Verilog程序6、UART(串口通信)
uart通信原理与程序

uart通信原理与程序UART(通用异步收发传输器)是一种串行通信协议,用于在电子设备之间传输数据。
它广泛应用于各种通信设备和嵌入式系统中,是实现设备间通信的一种基本方式。
本文将详细介绍UART的工作原理和编写UART通信程序的步骤。
一、UART的工作原理UART通信是一种简单的、异步的、串行通信方式。
它使用一个数据线(TXD)和一个时钟线(CLK)实现数据的收发。
UART通信的工作原理如下:1.数据传输格式:UART通信使用帧来表示一个完整的数据包,每个帧由起始位、数据位、校验位和停止位组成。
起始位是一个低电平信号,用来告诉接收方接下来的数据的开始。
数据位是实际要传输的数据,可以是一个字节或多个字节。
校验位用于检查数据的准确性,常用的校验方式有奇偶校验和循环冗余校验(CRC)。
停止位是一个高电平信号,用来表示数据的结束。
2.波特率:3.串行传输:UART通信使用串行传输方式,即每个bit按顺序依次传输。
发送方将数据一位一位地发送到TXD线上,接收方通过CLK线来同步数据的传输。
发送方和接收方都在预定的时钟频率下将数据从一个电平变为另一个电平,以便接收方正确地接收数据。
4.启动和停止:UART通信在数据的开始和结束位置需要一些额外的控制位来标识。
当数据传输开始时,发送方发送一个起始位(低电平),接收方通过检测起始位来确定数据传输的开始。
当数据传输完毕时,发送方发送一个或多个停止位(高电平)来表示数据的结束。
5.同步与异步:UART通信是一种异步通信方式,即发送方和接收方的时钟不同步。
发送方和接收方使用各自的时钟来同步数据的传输,接收方通过检测起始位和停止位来确定数据的开始和结束位置。
二、编写UART通信程序的步骤下面是编写UART通信程序的一般步骤:1.设置波特率:首先,需要设置UART的波特率,确保发送方和接收方使用相同的波特率。
波特率的设置通常是通过设置寄存器完成的,具体的方法可以参考芯片的数据手册。
uart串口通信协议

UART串口通信协议1. 引言串行通信是在计算机和外设之间传输数据的一种常见方式,而UART(通用异步收发传输器)是其中一种广泛使用的串口通信协议。
UART串口通信协议在各种领域中被广泛应用,例如嵌入式系统、通信设备等。
本文将介绍UART串口通信协议的基本原理、数据格式和常见应用场景。
2. 基本原理UART串口通信协议采用异步通信方式,通过单个数据线进行数据传输。
通信的两个设备之间共享一个时钟信号,其中一个设备充当发送器(Transmitter),另一个设备充当接收器(Receiver)。
发送器将数据按照一定规则发送到数据线上,接收器则根据相同的规则从数据线上接收数据。
UART串口通信协议的基本原理可以概括为以下几个步骤:1.确定波特率(Baud Rate):波特率是指单位时间内传输的位数,常见的波特率有9600、115200等。
发送器和接收器必须使用相同的波特率才能正常通信。
2.确定数据位数(Data Bits):数据位数指的是每个数据包中实际传输的位数,通常为5、6、7或8位。
3.确定奇偶校验位(Parity Bit):奇偶校验位用于检测数据传输过程中是否发生错误。
奇偶校验可以分为奇校验和偶校验两种方式,发送器和接收器必须使用相同的奇偶校验方式。
4.确定停止位(Stop Bits):停止位用于标识每个数据包的结束,通常为1或2位。
3. 数据格式UART串口通信协议中的数据包由起始位、数据位、奇偶校验位和停止位组成。
其中,起始位和停止位的逻辑电平分别为高和低,用于标识每个数据包的开始和结束。
数据位包含了实际要传输的数据,奇偶校验位用于检测数据的正确性。
下面是UART串口通信协议中常用的数据格式示例:起始位数据位奇偶校验位停止位0 8位 None 1位在以上示例中,数据位为8位,没有奇偶校验位,停止位为1位。
这种数据格式在许多UART串口通信应用中被广泛使用。
4. 应用场景UART串口通信协议在许多领域中得到了广泛应用,以下是一些常见的应用场景:4.1 嵌入式系统在嵌入式系统中,UART串口通信协议用于与外部设备进行通信。
基于Verilog HDL设计的UART模块

1 UART原理串行通信是指外部设备和计算机间使用一根数据线(另外需要地线,可能还需要控制线)进行数据传输的方式。
数据在一根数据线上一位一位传输,每一位数据都占据一个固定的时间长度。
与并行通信方式相比,串行通信方式的传输速度较慢,但这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,因此得到了广泛的应用。
基本的UART只需要发送和接收两条数据线就可以完成数据的全双工通信,其基本功能是在发送端将控制器通过总线传过来的并行数据,以设定的格式,设定的频率串行地传输出去,并同时在接收端将串行接收到的数据,转换成相应的并行数据发送出去。
UART的基本帧格式如图1所示。
其中,起始位总是逻辑O状态,停止位总是逻辑l状态,其持续时间可选为1位、1.5位或2位,其数据位可为5、6、7、8位,校验位可根据需要选择奇校验位,偶校验位或无校验位。
2 UART的设计现今复杂的数字系统的设计往往采用自顶向下的设计方案,利用层次化结构化的方法,将一个设计方案划分为若干模块,在不同层次的模块都可以进行仿真,可以很方便地查看某一层次的代码以改正仿真时发现错误。
在本设计中UART主要由波特率发生器、接收模块、发送模块3部分组成,并具有l位停止位和无校验位。
波特率发生器实现波特率的变换,利用外部时钟信号产生一个所需波特率16倍的波特率时钟,用来控制UART的接收与发送。
接收模块是用于接收串行信号,并将其转化为并行数据;而发送模块则将准备输出的并行数据按照UART的帧格式转化为串行数据输出。
图2为UART结构图。
2.1 波特率发生器波特率表示的是每秒钟传送的二进制数据的位数,即单位时间内传送的信息量。
在串行异步传送中,常用到的波特率为1 200、2 400、4 800、9 600、19 200等。
波特率发生器实际上是一个分频器,主要是产生和。
RS-232通信所采用的波特率同步的时钟。
由于串行数据帧与接收数据时钟是异步的,所以存UA RT的接收端在什么时刻将数据移入寄存器,怎样选择可靠的采样点是非常关键的。
串口通信UART模块基本介绍

串口通信UART模块基本介绍串口通信(UART)是一种通过串行接口进行数据传输的通信协议和硬件实现方式。
它是计算机和外设之间最常用的通信方式之一,也是嵌入式系统和单片机等小型设备中常用的通信方式。
UART通过串行方式传输数据,即通过单一的数据线一次只能传输一个bit位。
在串口通信中,通常需要两条线,一条用于发送数据(TX),一条用于接收数据(RX)。
UART通常通过一对相互连接的芯片实现,称为UART芯片或UART模块。
它包含一个发送器和一个接收器。
发送器将要发送的数据从并行格式转换为串行格式,并通过发送线路发送出去。
接收器则接收到的串行数据转换为并行格式以供系统使用。
UART芯片通常由硬件设计工程师在集成电路中设计和实现。
UART通信具有以下特点和优势:1.简单易用:UART通信是一种非常简单和易用的通信协议。
它的实现简单,适用于各种不同的应用场景。
2.可靠性高:UART通信使用的是硬件实现,不受软件的控制和干扰。
它具有较高的可靠性和稳定性。
3. 速度灵活可调:UART通信可以根据不同的应用需求进行速度调整。
通常,UART通信支持的波特率范围很大,可以从几十bps到多Mbps。
4.支持半双工和全双工通信:UART通信可以支持半双工和全双工两种通信方式。
在半双工模式下,发送和接收不能同时进行;而在全双工模式下,可以同时进行发送和接收。
5.通信距离远:UART通信使用串行线路进行数据传输,因此可以通过扩展串行线路的长度来实现较远距离的通信。
6.多种应用:UART通信广泛应用于各种设备和领域,如计算机、嵌入式系统、单片机、电子设备、通信设备等。
值得注意的是,UART通信只是一个物理层的通信协议,它只负责数据的传输,而不负责数据的解码和处理。
因此,在使用UART通信时,通常需要配合其他协议或编码方式,如RS-232、RS-485、Modbus等,来完成完整的通信过程。
总结来说,UART通信是一种简单、可靠、灵活的串行通信协议和硬件实现方式。
verilog编写的uart程序

// UART_FPGA.v 顶层模块,实现由ARM控制FPGA读取串口数据,经过ARM返回给FPGA串口发送出去;`timescale 1ns/1nsmodule UART_FPGA(//EMIF PINinput wire [10:0] EADDR_pin /* synthesis syn_noclockbuf = 1 */,inout wire [15:0] EDATA_pin ,input wire EnOE_pin /* synthesis syn_noclockbuf = 1 */,input wire EnWE_pin /* synthesis syn_noclockbuf = 1 */,input wire EnGCS1_pin /* synthesis syn_noclockbuf = 1 */,output wire EINT2_pin ,//LED_runoutput wire LED_run_pin ,//UARToutput wire UART_TXD0 ,input wire UART_RXD0 /* synthesis syn_noclockbuf = 1 */,//test signaloutput wire TXD_test,output wire RXD_test,output reg TXD_start,output wire EINT2_test,output wire TXD_over_test,output wire uart_send_WR,//FPGA SYSTEM PINinput wire nRESET_pin /* synthesis syn_noclockbuf = 1 */,input wire CLK_50M_pin);wire [15:0] write_data;//-------------------DSP ARM uart to EMIF---------------------- reg [7:0] ARM_DSP_data;wire [7:0] DSP_ARM_data;reg uart_send_WR_reg;//reg [7:0] T_data;//reg [1:0] TXD_start_cnt;wire [7:0] R_data;wire R_ready;reg [2:0] UART_INT_cnt;wire TXD_over;wire [1:0] baud_select;reg [12:0] baud_devide;//wire clkrec;parameter baud_9600 = 5208; //50M/9600 parameter baud_19200 = 2604;parameter baud_38400 = 1302;parameter baud_115200 = 434;assign TXD_test = UART_TXD0;assign RXD_test = UART_RXD0;assign EINT2_test = EINT2_pin;assign TXD_over_test=TXD_over;/*--------------Program start-------------------*//*----------baud select------------*/always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginbaud_devide <= 'h1FFF;endelsebegincase ( baud_select )'d0 : baud_devide <= baud_9600 ;'d1 : baud_devide <= baud_19200 ;'d2 : baud_devide <= baud_38400 ;'d3 : baud_devide <= baud_115200 ;endcaseendend/*----------INT generator------------*/always @( negedge nRESET_pin or posedge R_ready )beginif( !nRESET_pin )beginARM_DSP_data <= 8'd0;endelsebeginARM_DSP_data <= R_data;endendalways @( negedge nRESET_pin or negedge R_ready or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginUART_INT_cnt <= 3'd5;endelse if( !R_ready )beginUART_INT_cnt <= 3'd0;endelse if( UART_INT_cnt < 3'd5 )beginUART_INT_cnt <= UART_INT_cnt + 1'b1;endassign EINT2_pin = ( UART_INT_cnt >= 3'd1 && UART_INT_cnt <= 3'd4 ) ? 1'b0 : 1'b1 ;/*---------------DSP to ARM data---------------*/always@(negedge nRESET_pin or posedge CLK_50M_pin) //当接收了一个数据后,把数据加1后发回PC机,注意串口一个一个数据发beginif( !nRESET_pin )beginuart_send_WR_reg <= 1'b0;TXD_start <= 1'b0;endelse if( uart_send_WR_reg != uart_send_WR )beginif( TXD_over )beginTXD_start <= 1'b1;uart_send_WR_reg <= uart_send_WR;endendelsebeginTXD_start <= 1'b0;endend//----------------EMIF read ,fpga TO ARM---------------------------EMIF_R EMIF_R_M(.EADDR_pin (EADDR_pin ),.EDA TA_pin (EDA TA_pin ),.EnOE_pin (EnOE_pin ),.EnGCS1_pin (EnGCS1_pin ),.write_data (write_data ),.ARM_DSP_data (ARM_DSP_data ),.nRESET_pin (nRESET_pin )// .CLK_50M_pin (CLK_50M_pin )//----------------EMIF write,ARM to fpga---------------------------EMIF_W EMIF_W_M(.EADDR_pin (EADDR_pin ),.EDA TA_pin (EDATA_pin ),.EnWE_pin (EnWE_pin ),.EnGCS1_pin (EnGCS1_pin ),//uart.DSP_ARM_data (DSP_ARM_data ),.uart_send_WR (uart_send_WR ),.write_data (write_data ),.baud_select (baud_select ),//LED run.LED_run_pin (LED_run_pin ),.nRESET_pin (nRESET_pin )// .CLK_50M_pin (CLK_50M_pin ) );UART_rec UART_rec_M (//input.RXD (UART_RXD0 ),.baud_devide (baud_devide ),//output.R_data (R_data ),.R_ready (R_ready ),//FPGA sys pin.nRESET_pin (nRESET_pin ),.CLK_50M_pin (CLK_50M_pin));UART_txd UART_txd_M (//input.TXD_start (TXD_start ),.T_data (DSP_ARM_data ),.baud_devide (baud_devide ),//output.TXD (UART_TXD0 ),.TXD_over (TXD_over ),//FPGA sys pin.nRESET_pin (nRESET_pin ),.CLK_50M_pin (CLK_50M_pin));Endmodule// UART_rec.v`timescale 1ns/1nsmodule UART_rec (//inputRXD,baud_devide,//outputR_data,R_ready,//FPGA sys pinnRESET_pin,CLK_50M_pin);input wire RXD;input wire [12:0] baud_devide;output reg [7:0] R_data;output reg R_ready;input wire nRESET_pin;input wire CLK_50M_pin;reg [1:0] RXD_sync;reg [2:0] RXD_cnt;reg RXD_bit;reg [3:0] rec_bit_cnt;//reg [8:0] baud_16_reg;reg [12:0] baud_cnt;reg [8:0] baud_16_cnt;wire baud_tick_16;wire baud_tick;wire [11:0] baud_devide_2;wire [8:0] baud_devide_16;/*----------Program start------------*/assign baud_devide_2 = baud_devide / 2;assign baud_devide_16 = baud_devide / 16;/*--------------baud 16 devided clk used in sample-----------*/ always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginbaud_16_cnt <= 'd0;endelsebeginif( baud_16_cnt < baud_devide_16 )beginbaud_16_cnt <= baud_16_cnt + 1'b1;endelsebeginbaud_16_cnt <= 'd0;endendendassign baud_tick_16 = ( baud_16_cnt == baud_devide_16 );//--------baud clk used in receiving data-------always @( negedge nRESET_pin or posedge CLK_50M_pin )beginif( !nRESET_pin )beginbaud_cnt <= 'd0;endelsebeginif( !R_ready )beginif( baud_cnt < baud_devide - 1'b1 )beginbaud_cnt <= baud_cnt + 1'b1;endelsebeginbaud_cnt <= 'd0;endendelsebeginbaud_cnt <= 'd0;endendendassign baud_tick = ( baud_cnt == baud_devide_2 );/*-----------jitter filter--------------*/always @( negedge nRESET_pin or posedge CLK_50M_pin )beginif( !nRESET_pin )beginRXD_sync <= 2'd0;endelsebeginRXD_sync <= {RXD_sync[0], RXD};endendalways @( negedge nRESET_pin or posedge baud_tick_16 ) beginif( !nRESET_pin )beginRXD_cnt <= 3'd7;endelsebeginif( RXD_sync[1] && RXD_cnt != 3'd7 )beginRXD_cnt <= RXD_cnt + 1;endelsebeginif( ~RXD_sync[1] && RXD_cnt != 3'd0 )beginRXD_cnt <= RXD_cnt - 1;endendendendalways @( negedge nRESET_pin or posedge baud_tick_16 ) beginif( !nRESET_pin )beginRXD_bit <= 1'b1;endelsebeginif( RXD_cnt == 3'd7)beginRXD_bit <= 1'b1;endelse if( RXD_cnt == 3'd0 )beginRXD_bit <= 1'b0;endendend/*---------------receive data cnt---------------*/always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginR_ready <= 1'b1;rec_bit_cnt <= 4'd0;endelsebeginif( R_ready )beginrec_bit_cnt <= 4'd0;if( !RXD_bit )beginR_ready <= 1'b0;endendelse if( baud_tick )beginif( rec_bit_cnt < 4'd9 )beginrec_bit_cnt <= rec_bit_cnt + 1'b1;R_ready <= 1'b0;endelsebeginrec_bit_cnt <= 4'd0;R_ready <= 1'b1;endendendendalways @( negedge nRESET_pin or posedge baud_tick ) beginif( !nRESET_pin )beginR_data <= 8'd0;endelse if( !R_ready )beginif( rec_bit_cnt == 0 )beginR_data <= 8'd0;endelsebeginif( rec_bit_cnt >= 4'd1 && rec_bit_cnt<= 4'd8 )R_data[rec_bit_cnt - 1'b1 ] <= RXD_bit;endendendendmodule// UART_TXD.v`timescale 1ns/1nsmodule UART_txd (//inputbaud_devide,TXD_start,T_data,//outputTXD,TXD_over,//FPGA sys pinnRESET_pin,CLK_50M_pin);input wire TXD_start;input wire [7:0] T_data;input wire [12:0] baud_devide;output reg TXD;output reg TXD_over;input wire nRESET_pin;input wire CLK_50M_pin;//regs & wireswire baud_tick;//reg baud_ctrl;reg [3:0] T_state;reg [7:0] T_data_reg;reg [12:0] baud_cnt;/*----------Program start---------------*//*-----------------Baud generator------------------------*/assign baud_tick = ( baud_cnt == baud_devide - 1'b1 );always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginbaud_cnt <= 'd0;endelse if( baud_cnt < baud_devide - 1'b1 )beginbaud_cnt <= baud_cnt + 1'b1;endelsebeginbaud_cnt <= 'd0;endend/*----------transmit state machine---------------*/always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginT_state <= 4'd0;endelsebegincase(T_state)4'd0: if(TXD_start) T_state <= 4'd1;4'd1: if(baud_tick) T_state <= 4'd2; // 开始位04'd2: if(baud_tick) T_state <= 4'd3; // bit 04'd3: if(baud_tick) T_state <= 4'd4; // bit 14'd4: if(baud_tick) T_state <= 4'd5; // bit 24'd5: if(baud_tick) T_state <= 4'd6; // bit 34'd6: if(baud_tick) T_state <= 4'd7; // bit 44'd7: if(baud_tick) T_state <= 4'd8; // bit 54'd8: if(baud_tick) T_state <= 4'd9; // bit 64'd9: if(baud_tick) T_state <= 4'd10; // bit 74'd10: if(baud_tick) T_state <= 4'd0; // 停止位1default: if(baud_tick) T_state <= 4'd0;endcaseendendalways @(negedge nRESET_pin or posedge baud_tick ) beginif( !nRESET_pin )beginTXD <= 1'b1;T_data_reg <= 8'd0;endelsebegincase(T_state)// 4'd0: TXD <= 1'b1;4'd1: beginTXD <= 1'b0;T_data_reg <= T_data;end4'd2: TXD <= T_data_reg[0];4'd3: TXD <= T_data_reg[1];4'd4: TXD <= T_data_reg[2];4'd5: TXD <= T_data_reg[3];4'd6: TXD <= T_data_reg[4];4'd7: TXD <= T_data_reg[5];4'd8: TXD <= T_data_reg[6];4'd9: TXD <= T_data_reg[7];4'd10: TXD <= 1'b1;default: TXD <= 1'b1;endcaseendend//assign TXD = TXD;always @( negedge nRESET_pin or posedge CLK_50M_pin ) beginif( !nRESET_pin )beginTXD_over <= 1'b0;endelsebeginif( T_state ==4'd0 )TXD_over <= 1'b1;elseTXD_over <= 1'b0;endendendmodule。
uart串口通信电路设计 -回复

uart串口通信电路设计-回复UART(通用异步收发传输)是一种常用的串口通信协议,可以实现设备之间的数据传输和通信。
在本文中,将详细介绍UART串口通信电路的设计步骤。
一、什么是UART串口通信电路?UART串口通信电路是一种数字电路,用于将串行数据转换为并行数据,实现设备之间的数据传输和通信。
UART串口通信电路通常由发送电路和接收电路两部分组成。
发送电路:发送电路将并行数据转换为串行数据,并对数据进行格式化。
它通常由一个发送缓冲器、一个发送时钟和控制逻辑组成。
接收电路:接收电路将串行数据转换为并行数据,并对数据进行解码和处理。
它通常由一个接收缓冲器、一个接收时钟和控制逻辑组成。
二、UART串口通信电路的设计步骤1. 确定通信参数在设计UART串口通信电路之前,首先需要确定通信参数,包括波特率、数据位数、校验位数和停止位数等。
这些参数将决定串口通信的速率和精度。
2. 设计发送电路发送电路的主要任务是将并行数据转换为串行数据,并将数据发送到接收设备。
设计发送电路时,需要考虑以下几点:(1)发送缓冲器:发送缓冲器用于存储待发送的数据。
它通常由一个FIFO (先进先出)缓冲器实现,可以提高通信的效率。
(2)时钟和控制逻辑:发送电路需要一个时钟信号来同步数据传输,并且需要控制逻辑来控制数据的发送和处理。
(3)格式化:发送电路需要对数据进行格式化,包括数据位、校验位和停止位的配置。
格式化的目的是提高数据的准确性和可靠性。
3. 设计接收电路接收电路的主要任务是将串行数据转换为并行数据,并将数据传输到接收设备。
设计接收电路时,需要考虑以下几点:(1)接收缓冲器:接收缓冲器用于存储接收到的数据。
它通常由一个FIFO 缓冲器实现,可以提高数据的接收效率。
(2)时钟和控制逻辑:接收电路需要一个时钟信号来同步数据传输,并且需要控制逻辑来控制数据的接收和处理。
(3)解码和处理:接收电路需要对接收到的数据进行解码和处理,包括校验数据的正确性和提取有效数据。
FPGA和单片机串行通信接口的实现

FPGA和单片机串行通信接口的实现FPGA(Field-Programmable Gate Array)和单片机(Microcontroller)是两种常用的数字电子设备,它们在串行通信接口方面有不同的实现方式。
首先,我们需要了解串行通信是一种将数据以位的形式逐个传输的通信方式。
常见的串行通信协议包括UART(Universal Asynchronous Receiver/Transmitter)、SPI(Serial Peripheral Interface)和I2C (Inter-Integrated Circuit)等。
对于FPGA和单片机之间的串行通信,我们可以基于以下几种方式进行实现:1. UART:UART是一种常见的串行通信协议,可以实现全双工的通信。
在FPGA和单片机之间建立UART通信,需要在FPGA中实现UART模块,并将其与单片机的UART接口连接。
在FPGA中,我们可以使用硬件语言(如Verilog或VHDL)来实现UART模块,该模块负责将FPGA内部的数据通过UART协议进行封装和解封装。
单片机与FPGA之间通过TX(发送)和RX (接收)引脚建立连接。
单片机可以通过串口发送数据给FPGA,FPGA接收到数据后进行处理,然后再通过串口将处理后的数据发送给单片机。
2.SPI:SPI是一种用于片上外设之间通信的串行通信协议,常用于FPGA与外部设备(例如传感器、显示器等)之间的通信。
在FPGA和单片机之间建立SPI通信,需要在FPGA中实现SPI控制器,并将其与单片机的SPI接口连接。
FPGA通过把数据写入SPI发送缓冲区或从SPI接收缓冲区读取数据来实现与单片机的通信。
单片机通过控制SPI接口的时钟、数据和使能信号来与FPGA进行数据传输。
3.I2C:I2C是一种双线制串行总线,常用于连接多个设备的系统,例如FPGA、单片机和其他外部设备之间的通信。
在FPGA和单片机之间建立I2C通信,需要在FPGA中实现I2C控制器,并将其与单片机的I2C接口连接。
verilog RS232 串口通信 verilog

module uart_top(clk,rs232_rx,rs232_tx);
input clk; //时钟信号50M
input rs232_rx; //数据输入信号
bps_start,
clk_bps,
rs232_rx,
rx_data,
rx_int
);
input clk; //50MHz时钟
input rst_n; //低电平复位信号
input rs232_rx; //接收数据信号
);
uart_rx uart_rx(//数据接收模块
.clk(clk),
.rst_n(rst_n),
.bps_start(bps_start1),
.clk_bps(clk_bps1),
.rs232_rx(rs232_rx),
.rx_data(rx_data),
else
begin
if(int_cnt<250) int_cnt<=int_cnt+1'b1;
end
end
assign data_flg=(int_cnt==10)?1'b1:1'b0;
always @(posedge data_flg or negedge rst_n)
output rs232_tx; //数据输出信号
wire clk_bps1,clk_bps2;
wire bps_start1,bps_start2;
wire [7:0] rx_data;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
这个程序没有仿真、没有测试。
1 UART功能设计1.1 UART的工作原理异步通信时,UART发送/接收数据的传输格式如图1所示,一个字符单位由开始位、数据位、停止位组成。
异步通信的一帧传输经历以下步骤:(1)无传输。
发送方连续发送信号,处于信息“1”状态。
(2)起始传输。
发送方在任何时刻将传号变成空号,即“1”跳变到“O”,并持续1位时间表明发送方开始传输数据。
而同时,接收方收到空号后,开始与发送方同步,并期望收到随后的数据。
(3)奇偶传输。
数据传输之后是可供选择的奇偶位发送或接收。
(4)停止传输。
最后是发送或接收的停止位,其状态恒为“1”。
其程序的结构框图如下:该程序的效果是串口接受到从计算机发送过来的数据后,又把数据发回给计算机,串口通信是串行的。
其uart.v为顶层文件,包含其他模块,speed_select.v文件的作用为为uart_rx.v和uart_tx.v 设置波特率。
uart.v(顶层文件)`timescale 1ns / 1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 16:08:27 11/12/2010// Design Name:// Module Name: uart// Project Name:// Target Devices:// Tool versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart(clk,rst_n,rs232_rx,rs232_tx);input clk,rst_n,rs232_rx;output rs232_tx;wire bps_start1,bps_start2,clk_bps1,clk_bps2,rx_int;wire [7:0] rx_data;//发送模块的时钟speed_select speed_tx (.clk(clk),.rst_n(rst_n),.bps_start(bps_start2),.clk_bps(clk_bps1));//接受模块的时钟speed_select speed_rx (.clk(clk),.rst_n(rst_n),.bps_start(bps_start2),.clk_bps(clk_bps2));//接受模块uart_rx uart_rx (.clk(clk),.rst_n(rst_n),.clk_bps(clk_bps1),.rs232_rx(rs232_rx),.bps_start(bps_start1),.rx_int(rx_int),.rx_data(rx_data));//发送模块uart_tx uart_tx (.clk(clk),.rst_n(rst_n),.clk_bps(clk_bps2),.rx_int(rx_int),.rx_data(rx_data),.bps_start(bps_start2),.rs232_tx(rs232_tx));endmodulespeed_select.v`timescale 1ns / 1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 16:12:45 11/12/2010// Design Name:// Module Name: speed_select// Project Name:// Target Devices:// Tool versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module speed_select(clk,rst_n,bps_start,clk_bps);input clk,rst_n,bps_start;output clk_bps;reg [12:0] cnt;reg clk_bps_r;/*波特率对应的脉冲的个数。
计算方法如下:以9600bps为例:1s/9600/20ns=5208.33333,即有5208个周期。
parameter bps9600 = 5208,bps19200 = 2604,bps38400 = 1302,bps57600 = 868,bps115200 = 434;个数的一半,即在周期的中间位置。
进行采样。
parameter bps9600_2 = 2604,bps19200_2 = 1302,bps38400_2 = 652,bps57600_2 = 434,bps115200_2 =217;*/`define bps9600 5208`define bps9600_2 2604always @(posedge clk or negedge rst_n)beginif(!rst_n)cnt <= 0;else if((cnt == `bps9600)|| !bps_start) //在bps_start为低时,进行开始计数,bps_start 为高时,停止计数。
cnt <= 0;elsecnt <= cnt+1;endalways @(posedge clk or negedge rst_n)if(!rst_n)clk_bps_r <= 0;else if(cnt == `bps9600_2) //岂不是只在一个时刻为高电平clk_bps_r <= 1;elseclk_bps_r <= 0;assign clk_bps = clk_bps_r;endmoduleuart_rx.v`timescale 1ns / 1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 16:14:13 11/12/2010// Design Name:// Module Name: uart_rx// Project Name:// Target Devices:// Tool versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_rx(clk,rst_n,clk_bps,rs232_rx,bps_start,rx_int,rx_data); input clk,rst_n,clk_bps,rs232_rx;output bps_start,rx_int;output [7:0] rx_data;//接受数据寄存器,捕捉rs232_rx的下降沿reg rs232_rx0,rs232_rx1,rs232_rx2,rs232_rx3;wire neg_rs232_rx; //表示数据线接收到下降沿always @(posedge clk or negedge rst_n)if(!rst_n)beginrs232_rx0 <= 1'b0;rs232_rx1 <= 1'b0;rs232_rx2 <= 1'b0;rs232_rx3 <= 1'b0;endelsebeginrs232_rx0 <= rs232_rx;rs232_rx1 <= rs232_rx0;rs232_rx2 <= rs232_rx1;rs232_rx3 <= rs232_rx2;end//下面的下降??检测??以滤掉20ns-40ns之间的毛刺。
assign neg_rs232_rx = rs232_rx3 & rs232_rx2 & ~rs232_rx1 & ~rs232_rx;reg bps_start_r;reg [3:0] num;reg rx_int;always @(posedge clk or negedge rst_n)if(!rst_n)beginbps_start_r <= 1'bz;rx_int <= 1'b0;endelse if(neg_rs232_rx)beginbps_start_r <= 1'b1;rx_int <= 1'b1;endelse if(num == 4'd12) // 当数据传送结束时,bps_start==0,则,波特率中的计数器不用工作。
beginbps_start_r <= 1'b0;rx_int <= 1'b0;endassign bps_start = bps_start_r;reg [7:0] rs_data_r; //串口接受数据寄存器reg [7:0] rs_temp_data;always @(posedge clk or negedge rst_n)if(!rst_n)beginnum = 4'd0;rs_data_r = 8'd0;rs_temp_data = 8'd0;endelse if(rx_int)beginif(clk_bps)beginnum <= num+1;case(num)4'd1: rs_temp_data[0] = rs232_rx;4'd2: rs_temp_data[1] = rs232_rx;4'd3: rs_temp_data[2] = rs232_rx;4'd4: rs_temp_data[3] = rs232_rx;4'd5: rs_temp_data[4] = rs232_rx;4'd6: rs_temp_data[5] = rs232_rx;4'd7: rs_temp_data[6] = rs232_rx;4'd8: rs_temp_data[7] = rs232_rx;default: ;endcaseendendelse if(num == 4'd12)beginnum <= 0;rs_data_r <= rs_temp_data;endassign rs232_data = rs_data_r;endmoduleuart_tx.v`timescale 1ns / 1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 16:16:24 11/12/2010// Design Name:// Module Name: uart_tx// Project Name:// Target Devices:// Tool versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_tx(clk,rst_n,clk_bps,rx_int,rx_data,bps_start,rs232_tx); input clk,rst_n,clk_bps,rx_int;input [7:0] rx_data;output bps_start,rs232_tx;reg rx_int0,rx_int1,rx_int2; //信号寄存器,捕捉下降沿。