DSP概述

合集下载

DSP技术概述

DSP技术概述

DSP技术概述1引言2 DSP微处理器3 DSP技术的应用4 DSP发展轨迹5 DSP未来发展1引言数字信号处理(Digital Signal Processing,简称DSP)是一门涉及许多学科而又广泛应用于许多领域的新兴学科。

20世纪60年代以来,随着计算机和信息技术的飞速发展,数字信号处理技术应运而生并得到迅速的发展。

数字信号处理是一种通过使用数学技巧执行转换或提取信息,来处理现实信号的方法,这些信号由数字序列表示。

在过去的二十多年时间里,数字信号处理已经在通信等领域得到极为广泛的应用。

德州仪器、Freescale等半导体厂商在这一领域拥有很强的实力。

2 DSP微处理器DSP(digital signal processor)是一种独特的微处理器,是以数字信号来处理大量信息的器件。

其工作原理是接收模拟信号,转换为0或1的数字信号,再对数字信号进行修改、删除、强化,并在其他系统芯片中把数字数据解译回模拟数据或实际环境格式。

它不仅具有可编程性,而且其实时运行速度可达每秒数以千万条复杂指令程序,远远超过通用微处理器,是数字化电子世界中日益重要的电脑芯片。

它的强大数据处理能力和高运行速度,是最值得称道的两大特色。

DSP微处理器(芯片)一般具有如下主要特点:①在一个指令周期内可完成一次乘法和一次加法;②程序和数据空间分开,可以同时访问指令和数据;③片内具有快速RAM,通常可通过独立的数据总线在两块中同时访问;④具有低开销或无开销循环及跳转的硬件支持;⑤快速的中断处理和硬件I/O支持;⑥具有在单周期内操作的多个硬件地址产生器;⑦可以并行执行多个操作;⑧支持流水线操作,使取指、译码和执行等操作可以重叠执行。

当然,与通用微处理器相比,DSP微处理器(芯片)的其他通用功能相对较弱些。

DSP优点:①对元件值的容限不敏感,受温度、环境等外部参与影响小;②容易实现集成;③VLSI 可以时分复用,共享处理器;④方便调整处理器的系数实现自适应滤波;⑤可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等;⑥可用于频率非常低的信号。

DSP基本介绍及CCS软件分解

DSP基本介绍及CCS软件分解
应用于高性能复杂的通信系统和其他一些高端应用,如语音识别、图形 处理、网络系统等。
第10页/共43页
(3)国内DSP的发展概况
☉1983年引进(TMS32010) ☉我国DSP产品主要来自海外。TI公司的产品约占国内 DSP市场的90%,其余为Lucent、AD、Motorola、ZSP和 NEC等公司。 ☉现状:DSP开发工具 / DSP硬件平台开发 / DSP应用软 件开发 ☉国内较知名的DSP公司:北京“闻亭”、“合众达”等。
➢ TMS320C5000系列包括C54x、C55x,是低功耗高性能的定点DSP,功
耗低至0.05mW/MIPS,性能高达 600MIPS。它针对强大且经济高效的 嵌入式信号处理解决方案进行了优化,其中包括消费类电子、通信、医 疗、安保和 工业应用中的便携式电子产品。
➢ TMS320C6000系列包括C62x、C64x和C67x ,是TI超高性能DSP,一般
第6页/共43页
返回首页
3.1 DSP芯片的种类
DSP芯片可以按照以下3种方式进行分类。 1.按数据格式分: 定点和浮点
根据DSP芯片工作的数据格式可分为定点DSP芯片与浮点DSP芯片。 即数据以定点格式工作的DSP芯片称之为定点DSP芯片;以浮点格式工作 的称为浮点DSP芯片。 注意:定点DSP也可以通过软件形式实现浮点运算。 2.按用途分:通用和专用
第1页/共43页
2、数字信号处理概述
▪ 2.1 数字信号处理系统的构成 ▪ 2.2 数字信号处理的实现 ▪ 2.3 数字信号处理的特点
第2页/共43页
返回首页
2.1 数字信号处理系统的构成
DSP
图2-1 典型的数字信号处理系统框图
第3页/共43页
返回本节

DSP概述及存储器

DSP概述及存储器

60% Core Performance Boost Vs C’5409
High Performance
JTAG Test/ JTAG Test/ Emulation Emulation Control Control Muxed GP I/O Muxed GP I/O
Program/Data SRAM Program/Data SRAM 128K Words 128K Words
Copyright © 2003 Texas Instruments. All rights reserved.
TMS320C54x系列DSP TMS320C54x系列DSP
TMS320C54x系列DSP概述
C54x DSP具有很高操作灵活性和速度。它具有先进的修 正哈佛结构(一条程序总线、三条数据总线和四条地址总线)、 专门硬件逻辑的CPU、片内存储器、片内外设和专用的指令集、 将C54x DSP的CPU和片内存储器与外设配置组合在一起的螺 旋结构,使得它可以满足电子市场众多领域的应用要求: C54x DSP具有以下优点:
DSP的应用
DSP已经在信号处理、通信、雷达等领域得到广泛的应 用。目前,DSP的价格越来越低,性能价格比日益提高,具 有巨大的应用潜力。DSP的应用主要有: ☆ 用数字信号处理,如数字滤波、自适应滤波、相关 算、快速傅立叶变换等; ☆ 通信领域,如数据加密、数据压缩、传真、移动电 网络通信等; ☆ 语音处理,如语音编码、语音合成、语音识别、语 增强、语音存储等; ☆ 图形/图像,二维或三维图形处理、图像压缩与传输、 指纹识别、图像识别等;
DSP主要特点
根据数字信号处理的要求,DSP一般具有如下的主要特点: ☆ 在一个指令周期内,可完成一次乘法和一次加法; ☆ 程序和数据空间分开,可以同时访问指令和数据; ☆ 片内具有快速RAM,通常可通过独立的数据总线, 在两块芯片中同时访问; ☆ 具有低开销或无开销循环及跳转的硬件支持; ☆ 快速的中断处理和硬件I/O接口支持; ☆ 具有在单周期内操作的多个硬件地址产生器; ☆ 可以并行执行多个操作; ☆ 支持流水线操作,使取指、译码、取操作数和执行等 操作可以重叠执行。

DSP应用技术-DSP及其应用概述

DSP应用技术-DSP及其应用概述
(1) 规格:
① C55xTM DSP内核可以为高达600 MIPS的性能提供300 MHz;
② 目前TMS320C5510 DSP已经开始投产,TMS320C5509 DSP 可提供样片;
③ 在整个C5000TM DSP平台上可实现软件兼容。
(2) 应用:功能丰富的便携产品,2G、2.5G、3G手机与基站, 数字音频播放器,数码相机,电子图书,语音识别,GPS接收器, 指纹/模式识别,无线调制解调器,耳机,生物辨识。
③ 高达7 MB的片上内存;
④ 两个多通道缓冲串行端口(McBSP)(三个用于C6202与 C6203 DSP的McBSP);
⑤ 16位主机端口接口(HPI)(32位用于C6202、C6203与C6204 DSP的扩展总线);
⑥ 两个32位定时器;
⑦ 300 MHz时速率高达2400 MIPS(C6203 DSP)。
(6) 具有软、硬件等待功能,能与各种存取速度的存储器接 口。
(7) 针对滤波、相关和矩阵运算等需要大量乘法累加运算的 特点,DSP芯片大多配有独立的乘法器和加法器,使得在同一 时钟周期内可以完成乘、累加两个运算。
(8) 低功耗,DSP一般为0.5~4 W,而采用低功耗技术的 DSP芯片只有0.1 W,可用电池供电。
(2) 特性:OMAP5910双内核处理器同时包括。 ① 150 MHz的TI增强ARM925微处理器: * 16 KB指令高速缓冲存储器以及8 KB数据缓冲器; * 数据与指令MMU; * 32位与16位指令集。
② 150 MHz TMS320C55xTM DSP内核: * 24 KB指令高速缓冲存储器; * 160 KB SRAM; * 用于视频算法的硬件加速器。
(3) 特性:高级自动电源管理;可配置的空闲域,以延长电 池寿命;缩短调制过程,从而加快产品上市进程。

DSP工作原理

DSP工作原理

DSP工作原理DSP(数字信号处理)工作原理是一种通过对数字信号进行算法处理来实现信号处理的技术。

它主要应用于实时信号处理、通信系统、音频处理、图象处理等领域。

下面将详细介绍DSP工作原理的相关内容。

1. 数字信号处理概述数字信号处理是一种将连续时间信号转换为离散时间信号,并对其进行数字运算和处理的技术。

它通过采样、量化和编码等步骤将连续时间信号转换为离散时间信号,然后利用数字算法对离散时间信号进行处理。

2. DSP芯片的组成和功能DSP芯片是实现数字信号处理的核心组件。

它通常由一块数字信号处理器、存储器、外设接口等组成。

数字信号处理器是DSP芯片的核心,它具有高性能的算术运算单元和控制单元,能够高效地执行各种数字信号处理算法。

3. DSP工作流程DSP的工作流程主要包括信号采集、数字信号处理和信号重构三个步骤。

3.1 信号采集信号采集是将摹拟信号转换为数字信号的过程。

通常使用模数转换器(ADC)将摹拟信号进行采样和量化,然后将其转换为数字信号。

采样率决定了信号的频率范围,量化位数决定了信号的精度。

3.2 数字信号处理数字信号处理是对采集到的数字信号进行算法处理的过程。

它主要包括滤波、变换、编码、解码、压缩等处理步骤。

滤波可以去除信号中的噪声和干扰,变换可以将信号从时域转换到频域或者从频域转换到时域,编码可以将信号进行压缩和编码,解码可以将压缩和编码后的信号进行解码和恢复,压缩可以减少信号的数据量。

3.3 信号重构信号重构是将数字信号转换为摹拟信号的过程。

通常使用数模转换器(DAC)将数字信号进行重构和滤波,然后将其转换为摹拟信号。

重构过程中需要注意采样定理,以保证信号的完整性和准确性。

4. DSP应用领域DSP技术在各个领域都有广泛的应用。

4.1 实时信号处理DSP可以对实时信号进行快速处理,常见的应用包括音频处理、视频处理、雷达信号处理等。

4.2 通信系统DSP在通信系统中可以实现调制解调、信号编解码、信道均衡、自适应滤波等功能,提高通信质量和系统性能。

数字信号处理器

数字信号处理器

数字信号处理器概述数字信号处理器(Digital Signal Processor,DSP)是一种专用的微处理器,主要用于数字信号处理和算法执行。

它采用专门的硬件和软件设计,能够高效地执行各种数字信号处理任务,如滤波、编解码、音频处理和图像处理等。

数字信号处理器在很多领域被广泛应用,包括通信、音频、视频、雷达、电力、医疗等。

架构和特点数字信号处理器具有独特的架构和特点,以满足对高性能、低功耗、高可编程性和低成本的需求。

1. 单指令多数据(SIMD)架构:数字信号处理器采用SIMD架构,具有多个数据通路和一个控制单元。

这样可以并行处理多个数据,提高处理速度和效率。

2. 数据内存和指令内存分离:数字信号处理器有独立的数据内存和指令内存,这使得其能够在执行指令的同时读写数据。

这样可以减少数据传输的延迟,提高处理速度。

3. 浮点数运算支持:数字信号处理器支持浮点数运算,可以进行高精度的计算。

这对于信号处理和算法执行非常重要。

4. 高速时钟和并行运算单元:数字信号处理器的时钟频率通常很高,可以达到几百兆赫兹甚至更高。

同时,它通常具有多个并行运算单元,可以同时执行多条指令,提高处理能力。

5. 低功耗设计:数字信号处理器通常被应用于移动设备和嵌入式系统,因此功耗是一个非常重要的考虑因素。

数字信号处理器采用了低功耗的设计,通过减少供电电压和优化电路结构来降低功耗。

应用领域数字信号处理器在许多领域都有广泛的应用。

1. 通信:数字信号处理器在通信系统中起着重要的作用。

它可以处理和调制数字信号,实现信号的传输和接收。

同样,数字信号处理器也可以进行解调和解码,还可以执行音频和视频编码。

2. 音频:数字信号处理器广泛应用于音频处理领域。

它可以实现音频信号的滤波、降噪、混响等处理,提高音质和音乐效果。

3. 视频:数字信号处理器可以用于视频编码和解码,实现视频的压缩和解压缩。

此外,它也可以进行图像处理,如图像滤波、边缘检测等。

第一章 DSP概述-TMS320F28335 DSP原理、开发及应用-符晓

第一章 DSP概述-TMS320F28335 DSP原理、开发及应用-符晓

DSP与MCU硬件结构比较
改进的哈佛结构、多总线:片内多条数据、地址和控制总线 流水线技术:多个控制和运算部件并行工作
硬件乘法器 特殊指令:
➢ MAC(连乘加指令,单周期同时完成乘法和加法运算) ➢ RPTS和RPTB(硬件判断循环边界条件,避免破坏流水线) 特殊寻址方式: ➢ 位倒序寻址(实现FFT快速倒序) ➢ 循环寻址 特殊片内外设: ➢ 可编程等待电路(便于与慢速设备接口) ➢ 数字锁相电路 PLL(有利系统稳定) 丰富片内外设:定时器、异步串口、同步串口、DMA控制器、A/D和通用I/O口、 PWM、CAN等 丰富片内存储器类型:RAM、DARAM、ROM、Flash、SARAM等,新的DSP芯片采用 Cache(高速缓存)机制,解决存储器速度与DSP内核速度不匹配的问题
盘控制等; (8) 医疗——如助听、超声设备、诊断工具、病人监护等; (9) 家用电器——如高保真音响、音乐合成、音调控制、玩具与游
戏、数字电话/视等。
DSP的应用正在日益发展
巡航导弹
可以举出很多例子
❖ 医院用的B超、CT、核磁共振
❖卫星遥感遥测 ❖天气预报、地震预报、地震探矿 ❖风洞试验 ❖数字化士兵、数字化战争 ❖…... ❖DSP的应用领域取决于设计者的想象空间
On-Chip Peripherals/
Registers
CPU
External Signals
DSP与MCU硬件结构比较
改进的哈佛结构、多总线:片内多条数据、地址和控制总线 流水线技术:多个控制和运算部件并行工作
流水线操作:F2833x系列DSP的8级流水线
AA FF11 FF22 DD11 DD22 RR11 RR22 EE WW
(4) 图形/图像——如二维和三维图形处理、图像压缩与传输、图 像增强、动画、机器人视觉等;

基于DSP的音频信号处理算法研究与实现

基于DSP的音频信号处理算法研究与实现

基于DSP的音频信号处理算法研究与实现音频信号处理是一项关键技术,它在实际生活和各个领域中得到广泛应用。

基于数字信号处理器(DSP)的音频信号处理算法研究与实现,成为了当前研究和开发的热点方向。

本文将探讨利用DSP实现音频信号处理算法的研究方法和具体实现步骤。

1. DSP的概述DSP(Digital Signal Processing,数字信号处理)技术是指利用数字化方法对模拟信号进行处理、计算和编码的技术。

它通过数字滤波、数字变换等算法对数字信号进行处理,具有高效性、灵活性和精确性等优势。

DSP技术在音频处理领域有着重要的应用。

2. 音频信号处理算法研究方法2.1 问题分析:首先需要明确要处理的音频信号处理问题,例如降噪、滤波、均衡等。

针对不同的处理问题,选择合适的算法进行研究。

2.2 算法选择:根据具体问题的特点,选择适合的音频信号处理算法,例如自适应滤波算法、小波变换算法等。

2.3 算法实现:将选择的算法进行进一步实现,需要借助DSP的开发环境和相应的软件工具进行编程和调试。

算法的实现过程中需要注意算法的时效性和实时性。

3. DSP音频信号处理算法实现步骤3.1 信号采集:通过外设音频采集模块,将模拟音频信号转换为数字信号,输入DSP进行处理。

3.2 数据预处理:对采集到的音频信号进行预处理,包括滤波、去噪等操作。

这一步旨在减小输入信号的噪声干扰,提高音频信号处理的质量。

3.3 算法实现:选择适当的音频信号处理算法进行实现,例如自适应滤波、小波变换等。

根据算法的特点和要求,进行程序编写和调试。

3.4 数据后处理:将处理后的数字音频信号转换为模拟信号,经过后续的数模转换模块,输出音频信号。

4. 实例分析:音频降噪算法在DSP上的实现以音频降噪算法为例,介绍基于DSP的音频信号处理算法的具体实现步骤。

4.1 问题分析:降噪算法是音频信号处理中常见的问题,通过去除背景噪声提升原始信号的质量。

4.2 算法选择:选择适合的降噪算法,例如基于自适应滤波的降噪算法,通过实时估计噪声模型并进行滤波处理。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为了满足数字信号处理的需要,在DSP的指令系统中,设 计了一些完成特殊功能的指令。如:TMS320C54x中的FIRS和 LMS指令,专门用于完成系数对称的FIR滤波器和LMS(Least Mean Square)最小均方算法。
1.3 DSP芯片的特点
5.快速的指令周期 由于采用哈佛结构、流水线操作、专用的硬件乘法器、
每利条用指这令种可流通水过线片结内构多,功加能上单执元行完重成复取操指作、,译就码能、保取证操在 作单数指和令执周行期等内多完个成步数骤字,信实号现处多理条中指用令得的最并多行的执乘行法,-从累而加在运 不算提。高如系:统时钟频率的条件下n减少每条指令的执行时间。
y ai xi i 1
T1
T2
T3
特殊的指令以及集成电路的优化设计,使指令周期可在20ns 以下。如:TMS320C67x的运算速度为100MIPS (Million Instructions Per Second),即100百万条/秒。 6.硬件配置强
新一代的DSP芯片具有较强的接口功能,除了具有串行 口、定时器、主机接口(HPI)、DMA控制器、软件可编程 等待状态发生器等片内外设外,还配有中断处理器、PLL、 片内存储器、仿真器接口等单元电路,可以方便地构成一个 嵌入式数据处理系统。
典型 DSP 系统
抗混叠 滤波器
A/D
DSP
D/A
平滑 滤波器
x(t)
x(n)
DSP系统基于软件设 计,灵活性高,抗干 扰能力强
y(n)
y(t)
A/D与D/A转换器建立 起了数字世界与现实模拟 世界之间的桥梁
DSP系统的处理过程
① 将输入信号x(t)进行抗混叠滤波,滤掉高于折 叠频率的分量,以防止信号频谱的混叠;
通用DSP划分为定点DSP和浮点DSP两类。 若数据以定点格式工作的——定点DSP芯片。 若数据以浮点格式工作的——浮点DSP芯片。 不同的浮点DSP芯片所采用的浮点格式有所不同,有的
DSP芯片采用自定义的浮点格式,有的DSP芯片则采用IEEE的 标准浮点格式。
1.4 DSP芯片的分类
2. 按用途分类 按照用途,可将DSP芯片分为通用型和专用型两大类。 通用型DSP芯片:一般是指可以用指令编程的DSP芯片,
第一章 DSP概述
第一章 DSP概述
1.1 DSP芯片的概念 1.2 DSP芯片的发展 1.3 DSP芯片的特点 1.4 DSP芯片的分类 1.5 DSP系列产品
1.1 DSP芯片的概念
DSP---Digital Signal Processing DSP---Digital Signal Processor 前者对应“数字信号处理”这门课,侧重理论和 算法的研究 后者对应“DSP原理与应用”这门课,主要来学习 DSP芯片的结构和使用方法
目前,生产通用DSP芯片的厂家如下: TI (美国德州仪器公司) ADI (亚德诺半导体公司/美国模拟器件公司) Freescale (飞思卡尔半导体公司,原摩托罗拉半导体) Lucent (朗讯科技公司---以贝尔实验室为后盾) NEC (日本电气股份有限公司公司)
② 经采样和A/D转换器,将滤波后的信号转换为 数字信号x(n);
③ 数字信号处理器对x(n)进行处理,得数字信号 y(n);
④ 经D/A转换器,将y(n)转换成模拟信号; ⑤ 经低通滤波器,滤除高频分量,得到平滑的模
拟信号y(t)。
数字信号处理的实现
数字信号处理的实现是指用硬件、软件或软硬结 合的形式来实现各种算法,一般有以下几种方法:
③④①用用在专通通用用用的的计D可算S编P机芯程上片D用来S软P实芯件现片(,实如专现C用,语集具言成有)电可来路编实A程现S性I,C和但也强速属大度于的慢此处,类 不用度号。户理中②适的。处一所能用合扩不理般需力于单实 展 适。说的,主片时板合不来存可导机数卡于适,储完地(字或嵌合器成位D例S信协入于复。(P包如核号处式以 杂括8是处理应9乘的CC通理器用累数a5c1用。,。h加字)eD可用、运信来S以以R算号P实A器在增为处现M件通强主理,、中用运的的用R的计算密算O于CM算能集法不P、机力型,U太部F系和在D复laS分统提实s杂Ph,算中高时、的再法加运DE数SP配。入算字PR上领专速O信用M域) 和外设(包括串口、并口、主机接口、DMA、定时器等),组成 用户的ASIC,用在要求信号处理速度极快的特殊场合,如 FFT、数字滤波、卷积、相关算法等,算法由内部硬件电路实 现。
43;1
N+2
N+3
指令译码
N-1
N
N+1
N+2
取操作数
N-2
N-1
N
N+1
执行指令
N-3
N-2
N-1
N
四级流水线操作
1.3 DSP芯片的特点
3. 配有专用的硬件乘法-累加器 为了适应数字信号处理的需要,当前的DSP芯片都配有
专用的硬件乘法-累加器,可在一个周期内完成一次乘法和 一次累加操作,从而可实现数据的乘法-累加操作。如矩阵 运算、FIR和IIR滤波、FFT变换等专用信号的处理。 4. 具有特殊的DSP指令
1.3 DSP芯片的特点
CPU
I/O口
串行接口
并行接口
数据总线DB 地址总线AB
ROM
RAM
外部存储 器接口
冯·诺伊曼结构
1.3 DSP芯片的特点
(2)哈佛(Harvard)结构 该结构采用双存储空间,程序存储器和数据存储器分
开,有各自独立的程序总线和数据总线,可独立编址和独 立访问,可对程序和数据进行独立传输,使取指令操作、 指令执行操作、数据吞吐并行完成,大大地提高了数据处 理能力和指令的执行速度,非常适合于实时的数字信号处 理。
1.采用哈佛结构 DSP芯片普遍采用数据总线和程序总线分离的哈佛结构 或改进的哈佛结构,比传统处理器的冯·诺伊曼结构有更快的 指令执行速度。
1.3 DSP芯片的特点
(1) 冯·诺伊曼(Von Neuman)结构 该结构采用单存储空间,即程序指令和数据共用一个存 储空间,使用单一的地址和数据总线,取指令和取操作数都 是通过一条总线分时进行。 当进行高速运算时,不但不能同时进行取指令和取操作 数,而且还会造成数据传输通道的瓶颈现象,其工作速度较 慢。
这个时期的代表性器件有 Intel2920(Intel) PD7720(NEC) TMS320C10(TI) DSP16(AT&T) S2811(AMI) ADSP-21(AD)
1.2 DSP芯片的发展
第二阶段,DSP的成熟阶段(1990年前后) 这个时期的DSP器件在硬件结构上更适合数字信号处理的 要求,能进行硬件乘法、硬件FFT变换和单指令滤波处理,其 单指令周期为80~100ns。 如TI公司的TMS320C20,它是该公司的第二代DSP器件, 采用了CMOS制造工艺,其存储容量和运算速度成倍提高,为 语音处理、图像硬件处理技术的发展奠定了基础。 20世纪80年代后期,以TI公司的TMS320C30为代表的第 三代DSP芯片问世,伴随着运算速度的进一步提高,其应用范 围逐步扩大到通信、计算机领域。
1.3 DSP芯片的特点
CPU
I/O口
串行接口
并行接口
外部管理数据总线
外部管理地址总线 数据总线
数据地址总线 程序数据总线
ROM
RAM
外部存储 器接口
外部管理数据总线 外部管理地址总线 数据总线 数据地址总线 程序数据总线 程序地址总线
程序地址总线
哈佛结构
1.3 DSP芯片的特点
2.采用流水线技术
如 如 如: : :雷数 调 语 二 保6达字 制 音 维 密. 仪处滤 解 编 和 通器理波 调 码 三 信、器维仪自、语图表适自音形应适合处滤应成理波均、、、衡、 快 相 卷 数 回 传 移 语 语 图 图 图 动 声 导 导 电 全789速 关 据 波 真 动 音 音 像 像 像 画 纳 航 弹 子 球... 自医家积傅 运 加 抵 、 通 识 邮 压 鉴 转 、 处 制 对 定动疗用、氏 算 密 消 扩 信 别 件 缩 别 换 电 理 导 抗 位模G变、、、频、、、与、子控工电P式换频数多通纠语语传图模地制程器S匹、谱据路信错音音输像式图配分压复、编增存、增识、Hi、析缩用译强储强别lbe、、、码、、、rt、变换、 1窗 可 文 机 搜 情0函 视 本 器 索 报. 计—数 电 人 与 收语、 话 视 跟 集算音波、觉踪与转形路等处机换产由;理等生器等;等等;;
DSP芯片的应用
随着DSP芯片价格的下降,性能价格比的提高,DSP芯片 具有巨大的应用潜力。
主要应用:
如如::数模频声 发 自 X心 超 音 音 玩 数 图引助高震-据态谱动 动 电 声 乐 调 具 字 形擎听保裂射123采分分机驾图设合控与电加控器真处线... 集析控析控驶备成制游话速/制音理扫信通语脑、、、制戏器/响器描电电号锁暂函图视处相态数信音理环分发、 析生、、 石机 核 高 工油器 磁 清 作4/人共晰站地. 控振度图质制电勘像视探处H、理DTV 地磁 神 诊 病 变 机 多震盘 经 断 人 频 顶 媒5预网工监空盒体/光. 测络具护调等计军盘与控等算伺处制机服理等等控事等制;
1.3 DSP芯片的特点
7.支持多处理器结构 为了满足多处理器系统的设计,许多DSP芯片都采用支
持多处理器的结构。如:TMS320C40提供了6个用于处理器 间高速通信的32位专用通信接口,使处理器之间可直接对通 ,应用灵活、使用方便;
8.省电管理和低功耗 DSP功耗一般为0.5~4W,若采用低功耗技术可使功耗降
这个时期的器件主要有:TI公司的 TMS320C20、C30、C40、C50系 列,Motorola公司的DSP5600、 9600系列,AT&T公司的DSP32等
1.2 DSP芯片的发展
相关文档
最新文档