Verilog实现串口接收多帧数据
rs串口verilog代码

UART是通用异步收发器的简称,其中有一种电平规范较RS232规范,它用-3~-15V表示正逻辑,3~15V表示负逻辑,通过FPGA芯片实现RS232通信首先要解决的就是FPGA电平和RS232电平之间的矛盾,通常采用MAX3232作为物理层的电平接口,根据MAX3232提供的标准配制方式把物理电路设计好后,接下来的通信就是要实现逻辑的接收和发送……设计最简单的RS232通信逻辑,FPGA实现将接收到的数据会发出去,总共两个数据传输引脚,一收一发。
将此通信模块分为三个部分:接收模块,波特率控制模块,发送模块。
工作原理:此模块接收MAX3232传过来的串行数据,对齐进行判断采样,校验,最后将数据流中的串行数据转换为八位并行数据,将此八位数据储存,或送给发送模块发送出去。
根据RS232通信标准器串行数据分为起始位、数据位、校验位、停止位,空闲时为高电平,起始位通常为低电平,数据位通常为8位,校验位分为奇校验、偶校验等,停止位一位或两位且为高电平。
FPGA接收模块对此数据进行异步接收,首先就要检测其数据传输开始标识,当然就是检测开始位,于是要有下降沿检测电路,检测到下降沿是输出一高脉冲,此电路可以用两个D触发器加上基本门电路实现,脉冲触发开始进入接收状态,输出接收状态标志位,使其为1,此标志位使能波特率控制模块输出采样脉冲,此计数脉冲触发接收模块中的计数器计数,加到相应的位就把当前的串行总线上的值赋给缓冲器,或对其判断,当计数完成11次计数后,已将8位串行数据转成并行数据到缓冲器中,且进行了校验的判断和停止位的判别,这是接收状态结束,接收状态位置0,计数器清零。
对于波特率产生模块用于控制采样数据脉冲的周期,其周期就为串行数据传送一个bit所用的时间,根据此时间和时钟周期设置计数值。
当接收模块完成工作时,接收状态位为0时可以触发发送模块,发送模块检测接收状态的下降沿,由此产生一高脉冲,与发送模块类似,根据波特率控制模块产生的计数脉冲将并行数据转成串行数据,并加上开始位、校验位、停止位。
verilog 逻辑函数 串口发送

verilog 逻辑函数串口发送摘要:1.Verilog 逻辑函数概述2.串口发送原理3.Verilog 实现串口发送的逻辑函数4.应用实例正文:【1.Verilog 逻辑函数概述】Verilog 是一种硬件描述语言,主要用于数字电路和模拟混合信号电路的描述。
它的语法简洁,易于理解和使用。
在数字电路设计中,逻辑函数是基本的构建模块,通过组合这些模块可以实现复杂的数字电路。
【2.串口发送原理】串口(Serial Port)是一种计算机硬件接口,可以通过串行通信传输数据。
发送数据时,数据被逐个比特按顺序传送,这样可以减少线路的传输次数,提高通信效率。
在电子设备中,如单片机、FPGA 等,通常会使用串口进行数据通信。
【3.Verilog 实现串口发送的逻辑函数】要实现串口发送功能,首先需要设计一个状态机,控制数据的发送过程。
下面是一个简单的Verilog 代码示例,实现一个8 位串口发送器:```verilogmodule serial_port_sender(input wire clk, // 时钟信号input wire rst_n, // 低电平复位信号input wire start, // 开始发送信号input wire [7:0] data, // 发送数据output wire busy // 忙碌信号);// 定义状态机typedef enum logic [1:0] {IDLE, SENDING} state_t; state_t current_state, next_state;always_ff @(posedge clk or negedge rst_n) begin if (!rst_n) begincurrent_state <= IDLE;end else begincurrent_state <= next_state;endendalways_comb begincase (current_state)IDLE: beginif (start &&!busy) beginnext_state = SENDING;endendSENDING: beginif (data == 8"b0000_0001) begin // 发送结束标志next_state = IDLE;end else begin// 发送数据busy = 1;next_state = SENDING;endendendcaseendendmodule```【4.应用实例】上述代码实现了一个简单的8 位串口发送器。
用verilog语言实现的帧同步算法(1005033)

在数字通信网中,为了扩大传输容量,提高信道利用率,常常需要把若干个低速数字信号合并成一个高速数字信号,然后通过高速信道传输,数字复接就是实现这种数字信号合并的专门技术。
数字复接把低速数字信号合并为高速信号;相反,在收端,要用分接器把发端数字信号分解为原来的支路数字信号。
为保证分接器的帧状态相对于复接器的帧状态能获得并保持相位关系,以便正确地实施分接,在合路数字信号中还必须循环插入帧定位信号,因此在合路数字信号中,也就存在以帧为单位的结构,各个数字时隙的位置可以根据帧定位信号加以识别。
因此在数字通信网中,帧同步是同步复接设备中最重要的部分,他包括帧同步码的产生和帧同步码的识别,其中接收端的帧同步识别电路的结构对同步性能的影响是主要的工作原理实现帧同步的基本方法是在发送端预先规定的时隙,即帧同步码时隙,插入一组特殊码型的帧同步码组。
在接收端利用同步码的自相关性确定帧的同步位置。
帧同步码组可以是集中插入的,也可以是分散插入的。
对于分散的帧同步码插入方式,其工作原理与集中插入方式相类似,下面就以集中插入帧同步码为例来说明帧同步的工作原理帧同步过程有搜索态、校核态和同步态。
其状态转换图如图1所示。
搜索态在数据接收的起始时刻或帧未同步时,帧同步进入搜索态。
在数据流中寻找帧同步码(111lOlOOOO);当数据流与帧同步码相同时,表明已搜索到一个同步帧头;可启动进入帧同步的校核状态校核态为了防止信号中出现虚假同步;找到第1组同步码后跳过1帧长度必须再次确认帧同步码。
若连续经过M帧同步码确认均同步正确,则系统立即转入同步状态;否则存在假同步;返回搜索态。
由首次搜索到帧同步头到进入同步态的M帧时叫后方保护时间同步态帧同步处于同步状态时;若连续N帧帧同步正确则仍保持在同步状态。
考虑到接收的数据流帧同步码可能受外界干扰而存在误码,在同步状态中只有连续N帧丢失同步码才进入失步状态,并返回搜索态。
其中N帧时叫前方保护时间。
verilog 串口时钟相位控制字-概述说明以及解释

verilog 串口时钟相位控制字-概述说明以及解释1.引言1.1 概述概述部分的内容可以包括对verilog 串口时钟相位控制字的简要介绍和重要性的提及。
可以参考以下内容进行编写:在现代通信领域中,串口通信起到了至关重要的作用。
而在串口通信中,时钟相位控制字是一个非常关键的概念。
verilog 串口时钟相位控制字是指通过调节时钟信号的相位来进行数据传输的一种技术。
时钟相位控制字的作用在于确保在数据传输过程中,接收方能够正确地识别发送方发送的数据。
通过调整时钟信号的相位,可以使得接收方在正确的时间点对数据进行采样,从而减少数据传输过程中可能会出现的误差。
时钟相位控制字的设计和调整对于串口通信的稳定性和可靠性具有非常重要的意义。
合理地设置时钟相位控制字可以提高数据传输的成功率,并减少传输过程中可能出现的错误。
因此,了解verilog 串口时钟相位控制字的原理和作用对于串口通信的设计和实现是至关重要的。
在本篇文章中,将详细介绍verilog 串口时钟相位控制字的原理和作用,希望能够为读者提供一个全面的了解,并为未来的研究和应用提供有益的参考。
1.2文章结构1.2 文章结构本文将围绕Verilog串口时钟相位控制字展开讨论,主要分为以下几个部分:第一部分是引言,包括概述、文章结构和目的。
在概述部分,将介绍串口通信的基本原理和应用领域。
文章结构部分将简要介绍本文的章节安排和内容要点。
目的部分将说明本文的研究目的和意义。
第二部分是正文,主要包括串口通信原理和时钟相位控制字的作用。
在串口通信原理部分,将介绍串口通信的基本原理,包括数据传输的方式、波特率的定义和选择。
时钟相位控制字的作用部分将详细探讨时钟相位控制字在串口通信中的作用及其实现原理。
第三部分是结论,主要总结本文的主要内容和研究成果。
在总结部分,将回顾本文的研究目的和主要内容,并对所得出的结论进行归纳和概括。
对未来研究的展望部分将提出一些关于Verilog串口时钟相位控制字相关研究的展望和建议,以促进相关领域的进一步研究和发展。
verilog 传递参数

verilog 传递参数在Verilog中,模块之间传递参数通常通过模块的端口进行。
Verilog中的模块可以有输入端口(input)、输出端口(output)和双向端口(inout)。
通过这些端口,可以在模块之间传递参数和数据。
首先,你需要在模块的定义中声明端口,并指定它们的方向和数据类型。
例如:verilog.module MyModule(。
input wire clk, // 输入时钟信号。
input wire [7:0] data_in, // 8位输入数据。
output reg [7:0] data_out // 8位输出数据。
);// 模块逻辑。
endmodule.在该例子中,MyModule模块有一个输入时钟信号(clk)、一个8位的输入数据(data_in)和一个8位的输出数据(data_out)。
当你实例化这个模块并连接到其他模块时,你需要将参数传递给端口。
例如:verilog.module MyTopModule(。
input wire clk,。
input wire [7:0] input_data,。
output reg [7:0] output_data.);MyModule inst1(。
.clk(clk), // 将顶层模块的时钟信号连接到子模块的时钟信号。
.data_in(input_data), // 将输入数据连接到子模块的输入数据。
.data_out(output_data) // 将子模块的输出数据连接到顶层模块的输出数据。
);// 其他逻辑。
endmodule.在这个例子中,MyTopModule模块实例化了MyModule模块,并通过连接端口将参数传递给子模块。
当顶层模块的输入发生变化时,这些变化将传递到子模块,并子模块的输出也会传递回顶层模块。
总的来说,在Verilog中传递参数是通过模块的端口进行的,你需要在模块定义和实例化时正确地连接端口,以实现参数的传递和数据交换。
基于FPGA Verilog RS232串口回环测试例程,附源程序仿真源码及测试图片

FPGA Verilog RS232串口回环测试基于FPGA Verilog RS232串口回环测试例程,支持多byte数据传输,附源程序仿真源码及测试图片。
测试基于SSCOM/友善之臂上位机软件测试,测试结果如下图一图二所示。
图一SSCOM图二图三连续发送仿真截图图四连续接收仿真截图后附verilog源程序代码及testbech仿真例程,注释欠。
重点:多byte回环测试要点,上位机串口多位数据连续发送停止位和起始位之间无间隔,回环程序在接收和发送都需要具备在停止位后能立马跳转到下一个起始位的能力。
重点关注cnt_bit的处理方式。
附录1 顶层例化uart_txd uart_txd(.clk_50m(sys_clk_50m),.reset_n(sys_rst_n),.tx_data(rx_data),.baud_set(3'd4),.send_en(rx_done),.send_done(),.send_busy(send_busy),.uart_tx(uart_tx));uart_rxd uart_rxd(.clk_50m(sys_clk_50m),.reset_n(sys_rst_n),.rx_data(rx_data),.baud_set(3'd4),.rx_done(rx_done),.rx_busy(rx_busy),.uart_rx(uart_rx));附录2 串口发送源程序`timescale1ns/1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 2020/06/21 09:45:23// Design Name:// Module Name: uart_txd// Project Name:// Target Devices:// Tool Versions:// Description://// Dependencies:// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_txd(clk_50m,reset_n,tx_data,baud_set,send_en,send_done,send_busy,uart_tx);input clk_50m;input reset_n;input[7:0] tx_data;input[2:0] baud_set;input send_en;output reg send_done;output reg send_busy;output reg uart_tx;reg[12:0] cnt;reg[12:0] baud_rate_cnt_max;reg[3:0] cnt_bit;reg[7:0] tx_data_r;localparam baud_rate_9600 =13'd5207;localparam baud_rate_19200 =13'd2603;localparam baud_rate_38400 =13'd1301;localparam baud_rate_57600 =13'd867;localparam baud_rate_115200 =13'd433;always@(posedge clk_50m or negedge reset_n)if(!reset_n)baud_rate_cnt_max <= baud_rate_115200;elsecase(baud_set)3'd0:baud_rate_cnt_max = baud_rate_9600;3'd1:baud_rate_cnt_max = baud_rate_19200;3'd2:baud_rate_cnt_max = baud_rate_38400;3'd3:baud_rate_cnt_max = baud_rate_57600;3'd4:baud_rate_cnt_max = baud_rate_115200;default:baud_rate_cnt_max = baud_rate_115200;endcasealways@(posedge clk_50m or negedge reset_n)if(!reset_n)tx_data_r <=8'd0;else if(send_en)tx_data_r <= tx_data;elsetx_data_r <= tx_data_r;always@(posedge clk_50m or negedge reset_n)if(!reset_n)send_busy <=1'b0;else if(send_en)send_busy <=1'b1;else if(cnt == baud_rate_cnt_max)beginif(cnt_bit ==4'd10)send_busy <=1'b0;elsesend_busy <= send_busy;endelsesend_busy <= send_busy;always@(posedge clk_50m or negedge reset_n)if(!reset_n)send_done <=1'b0;else if(cnt == baud_rate_cnt_max)beginif(cnt_bit ==4'd10)send_done <=1'b1;elsesend_done <=1'b0;endelsesend_done <=1'b0;always@(posedge clk_50m or negedge reset_n)if(!reset_n)cnt <=13'd0;else if(send_busy)beginif(cnt == baud_rate_cnt_max)cnt <=13'd0;elsecnt <= cnt +1'b1;endelsecnt <= cnt;/****************************************always@(posedge clk_50m or negedge reset_n)if(!reset_n)cnt_bit <= 4'd0;else if(send_en) //send_en needs to be 1 clock high pulse cnt_bit <= 4'd1;else if(cnt == baud_rate_cnt_max)beginif(cnt_bit == 4'd10)cnt_bit <= 4'd0;elsecnt_bit <= cnt_bit + 1'b1;endelsecnt_bit <= cnt_bit;******************************************/always@(posedge clk_50m or negedge reset_n)if(!reset_n)cnt_bit <=4'd0;else if(send_busy &&(cnt_bit ==4'd11))cnt_bit <=4'd1;else if(cnt ==1)cnt_bit <= cnt_bit +1'b1;elsecnt_bit <= cnt_bit;always@(posedge clk_50m or negedge reset_n)if(!reset_n)beginuart_tx <=1'b1;endelsecase(cnt_bit)4'd0:;4'd1: uart_tx <=1'b0;//start4'd2: uart_tx <= tx_data_r[0];//bit 04'd3: uart_tx <= tx_data_r[1];4'd4: uart_tx <= tx_data_r[2];4'd5: uart_tx <= tx_data_r[3];4'd6: uart_tx <= tx_data_r[4];4'd7: uart_tx <= tx_data_r[5];4'd8: uart_tx <= tx_data_r[6];4'd9: uart_tx <= tx_data_r[7];//bit 84'd10: uart_tx <=1'b1;//stopdefault:;endcaseendmodule附录3 串口发送testbench`timescale1ns/1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 2020/06/21 11:38:04// Design Name:// Module Name: uart_txd_tb// Project Name:// Target Devices:// Tool Versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_txd_tb();reg clk_50m;reg reset_n;reg[7:0] tx_data;reg[2:0] baud_set;reg send_en;wire send_done;wire send_busy;wire uart_tx;parameter CLK_PERIOD =20;initial clk_50m =0;always#(CLK_PERIOD /2) clk_50m =~clk_50m;initial begintx_data =8'h55;baud_set =4;reset_n =0;send_en =0;#(CLK_PERIOD *100);reset_n =1;# CLK_PERIOD;send_en =1;#(CLK_PERIOD );send_en =0;#(CLK_PERIOD *4340);send_en =1;#(CLK_PERIOD );send_en =0;#(CLK_PERIOD *4340);#(CLK_PERIOD *100);$stop;enduart_txd uart_txd(.clk_50m(clk_50m),.reset_n(reset_n),.tx_data(tx_data),.baud_set(baud_set),.send_en(send_en),.send_done(send_done),.send_busy(send_busy),.uart_tx(uart_tx));endmodule附录4 串口接收源程序`timescale1ns/1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 2020/06/21 15:30:30// Design Name:// Module Name: uart_rxd// Project Name:// Target Devices:// Tool Versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_rxd(clk_50m,reset_n,rx_data,baud_set,rx_done,rx_busy,uart_rx);input clk_50m;input reset_n;output reg[7:0] rx_data;input[2:0] baud_set;output reg rx_done;output reg rx_busy;input uart_rx;reg[12:0] cnt;reg[12:0] baud_rate_cnt_max;reg[3:0] cnt_bit;reg uart_rx_r1;reg uart_rx_r2;wire nedge;localparam baud_rate_9600 =13'd5207;localparam baud_rate_19200 =13'd2603;localparam baud_rate_38400 =13'd1301;localparam baud_rate_57600 =13'd867;localparam baud_rate_115200 =13'd433;always@(posedge clk_50m or negedge reset_n)if(!reset_n)baud_rate_cnt_max <= baud_rate_115200;elsecase(baud_set)3'd0:baud_rate_cnt_max = baud_rate_9600;3'd1:baud_rate_cnt_max = baud_rate_19200;3'd2:baud_rate_cnt_max = baud_rate_38400;3'd3:baud_rate_cnt_max = baud_rate_57600;3'd4:baud_rate_cnt_max = baud_rate_115200;default:baud_rate_cnt_max = baud_rate_115200;endcasealways@(posedge clk_50m or negedge reset_n)if(!reset_n)beginuart_rx_r1 <=8'd0;uart_rx_r2 <=8'd0;endelse beginuart_rx_r1 <= uart_rx;uart_rx_r2 <= uart_rx_r1;endassign nedge = uart_rx_r2 &(!uart_rx_r1);always@(posedge clk_50m or negedge reset_n) if(!reset_n)rx_busy <=1'b0;else if(nedge)rx_busy <=1'b1;else if(cnt == baud_rate_cnt_max)begin if(cnt_bit ==4'd10)rx_busy <=1'b0;elserx_busy <= rx_busy;endelserx_busy <= rx_busy;always@(posedge clk_50m or negedge reset_n) if(!reset_n)rx_done <=1'b0;else if(cnt == baud_rate_cnt_max)begin if(cnt_bit ==4'd10)rx_done <=1'b1;elserx_done <=1'b0;endelserx_done <=1'b0;always@(posedge clk_50m or negedge reset_n) if(!reset_n)cnt <=13'd0;else if(rx_busy)beginif(cnt == baud_rate_cnt_max)cnt <=13'd0;elsecnt <= cnt +1'b1;endelsecnt <= cnt;always@(posedge clk_50m or negedge reset_n) if(!reset_n)cnt_bit <=4'd1;else if(cnt == baud_rate_cnt_max )begin if(cnt_bit ==4'd10)cnt_bit <=4'd1;elsecnt_bit <= cnt_bit +1'b1;endelsecnt_bit <= cnt_bit;always@(posedge clk_50m or negedge reset_n)if(!reset_n)beginrx_data <=8'd0;endelse if(cnt == baud_rate_cnt_max /2)case(cnt_bit)4'd1:;//start4'd2: rx_data[0]<= uart_rx_r2;//bit 04'd3: rx_data[1]<= uart_rx_r2;4'd4: rx_data[2]<= uart_rx_r2;4'd5: rx_data[3]<= uart_rx_r2;4'd6: rx_data[4]<= uart_rx_r2;4'd7: rx_data[5]<= uart_rx_r2;4'd8: rx_data[6]<= uart_rx_r2;4'd9: rx_data[7]<= uart_rx_r2;//bit 74'd10:;//stopdefault:;endcaseelserx_data <= rx_data;endmodule附录5串口接收testbench`timescale1ns/1ps///////////////////////////////////////////////////////////////////// /////////////// Company:// Engineer://// Create Date: 2020/06/21 19:44:29// Design Name:// Module Name: uart_rxd_tb// Project Name:// Target Devices:// Tool Versions:// Description://// Dependencies://// Revision:// Revision 0.01 - File Created// Additional Comments://///////////////////////////////////////////////////////////////////// /////////////module uart_rxd_tb();reg clk_50m;reg reset_n;wire[7:0] rx_data;wire rx_done;wire rx_busy;reg uart_rx;parameter CLK_PERIOD =20;initial clk_50m =0;always#(CLK_PERIOD /2) clk_50m =~clk_50m;initial beginreset_n =0;uart_rx =1;//idle#(CLK_PERIOD *100);reset_n =1;# CLK_PERIOD;uart_rx =0;//start#(CLK_PERIOD *434);uart_rx =1;//bit0#(CLK_PERIOD *434);uart_rx =0;//bit1#(CLK_PERIOD *434);uart_rx =1;//bit2#(CLK_PERIOD *434);uart_rx =0;//bit3#(CLK_PERIOD *434);uart_rx =1;//bit4#(CLK_PERIOD *434);uart_rx =0;//bit5#(CLK_PERIOD *434);uart_rx =1;//bit6#(CLK_PERIOD *434);uart_rx =0;//bit7#(CLK_PERIOD *434);uart_rx =1;//stop#(CLK_PERIOD *434);uart_rx =1;//idle#(CLK_PERIOD *434);#(CLK_PERIOD *434);#(CLK_PERIOD *434);uart_rx =0;//start #(CLK_PERIOD *434);uart_rx =0;//bit0#(CLK_PERIOD *434);uart_rx =1;//bit1#(CLK_PERIOD *434);uart_rx =0;//bit2#(CLK_PERIOD *434);uart_rx =1;//bit3#(CLK_PERIOD *434);uart_rx =0;//bit4#(CLK_PERIOD *434);uart_rx =1;//bit5#(CLK_PERIOD *434);uart_rx =0;//bit6#(CLK_PERIOD *434);uart_rx =1;//bit7#(CLK_PERIOD *434);uart_rx =1;//stop#(CLK_PERIOD *434);uart_rx =1;//idle#(CLK_PERIOD *434);#(CLK_PERIOD *434);#(CLK_PERIOD *434);$stop;enduart_rxd uart_rxd(.clk_50m(clk_50m),.reset_n(reset_n),.rx_data(rx_data),.baud_set(3'd4),.rx_done(rx_done),.rx_busy(rx_busy),.uart_rx(uart_rx));endmodule。
正点原子fpga串口多字节-概述说明以及解释

正点原子fpga串口多字节-概述说明以及解释1. 引言1.1 概述概述正点原子FPGA(现场可编程门阵列)串口多字节是一种用于串口通信的技术,借助正点原子FPGA芯片的特性,实现了在传输数据时可以同时发送多个字节的功能。
传统的串口通信只能逐个字节地发送和接收数据,效率较低。
而正点原子FPGA串口多字节技术的出现,极大地提高了串口通信的速度与效率。
本文将介绍正点原子FPGA串口多字节技术的基本原理、实现方法以及其在实际应用中的优点和应用场景。
通过深入分析和论述,读者将能够更好地理解正点原子FPGA串口多字节技术的工作原理和优势,为其在实际项目中的应用提供指导和参考。
在接下来的章节中,我们将会详细讨论正点原子FPGA串口多字节技术的具体内容。
首先,在第一个要点中,我们将介绍其基本概念和原理,并阐述其如何在FPGA芯片中实现。
其次,在第二个要点中,我们将深入探讨正点原子FPGA串口多字节技术在实际应用中的优势和应用场景,包括其在数据传输、通信系统和嵌入式系统中的应用。
通过本文的阐述,我们希望读者能够全面了解正点原子FPGA串口多字节技术,并能够在实际项目中运用此技术,提高串口通信的效率和性能。
在结论部分,我们将对正点原子FPGA串口多字节技术进行总结,并展望其在未来的发展前景。
1.2 文章结构文章结构部分的内容:本文共分为三个部分,分别是引言、正文和结论。
引言部分主要对本文进行概述,介绍文章的目的和结构。
第一个要点是正文的第一个部分,将详细介绍正点原子FPGA串口多字节的原理和应用。
我们将从FPGA的基本概念出发,通过对正点原子FPGA的介绍和分析,深入探讨其串口多字节的实现原理和相关技术。
第二个要点是正文的第二个部分,将进一步展开对正点原子FPGA串口多字节的设计和实现进行详细阐述。
我们将从硬件设计和软件编程两个方面入手,介绍如何在FPGA上进行串口多字节的设计和开发,并给出相应的实例和实验结果。
结论部分将对本文的内容进行总结,并展望正点原子FPGA串口多字节在未来的应用前景。
基于Verilog HDL设计的UART模块

1 UART原理串行通信是指外部设备和计算机间使用一根数据线(另外需要地线,可能还需要控制线)进行数据传输的方式。
数据在一根数据线上一位一位传输,每一位数据都占据一个固定的时间长度。
与并行通信方式相比,串行通信方式的传输速度较慢,但这种通信方式使用的数据线少,在远距离通信中可以节约通信成本,因此得到了广泛的应用。
基本的UART只需要发送和接收两条数据线就可以完成数据的全双工通信,其基本功能是在发送端将控制器通过总线传过来的并行数据,以设定的格式,设定的频率串行地传输出去,并同时在接收端将串行接收到的数据,转换成相应的并行数据发送出去。
UART的基本帧格式如图1所示。
其中,起始位总是逻辑O状态,停止位总是逻辑l状态,其持续时间可选为1位、1.5位或2位,其数据位可为5、6、7、8位,校验位可根据需要选择奇校验位,偶校验位或无校验位。
2 UART的设计现今复杂的数字系统的设计往往采用自顶向下的设计方案,利用层次化结构化的方法,将一个设计方案划分为若干模块,在不同层次的模块都可以进行仿真,可以很方便地查看某一层次的代码以改正仿真时发现错误。
在本设计中UART主要由波特率发生器、接收模块、发送模块3部分组成,并具有l位停止位和无校验位。
波特率发生器实现波特率的变换,利用外部时钟信号产生一个所需波特率16倍的波特率时钟,用来控制UART的接收与发送。
接收模块是用于接收串行信号,并将其转化为并行数据;而发送模块则将准备输出的并行数据按照UART的帧格式转化为串行数据输出。
图2为UART结构图。
2.1 波特率发生器波特率表示的是每秒钟传送的二进制数据的位数,即单位时间内传送的信息量。
在串行异步传送中,常用到的波特率为1 200、2 400、4 800、9 600、19 200等。
波特率发生器实际上是一个分频器,主要是产生和。
RS-232通信所采用的波特率同步的时钟。
由于串行数据帧与接收数据时钟是异步的,所以存UA RT的接收端在什么时刻将数据移入寄存器,怎样选择可靠的采样点是非常关键的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cmd_data[15:8] <= RxD_data;
end
2'd3:
begin
data_cnt<= 2'd0;
data_rec_busy<= 0;
cmd_rdy<= 1; //命令接收完毕
cmd_data[7:0]<=RxD_data;
end
default:
begin
data_cnt<= 2'd0;
data_rec_busy<= 0;
cmd_rdy<= 0;
end
endcase
else
cmd_rdy<= 0;
end
//*********分辨命令*********//
always@(posedge clk_seri)
begin
if(rst)
begin
cmd_done<= 0;
modu_sel<= 0;
begin
data_cnt<= 0;
data_rec_busy<= 1;
cmd_rdy<= 0;
end
else if(RxD_data_ready && data_rec_busy)
case(data_cnt)
2'd0:
begin
data_cnt<= 2'd1;
data_rec_busy<= 1;
cmd_rdy<= 0;
.RxD(RxD),
.RxD_data_ready(RxD_data_ready),
.RxD_data_error(),.Biblioteka xD_data(RxD_data)
);
//*********上位机发命令给FPGA************//
always@(posedge clk_seri)
begin
if(rst)
data_rec_valid<= 0;
end
endcase
else
data_rec_valid<= 0;
end
always@(posedge clk_seri)
begin
if(rst)
begin
data_cnt<= 2'd0;
data_rec_busy<=0;
cmd_rdy<= 0;
end
else if(data_rec_valid)
`timescale 1ns / 1ps
//////////////////////////////////////////////////////////////////////////////////
// Company:
// Engineer:
//
// Create Date: 19:50:45 04/19/2015
cmd_data[31:24]<= RxD_data;
end
2'd1:
begin
data_cnt<= 2'd2;
data_rec_busy<= 1;
cmd_rdy<= 0;
cmd_data[23:16]<= RxD_data;
end
2'd2:
begin
data_cnt<= 2'd3;
data_rec_busy<= 1;
output reg[31:0] dina,//ROM存储器,用于存储外部PN码
output reg wea,
output reg[1:0] addra
);
regcmd_rdy;//指令接收完成
reg[3:0]instr_code;//用于分辨命令,是asf还是ftw还是外部PN码
reg[31:0]cmd_data; //接收从上层发过来的命令
begin
instr_cnt<= 0;
data_rec_valid <= 0;
end
else if(RxD_data_ready && !data_rec_busy)
case(instr_cnt)
2'd0:
if(RxD_data == 8'h55)
begin
instr_cnt<= 2'd1;
data_rec_valid <= 0;
// Design Name:
// Module Name: Serial_Decoder
// Project Name:
// Target Devices:
// Tool versions:
// Description:
//
// Dependencies:
//
// Revision:
// Revision 0.01 - File Created
end
4'h8:
begin
ser_asf<=cmd_data[13:0];
cmd_done<= 0;
end
4'hF:
cmd_done<= 1; //上位机命令发送结束
default:;
endcase
end
else
begin
ser_ftw <= ser_ftw;
ser_asf <= ser_asf;
modu_sel<= modu_sel;
wireRxD_data_ready;
wire[7:0]RxD_data;
reg[1:0]instr_cnt;
regdata_rec_valid;
regdata_rec_busy;
reg[1:0]data_cnt;
//instance
receiver i_receiver(
.clk(clk_seri),
cmd_done<= cmd_done;
end
end
always @(posedge clk_seri)
begin
if(rst)
begin
dina<= 0;
wea<= 1;
addra<= 0;
end
else if(cmd_rdy)
begin
case(instr_code)
//********A--D是外部PN码,将其存入ROM中********//
ser_asf<= 0;
ser_ftw<= 0;
end
else if(cmd_rdy)
begin
case(instr_code)
4'h6:
begin
ser_ftw<=cmd_data;
cmd_done<=0;
end
4'h7:
begin
modu_sel<= cmd_data[25:24];
cmd_done<= 0;
input wire rst,
input wire RxD,
output reg[1:0] modu_sel,//BPSK,QPSK,8PSK选择
output reg[13:0] ser_asf, //由串口发过来的asf
output reg[31:0] ser_ftw,//由串口发过来的ftw
output reg cmd_done,//上位机给FPGA发送指令结束
instr_cnt<= 2'd3;
data_rec_valid<= 0;
end
else
begin
instr_cnt<= 2'd0;
data_rec_valid<= 1;
instr_code<=RxD_data[3:0]; //用来分辨各命令
end
default:
begin
instr_cnt<= 2'd0;
// Additional Comments:
//
//////////////////////////////////////////////////////////////////////////////////
module Serial_Decoder(
input wire clk_seri, //串口时钟,用于从串口发送命令给FPGA
end
else
begin
instr_cnt<=2'd0;
data_rec_valid <= 0;
end
2'd1:
if(RxD_data== 8'h55)
begin
instr_cnt<= 2'd2;
data_rec_valid <= 0;
end
else
begin
instr_cnt<= 2'd0;
data_rec_valid<= 0;
4'hA:
begin
dina<= cmd_data;
wea<= 1;
addra<= 2'd0;
end
4'hB:
begin
dina<= cmd_data;
wea<=1;
addra<= 2'd1;
end
4'hC:
begin
dina<=cmd_data;
wea<=1;
addra<= 2'd2;
end
4'hD:
begin