍长FE 至H ,连结CH
例5:已知CD=AB ,∠BDA=∠BAD ,AE 是△ABD 的中线,求证:∠C=∠BAE 提示:倍长AE 至F ,连结DF 证明ΔABE ≌ΔFDE (SAS )
进而证明ΔADF ≌ΔADC (SAS )
【融会贯通】
1、在四边形ABCD 中,AB ∥DC ,E 为BC 边的中点,∠BAE=∠EAF ,AF 与DC 的延长线相交于点F 。

试探究线段AB 与AF 、CF 之间的数量关系,并证明你的结论
提示:延长AE 、DF 交于G 证明AB=GC 、AF=GF 所以AB=AF+FC
2、如图,AD 为ABC ∆的中线,DE 平分BDA ∠交AB 于E ,DF 平分ADC ∠交AC 于F. 求证:EF CF BE >+ 提示:
方法1:在DA 上截取DG=BD ,连结EG 、FG 证明ΔBDE ≌ΔGDE ΔDCF ≌ΔDGF 所以BE=EG 、CF=FG
利用三角形两边之和大于第三边 方法2:倍长ED 至H ,连结CH 、FH 证明FH=EF 、CH=BE
利用三角形两边之和大于第三边
3、已知:如图,∆ABC 中,∠C=90︒,CM ⊥AB 于M ,AT 平分∠BAC 交CM 于D ,交BC 于T ,过D 作DE//AB 交BC 于E ,求证:CT=BE.
提示:过T 作TN ⊥AB 于N 证明ΔBTN ≌ΔECD
第 1 题图
A
B
F
D
E
C
E D
A
B
C
F
E
A
B
C
D
第 14 题图
D
F C
B
E
A
D
A
B
C M
T
E。

相关文档
最新文档