概率模拟试题(附答案)
概率论与数理统计模拟试题&参考答案

练习题一一、填空题。
1、已知P(A)=0.3,P(A+B)=0.6,则当A 、B 互不相容时,P(B)=___________,而当A 、B 相互独立时,P(B)=__________。
2、已知X ~),(p n B ,且8E X =, 4.8D X =, 则n =__________,X 的最可能值为__________。
3、若)(~λP X ,则=EX ,=DX 。
4、二维离散型随机变量),(ηξ的分布律为:则η的边缘分布_____________,ξ,η是否独立?_____________(填独立或不独立)。
5、设12(,,,)n X X X 是来自正态总体2(,)N μσ的一组简单随机样本,则样本均值11()n X X X n=++ 服从__________。
6、设一仓库中有10箱同种规格的产品,其中由甲、乙、丙三厂生产的分别为5箱、3箱、2箱,三厂产品的次品率依次为0.1, 0.2, 0.3, 从这10箱中任取一箱,再从这箱中任取一件,则这件产品为次品的概率为 。
7、设连续型随机变量ξ的概率密度为1 -1 ()1 010 x xx x x ϕ+≤<⎧⎪=-≤≤⎨⎪⎩其它,则E ξ=__________。
二、判断题。
1、服从二元正态分布的随机变量),(ηξ,它们独立的充要条件是ξ与η的相关系数0ρ=。
( )2、设12(,,,)n X X X 是来自正态总体2(,)N μσ的样本,S 是样本方差,则222(1)~()n Sn χσ-。
( )3、随机变量Y X ,相互独立必推出Y X ,不相关。
( )4、已知θ 是θ的无偏估计,则2θ 一定是2θ的无偏估计。
( )5、在5把钥匙中,有2把能打开门,现逐把试开,则第3把能打开门的概率为0.4。
( )三、选择题。
1、某元件寿命ξ服从参数为λ(11000λ-=小时)的指数分布。
3个这样的元件使用1000小时后,都没有损坏的概率是 (A )1e -; (B )3e -(C )31e --(D )13e -2、设X 的分布函数为)(x F ,则13+=X Y 的分布函数()y G 为(A )()3131-y F (B )()13+y F (C )1)(3+y F (D )⎪⎭⎫⎝⎛-3131y F3、设随机变量(3,4)N ξ ,且()()P c P c ξξ≤=>,则c 的取值为() (A )0; (B )3; (C )-3; (D )24、设两个相互独立的随机变量X 和Y 的方差分别为4和2,则随机变量32X Y -的方差是()。
概率论与数理统计试卷及问题详解

模拟试题一一、填空题(每空3分,共45分)1、已知P(A) = 0.92, P(B) = 0.93, P(B|A ) = 0.85, 则P(A|B ) = P( A ∪B) =2、设事件A 与B 独立,A 与B 都不发生的概率为19,A 发生且B 不发生的概率与B 发生且A 不发生的概率相等,则A 发生的概率为: ;3、一间宿舍内住有6个同学,求他们之中恰好有4个人的生日在同一个月份的概率: ;没有任何人的生日在同一个月份的概率 ;4、已知随机变量X 的密度函数为:,0()1/4,020,2x Ae x x x x ϕ⎧<⎪=≤<⎨⎪≥⎩, 则常数A= , 分布函数F (x )= , 概率{0.51}P X -<<= ;5、设随机变量X~ B(2,p)、Y~ B(1,p),若{1}5/9P X ≥=,则p = ,若X 与Y 独立,则Z=max(X,Y)的分布律: ;6、设~(200,0.01),~(4),X B Y P 且X 与Y 相互独立,则D(2X-3Y)= , COV(2X-3Y, X)= ;7、设125,,,X X X 是总体~(0,1)X N 的简单随机样本,则当k = 时,~(3)Y t =;8、设总体~(0,)0X U θθ>为未知参数,12,,,n X X X 为其样本,11ni i X X n ==∑为样本均值,则θ的矩估计量为: 。
9、设样本129,,,X X X 来自正态总体(,1.44)N a ,计算得样本观察值10x =,求参数a 的置信度为95%的置信区间: ;二、计算题(35分)1、 (12分)设连续型随机变量X 的密度函数为:1,02()20,x x x ϕ⎧≤≤⎪=⎨⎪⎩其它求:1){|21|2}P X -<;2)2Y X =的密度函数()Y y ϕ;3)(21)E X -; 2、(12分)设随机变量(X,Y)的密度函数为1/4,||,02,(,)0,y x x x y ϕ<<<⎧=⎨⎩其他1) 求边缘密度函数(),()X Y x y ϕϕ; 2) 问X 与Y 是否独立?是否相关? 3) 计算Z = X + Y 的密度函数()Z z ϕ;3、(11分)设总体X 的概率密度函数为:1,0(),000xe x x x θϕθθ-⎧≥⎪=>⎨⎪<⎩X 1,X 2,…,X n 是取自总体X 的简单随机样本。
概率论与数理统计模拟试题

一.选择题1.设,为两个分布函数,其相应的概率密度,是连续函数,则必为概率密度的是(D ) A B 2C D2.设随机变量X~N (0,1),Y~N (1,4)且相关系数=1,则(D )A P(Y=-2X-1)=1B P(Y=2X-1)=1C P(Y=-2X+1)=1D P(Y=2X+1)=1 3. "已知概率论的期末考试成绩服从正态分布,从这个总体中随机抽取n=36的样本,并计算得其平均分为79,标准差为9,那么下列成绩不在这次考试中全体考生成绩均值μ的的置信区间之内的有( ),并且当置信度增大时,置信区间长度( )。
645.105.0=Z 已知:,减小 ,减小 ,增大 ,增大 答案:D解析:由题知,σ=9,n=36,X =79 当α=时,1-2α= 所以 2αZ =05.0Z =5325.76645.1369792/=⨯-=-ασz nX4675.81645.1369792/=⨯+=+ασz nX|即μ的的置信区间为(,)且当μ的置信度1-α增大时,置信区间的长度也增大。
故,答案为D. 4.下列选项中可以正确表示为分布函数F(x)或连续性随机变量的概率密度函数f(x)的是( )。
A.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=5,152,4320,310,0)(x x x x x F B.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥<≤<≤<=1,114,40,sin 0,0)(x x x x x x x F ππC.0,0,021)(22>⎪⎩⎪⎨⎧≤=-x x e x f x πD.⎪⎩⎪⎨⎧≤≤=其它,023,sin )(ππx x x f答案:B.解析:考点1.分布函数要满足右连续。
A 不满足右连续 )考点2.连续性随机变量的概率密度函数的x 范围为()+∞∞-,,且在这个范围上积分和为.为,D 为(-1)。
故C ,D 错误 5.设随机变量Y X ,服从正态分布)2,1(),2,1(N N -,并且Y X ,不相关,Y aX +与bY X +亦不相关,则( ).(A )1=-b a (B )0=-b a (C )1=+b a (D )0=+b a应选(D ).解 X ~)2,1(-N ,Y ~)2,1(N ,于是()()2,2==Y D X D .又0),(,0),(=++=bY X Y aX Cov Y X Cov . 由协方差的性质有()()22),(),(),(),(),(=+=+=+++=++b a Y bD X aD Y Y bCov Y X abCov X Y Cov X X aCov aY X Y aX Cov?故0=+b a .故选(D ).6.设X 为离散性随机变量,且......)2,1](a [p ===i X P i i ,则X 的期望EX 存在的充分条件是( ) A.0lim =∞→n n p a n B.0lim2=∞→n n p a nC.∑∞=1n n n p a 收敛D.∑∞=12n n p a n 收敛 答案:D 解析:EX 存在⇔n np a∑∞=1n 收敛,所以是EX 存在的必要条件并不一定是充分条件,而B 不能保证收敛,因而正确选项是D期望和级数知识的综合考察。
概率论与数理统计模拟试题及答案

概率论与数理统计试题 考试时间:120分钟 试卷总分100分 题号 一 二 三 四 五 六 七 八 九 十 总分 得分 评卷教师一、填空题(满分15分)1.已知3.0)(=B P ,7.0)(=⋃B A P ,且A 与B 相互独立,则=)(A P 。
2.设随机变量X 服从参数为二项分布,且21}0{==X P ,则=p 。
3.设),3(~2σN X ,且1.0}0{=<X P ,则=<<}63{X P4.已知DX=1,DY=2,且X 和Y 相互独立,则D(2X-Y)=5.已知随机变量X 服从自由度为n 的t 分布,则随机变量2X 服从的分布是 。
二、选择题(满分15分)1.抛掷3枚均匀对称的硬币,恰好有两枚正面向上的概率是 。
装订线(A )0.125, (B )0.25, (C )0.375, (D )0.5 2.有γ个球,随机地放在n 个盒子中(γ≤n),则某指定的γ个盒子中各有一球的概率为 。
(A )γγn ! (B )γγn C r n ! (C )nn γ! (D) n n n C γγ! 3.设随机变量X 的概率密度为||)(x ce x f -=,则c = 。
(A )-21(B )0 (C )21 (D )14.掷一颗骰子600次,求“一点” 出现次数的均值为 。
(A )50 (B )100 (C )120 (D )1505.设总体X 在),(ρμρμ+-上服从均匀分布,则参数μ的矩估计量为 。
(A )x 1 (B )∑=-n i i X n 111 (C )∑=-n i i X n 1211 (D )x 三、计算题(满分60分)1.某商店拥有某产品共计12件,其中4件次品,已经售出2件,现从剩下的10件产品中任取一件,求这件是正品的概率。
2.设某种电子元件的寿命服从正态分布N (40,100),随机地取5个元件,求恰有两个元件寿命小于50的概率。
(8413.0)1(=Φ,9772.0)2(=Φ)3.在区间(0,1)中随机地取两个数,求事件“两数之和小于56”的概率。
概率论 模拟题(一)及答案

上 海 金 融 学 院_概率论与数理统计(理工)模拟题一课程代码:13330075_考试形式:闭卷 时间: 120 分钟考试时 只能使用简单计算器(无存储功能)试 题 纸 一、单项选择题(共5题,每题2分,共计10分)1. 设当事件A 与B 同时发生时C 也发生, 则 ( ). (A) B A 是C 的子事件; (B)AB C =;(C) AB 是C 的子事件; (D) C 是AB 的子事件.2. 设事件=A {甲种产品畅销, 乙种产品滞销}, 则A 的对立事件为 ( ).(A) 甲种产品滞销,乙种产品畅销; (B) 甲种产品滞销;(C) 甲、乙两种产品均畅销;(D) 甲种产品滞销或者乙种产品畅销.3. 设X 为随机变量,且2()0.7,()0.2,E X D X ==则 式一定成立:A .13{}0.222P X -<<≥ B.{0.6P X ≥C.{00.6P X <<≥ D.{00.6P X <<≤ 4. 设12,,,(1)n X X X n > 是来自总体(0,1)N 的一个样本,,X S 分别为样本均值和标准差,则 成立。
A. (0,1)X NB. (0,)nX N nC. 221(1)ni i X n χ=-∑ D.(1)Xt n S- 5. 设12,,,(1)n X X X n > 是来自总体2(,)N μσ的一个样本,期望值μ已知,则下列估计量中,唯有 是2σ的无偏估计。
A. 211()n i i X X n =-∑ B. 211()1n i i X n μ=--∑ C. 211()1n i i X X n =--∑ D. 211()1n i i X n μ=-+∑二、填空题(共15个空,每空2分,共计30分)1.已知,5.0)(=A P ()0.2P AB =, 4.0)(=B P , 则(1) )(AB P = ; (2) )(B A P -= ;(3) )(B A P ⋃= ; (4) )(B A P = . 2.若(0,1),()X N x x ϕΦ ,()分别表示它的概率密度函数、分布函数,则ϕ(0)= ;(0)Φ= ;{0}P X == ;{0}P X <= ;{0}P X >= 。
概率论期末模拟题

所以不独立;
(2) ;
(3) ,
.
六.(本题12分)
设二维随机变量的概率密度为
求:(1) 的边缘密度函数; (2) ; (3) . 解 (1) (2) ; (3) .
七.(本题6分) 一部件包括10部分,每部分的长度是一个随机变量,它们相互独 立,且服从同一均匀分布,其数学期望为2mm,均方差为0.05,规定总 长度为mm时产品合格,试求产品合格的概率.
1.设表示3个事件,则表示( )
(A) 中有一个发生 (C) 都不发生 解 本题应选C.
(B) 中不多于一个发生 (D) 中恰有两个发生
2.已知=( ).
(A)
(B)
(C)
(D)
解,
.
故本题应选A.
3.设两个相互独立的随机变量与分别服从正态分布和,则( )
(A)
(B)
(C)
(D)
解 ,,故本题应选B.
(4).
六.(本题12分)
设随机变量X的密度函数为 ,
试求: (1) 的值; (2) ; (3) 的密度函数. 解 (1) 因,从而; (2) ;
(3) 当时,;当时, ,
所以,两边关于y求导可得, 故Y的密度函数为
七.(本题6分) 某商店负责供应某地区1000人商品,某种产品在一段时间内每人需 用一件的概率为0.6.假定在这段时间,各人购买与否彼此无关,问商店 应预备多少件这种商品,才能以的概率保证不会脱销?(假定该商品在 某一段时间内每人最多买一件).
第一步假设:=,统计量~, 经检验,接受:=;
第二步假设:, 统计量 经检验,接受,即可认为东、西两支矿脉含锌量的平均值相等.(请参见 模拟试题(一)第九大题)
十.(本题5分)
概率论与数理统计模拟试卷和答案

北京语言大学网络教育学院《概率论与数理统计》模拟试卷一注意:1.试卷保密,考生不得将试卷带出考场或撕页,否则成绩作废。
请监考老师负责监督。
2.请各位考生注意考试纪律,考试作弊全部成绩以零分计算。
3.本试卷满分100分,答题时间为90分钟。
4.本试卷分为试题卷和答题卷,所有答案必须答在答题卷上,答在试题卷上不给分。
一、【单项选择题】(本大题共5小题,每小题3分,共15分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在答题卷相应题号处。
1、设A,B是两个互不相容的事件,P(A)>0 ,P(B)>0,则()一定成立。
[A]P(A)=1-P(B)[B]P(A│B)=0[C]P(A│B)=1 [D]P(AB)=02、设A,B是两个事件,P(A)>0,P(B)>0,当下面条件()成立时,A 与B一定相互独立。
[A]P( AB)=P(A)P(B)[B]P(AB)=P(A)P(B)[C]P(A│B)=P(B)[D]P(A│B)=P(A)3、若A、B相互独立,则下列式子成立的为()。
[A] P(AB) P(A)P(B) [B] P(AB)0[C] P(AB) P(BA) [D]P(AB) P(B)4、下面的函数中,()可以是离散型随机变量的概率函数。
[A] P 1 k e1(k 0,1,2 ) k![B] P 2 k e1(k 1,2 )k![C]P 3 k 1(k0,1,2 ) 2k[D] P 4 k1(k 1, 2, 3) k25、设F1(x)与F2(x)分别为随机变量X1与X2的分布函数,为了使F(x) aF1(x)bF2(x)是某一随机变量的分布函数,则下列个组中应取()。
[A] a 1 3 [B] a2 2 ,b2,b3 2 3[C a 3,b 2[D a 1,b 3] ]5 5 2 2二、【判断题】(本大题共5小题,每小题3分,共15分)正确的填T,错误的填F,填在答题卷相应题号处。
(精选试题附答案)高中数学第十章概率真题

(名师选题)(精选试题附答案)高中数学第十章概率真题单选题1、已知某运动员每次射击击中目标的概率为80%.现采用随机模拟的方法估计某运动员射击4次,至少击中3次的概率.先由计算器给出0到9之间取整数值的随机数,指定0,1表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组随机数:75270293714098570347437386366947761042811417469803716233261680456011366195977424根据以上数据估计该射击运动员射击4次,至少击中3次的概率为( ) A .0.852B .0.8192C .0.8D .0.75 答案:D分析:由题设模拟数据确定击中目标至少3次的随机数组,应用古典概型的概率求法求概率.在20组随机数中含{2,3,4,5,6,7,8,9}中的数至少3个(含3个或4个),共有15组,即模拟结果中射击4次,至少击中3次的频率为1520=0.75.据此估计该运动员射击4次,至少击中3次的概率为0.75. 故选:D2、已知集合M ={−1,0,1,−2},从集合M 中有放回地任取两元素作为点P 的坐标,则点P 落在坐标轴上的概率为( )A .516B .716C .38D .58 答案:B分析:利用古典概型的概率求解.由已知得,基本事件共有4×4= 16个,其中落在坐标轴上的点为:(−1,0),(0,−1),(0,0),(1,0),(0,1),(−2,0),(0,−2),共7个, ∴所求的概率P =716, 故选:B .3、掷一枚均匀的硬币,如果连续抛掷1000次,那么第999次出现正面向上的概率是 A .1999B .11000C .9991000D .12答案:D每一次出现正面朝上的概率相等都是12,故选D.4、接种疫苗是预防和控制传染病最经济、有效的公共卫生干预措施.根据实验数据,人在接种某种病毒疫苗后,有80%不会感染这种病毒,若有4人接种了这种疫苗,则最多1人被感染的概率为( ) A .512625B .256625C .113625D .1625答案:A分析:最多1人被感染即4人没有人感染和4人中恰好有1人被感染,利用独立重复试验的概率和互斥事件的概率求解.由题得最多1人被感染的概率为C 40(45)4+C 41(15)(45)3=256+256625=512625.故选:A小提示:方法点睛:求概率常用的方法:先定性(确定所求的概率是六种概率(古典概型的概率、几何概型的概率、互斥事件的概率、独立事件的概率、独立重复试验的概率、条件概率)的哪一种),再定量.5、齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,若双方均不知道对方马的出场顺序,则田忌获胜的概率为( ) A .13B .14 C .15D .16 答案:D分析:将齐王与田忌的上、中、下等马编号,列出双方各出上、中、下等马各一匹分组分别进行一场比赛的基本事件即可利用古典概率计算作答.齐王的上等马、中等马、下等马分别记为A ,B ,C ,田忌的上等马、中等马、下等马分别记为a ,b ,c , 双方各出上、中、下等马各一匹分组分别进行一场比赛,胜两场及以上者获胜,依题意,共赛3场,所有基本事件为:(Aa,Bb,Cc),(Aa,Bc,Cb),(Ab,Ba,Cc),(Ab,Bc,Ca),(Ac,Bb,Ca),(Ac,Ba,Cb),共6个基本事件,它们等可能, 田忌获胜包含的基本事件为:(Ac,Ba,Cb),仅只1个, 所以田忌获胜的概率p =16. 故选:D6、甲、乙、丙三人独立地去译一个密码,译出的概率分别15,13,14,则此密码能被译出的概率是A .160B .25C .35D .5960 答案:C解析:先计算出不能被译出的概率,由此求得被译出的概率.用事件A ,B ,C 分别表示甲、乙、丙三人能破译出密码,则P(A)=15,P(B)=13,P(C)=14,且P(ABC)=P(A)P(B)⋅P(C )=45×23×34=25.∴此密码能被译出的概率为1−25=35.故选:C小提示:本小题主要考查相互独立事件概率计算,考查对立事件概率计算,属于基础题. 7、分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h ),得如下茎叶图:则下列结论中错误的是()A.甲同学周课外体育运动时长的样本中位数为7.4B.乙同学周课外体育运动时长的样本平均数大于8C.甲同学周课外体育运动时长大于8的概率的估计值大于0.4D.乙同学周课外体育运动时长大于8的概率的估计值大于0.6答案:C分析:结合茎叶图、中位数、平均数、古典概型等知识确定正确答案.对于A选项,甲同学周课外体育运动时长的样本中位数为7.3+7.52=7.4,A选项结论正确.对于B选项,乙同学课外体育运动时长的样本平均数为:6.3+7.4+7.6+8.1+8.2+8.2+8.5+8.6+8.6+8.6+8.6+9.0+9.2+9.3+9.8+10.116=8.50625>8,B选项结论正确.对于C选项,甲同学周课外体育运动时长大于8的概率的估计值616=0.375<0.4,C选项结论错误.对于D选项,乙同学周课外体育运动时长大于8的概率的估计值1316=0.8125>0.6,D选项结论正确.故选:C8、若随机事件A,B互斥,且P(A)=2−a,P(B)=3a−4,则实数a的取值范围为()A.(43,32]B.(1,32]C.(43,32)D.(12,43)答案:A分析:根据随机事件概率的范围以及互斥事件概率的关系列出不等式组,即可求解. 由题意,知{0<P(A)<10<P(B)<1P(A)+P(B)≤1 ,即{0<2−a <10<3a −4<12a −2≤1 ,解得43<a ≤32,所以实数a 的取值范围为(43,32].故选:A.9、在一次试验中,随机事件A ,B 满足P(A)=P(B)=23,则( ) A .事件A ,B 一定互斥B .事件A ,B 一定不互斥C .事件A ,B 一定互相独立D .事件A ,B 一定不互相独立 答案:B分析:根据互斥事件和独立事件的概率的定义进行判断即可若事件A ,B 为互斥事件,则P(A +B)=P(A)+P(B)=43>1,与0≤P(A +B)≤1矛盾,所以P(A +B)≠P(A)+P(B),所以事件A ,B 一定不互斥,所以B 正确,A 错误,由题意无法判断P(AB)=P(A)P(B)是否成立,所以不能判断事件A ,B 是否互相独立,所以CD 错误, 故选:B10、10张奖券中有4张“中奖”奖券,甲乙两人先后参加抽奖活动,每人从中不放回抽取一张奖券,甲先抽,乙后抽,在甲中奖条件下,乙没有中奖的概率为( ) A .35B .23C .34D .415 答案:B分析:根据题意,分析甲先抽,并且中奖后剩余的奖券和“中奖”奖券的数目,由古典摡型的概率计算公式,即可求解.根据题意,10张奖券中有4张“中奖”奖券,甲先抽,并且中奖,此时还有9张奖券,其中3张为“中奖”奖券, 则在甲中奖条件下,乙没有中奖的概率P =69=23. 故选:B. 填空题11、甲、乙两人下棋,甲获胜的概率为15,和棋的概率为12,则乙不输的概率为___________. 答案:45分析:乙不输即是乙获胜或甲乙和棋,由互斥事件概率加法公式可求. 解:记“甲获胜”为事件A ,记“和棋”为事件B ,记“乙获胜”为事件C , 则P (A )=15,P (B )=12,P (C )=1−P (A )−P (B )=1−15−12=310,所以,乙不输的概率为:P =P (B ∪C )=P (B )+P (C )=12+310=45. 所以答案是:45.12、从1,3,5,7这四个数中随机地取两个数组成一个两位数,则组成的两位数是5的倍数的概率为_____. 答案:14##0.25分析:列举出基本事件,利用古典概型的概率公式直接求解.从1,3,5,7这四个数中随机地取两个数组成一个两位数,可以组成:13,31,17,71,15,51,35,53,37,73,57,75一共12个.其中是5的倍数的数有:15,35,75一共3个, 所以组成的两位数是5的倍数的概率为312=14. 所以答案是:1413、某医院某科室有5名医护人员,其中有医生2名,护士3名.现要抽调2人前往新冠肺炎疫情高风险地区进行支援,则抽调的2人中恰好为1名医生和1名护士的概率是______. 答案:35##0.6分析:根据条件列举出所有的情况和满足条件的情况,利用古典概型的概率公式进行求解. 设2名医生为a,b,3名护士为c,d,e,则抽调2人的情况有ab,ac,ad,ae,bc,bd,be,cd,ce,de共10种不同结果,其中恰好为1名医生和1名护士的情况有ac,ad,ae,bc,bd,be共6种不同结果,则所求概率为610=35.所以答案是:35.14、现有四张正面分别标有数字-1,0,-2,3的不透明卡片,它们除数字外其余完全相同,将它们背面朝上洗均匀,随机抽取一张记作m不放回,再从余下的卡片中取一张记作n.则点P(m,n)在第二象限的概率为______.答案:16分析:列出所有可能的情况,根据古典概型的方法求解即可由题,点P(m,n)所有可能的情况为(−1,0),(−1,−2),(−1,3),(0,−1),(0,−2),(0,3),(−2,−1),(−2,0),(−2,3),(3,−1),(3,0),(3,−2)共12种情况,其中在第二象限的为(−2,3),(−1,3),故点P(m,n)在第二象限的概率为212=16所以答案是:1615、商场在一周内共卖出某种品牌的皮鞋300双,商场经理为考察其中各种尺码皮鞋的销售情况,以这周内某天售出的40双皮鞋的尺码为一个样本,分为5组,已知第3组的频率为0.25,第1,2,4组的频数分别为6,7,9,若第5组表示的是尺码为40∼42的皮鞋,则售出的这300双皮鞋中尺码为40∼42的皮鞋约为______双.答案:60分析:先计算这周内某天第1,2,4组的频率,根据频率之和等于1可得第5组的频率,再由该频率乘以300即可得解.因为第1,2,4组的频数分别为6,7,9,所以第1,2,4组的频率分别为640=0.15,740=0.175,940=0.225,又因为第3组的频率为0.25,所以第5组的频率为1−0.25−0.15−0.175−0.225=0.2,所以售出的这300双皮鞋中尺码为40∼42的皮鞋约为300×0.2=60双,所以答案是:60.解答题16、判断下列给出的每对事件,是否为互斥事件,是否为对立事件,并说明理由.从40张扑克牌(红桃、黑桃、方块、梅花点数从1~10各10张)中,任取1张.(1)“抽出红桃”与“抽出黑桃”;(2)“抽出红色牌”与“抽出黑色牌”;(3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.答案:(1)是互斥事件,不是对立事件,理由见解析;(2)既是互斥事件,又是对立事件,理由见解析;(3)不是互斥事件,也不是对立事件,理由见解析.分析:本题可根据互斥事件与对立事件的定义得出结果.(1)是互斥事件,不是对立事件.理由:“抽出红桃”与“抽出黑桃”不可能同时发生的,是互斥事件,不能保证其中必有一个发生,还可能抽出“方块”或者“梅花”,不是对立事件.(2)既是互斥事件,又是对立事件.理由:“抽出红色牌”与“抽出黑色牌”不可能同时发生,且其中必有一个发生,则它们既是互斥事件,又是对立事件.(3)不是互斥事件,也不是对立事件.理由:“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”可能同时发生,如抽得点数为10,故不是互斥事件,也不可能是对立事件.17、某射击队统计了甲、乙两名运动员在平日训练中击中10环的次数,如下表:(1)分别计算出甲、乙两名运动员击中10环的频率,补全表格; (2)根据(1)中的数据估计两名运动员击中10环的概率. 答案:(1)答案见解析 (2)0.9分析:(1)根据频率、频数和总数之间的关系完善表格; (2)利用频率与概率之间的关系即可得出结论. (1)两名运动员击中10环的频率如下表:(2)由(1)中的数据可知两名运动员击中10环的频率都集中在0.9附近,所以两人击中10环的概率均约为0.9. 18、甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,已知甲每轮猜对的概率为34,乙每轮猜对的概率为23·在每轮活动中,甲和乙猜对与否互不影响,各轮结果也互不影响,求(1)“星队”在两轮活动中猜对2个成语的概率; (2) “星队”在两轮活动中猜对3个成语的概率; (3) “星队”在两轮活动至少中猜对1个成语的概率; 答案:(1)37144;(2)512;(3)143144.分析:令{M 0,M 1,M 2}、{N 0,N 1,N 2}表示第一轮、第二轮猜对0个、1个、2个成语的事件,{D 0,D 1,D 2,D 3,D 4}表示两轮猜对0个、1个、2个、3个、4个成语的事件,应用独立事件乘法公式、互斥事件加法公式求P (M 0)=P (N 0)、P (M 1)=P (N 1)、P (M 2)=P (N 2).(1)(2)应用独立事件乘法、互斥事件加法求两轮活动中猜对2个成语的概率; (3)对立事件的概率求法求两轮活动至少中猜对1个成语的概率.设A ,B 分别表示甲乙每轮猜对成语的事件,M 0,M 1,M 2表示第一轮甲乙猜对0个、1个、2个成语的事件,N 0,N 1,N 2表示第二轮甲乙猜对0个、1个、2个成语的事件,D 0,D 1,D 2,D 3,D 4表示两轮猜对0个、1个、2个、3个、4个成语的事件.∵P(A )=34,P (A )=1-34=14,P (B )=23,P (B ̅)=1-23=13, ∴根据独立性的假定得:P (M 0)=P (N 0)=P (A B ̅)= P (A ) P (B ̅)= 14 13=112, P (M 1)=P (N 1)=P (AB ̅+A B )= P (AB ̅)+P (A B ) = 34 × 13+14×23=512, P (M 2)=P (N 2)=P (AB )=P (A )P (B )= 34× 23=612=12,(1)P (D 2)=P (M 2N 0+M 1N 1+M 0N 2)= P (M 2N 0)+P (M 1N 1)+P (M 0N 2)=12.112+512.512+112.12=37144.(2)P (D 3)=P (M 1N 2+M 2N 1)= P (M 1N 2)+P (M 2N 1)= 512.12+12.512=512. (3)P (D 1+D 2+D 3+D 4)=1-P (D 0)=1-1144=143144.19、某校要从艺术节活动中所产生的4名书法比赛一等奖的同学和2名绘画比赛一等奖的同学中(每名同学只获得一个奖项)选出2名志愿者,参加运动会的服务工作.求: (1)选出的2名志愿者都是获得书法比赛一等奖的同学的概率;(2)选出的2名志愿者中,1名是获得书法比赛一等奖,1名是获得绘画比赛一等奖的同学的概率. 答案:(1)25 (2)815分析:(1)(2)根据题意,列举中该实验的所有情况和符合题意的情况,根据古典概型的公式,可得答案. (1)把4名获得书法比赛一等奖的同学编号为1,2,3,4; 2名获得绘画比赛一等奖的同学编号为5,6.从6名同学中任选2名的所有可能结果有{1,2},{1,3},{1,4},{1,5},{1,6},{2,3},{2,4},{2,5},{2,6},{3,4},{3,5},{3,6},{4,5},{4,6},{5,6},共15个.从6名同学中任选2名,都是获得书法比赛一等奖的同学的所有可能结果有{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个.所以选出的2名志愿者都是获得书法比赛一等奖的同学的概率P1=615=25.(2)从6名同学中任选2名,1名是获得书法比赛一等奖,另1名是获得绘画比赛一等奖的同学的所有可能结果有{1,5},{1,6},{2,5},{2,6},{3,5},{3,6},{4,5},{4,6},共8个.所以选出的2名志愿者中,1名是获得书法比赛一等奖,1名是获得绘画比赛一等奖的同学的概率P2=815.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率统计试题1一、 填空 .1.设X 是一随机变量,且E (X )=10,D (X )=25,问对Y=aX+b (a ,b 为常数),当a= ,b = 时,E (Y )=0,D (Y )=1.2.设随机变量X ,Y 相互独立,试问如下表格中的:x= ;y= ;z= ;3.设1^θ与^2θ都是总体未知参数θ的无偏估计量,若1^θ比^2θ有效,则1^θ与^2θ的期望与方差一定满足________ _ .4. 若._______,),,(~),,(~222211服从分布为则且相互独立Y X N Y N X -σμσμ5. 若随机变量21,,21),16,2(~=ρ=λXY Y X Y N X 的相关系数的指数分布服从参数,则._______)(=+Y X D6. 设由来自正态总体)9.0 ,(~2μN X 容量为9的样本,得样本均值X =5,则未知参数μ的置信度为0.95的置信区间是___________.. 二、单项选择题1. 设事件B A ,,有A B ⊂则下列式子正确的是( ) ).()()()( );()|()();()()( );()()(A P B P A B P D B P A B P C A P AB P B A P B A P A -=-===+ 2. 当随机变量X 可能值充满区间( ), 则x x f cos )(=可以成为X 的分布密度)47,23( )( ];,0[ )( ];2[ ]20[ ππππππD C B A ,)(;,)(.3. 设离散型随机变量X 仅取两个可能的值2121x x x x <,而且和, X 取1x 的概率为0.6, 又已知,24.0)(,4.1)(1==X D X E , 则X 的分布律为( ).0.40.6 (D) ,0.40.61 (C) ,0.40.621 (B) ,4.06.010 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛b an n A )(4. 设)4,1(~N X ,n X X X ,,,21Λ为X 的样本,则( ))1,0(~21)( ),10(~/21)( )10(~41)( )10(~21N X D N n X C N X B N X A ----,,,,,)(三、三人独立地去破译一个密码,他们能译出的概率分别是41,31,51,问能将此密码译出的概率是多少?四、袋中有50个球,其中20个黄球、20个红球、10个白球,今有两人依次随机地从袋中各取出一球,取后不放回。
求(1)第二人取到黄球的概率.(2)已知第二人取到是黄球,求第一人取到是白球的概率.五、从学校乘汽车到火车站的途中有3个交通岗,设在各个交通岗遇到红灯的事件相互独立,并且概率都是52.设X 为途中遇到红灯的次数,求(1)随机变量X 的分布律,(2)X的分布函数;(3)X 的数学期望.和方差.六、设随机变量X 的分布函数为Barctgx A x F +=)(, +∞<<-∞x ,试求 (1) 系数B A ,; (2) 随机变量X 落在区间(0,1)的概率; (3) X 的概率密度函数;(4)求. 的概率密度x e Y =-七、已知平面区域D 由曲线xy 1=及直线2,1,0e x x y ===围成, ),(Y X 在D 上均匀分布.求 (1) ),(Y X 的联合密度; (2) Y X 和的边缘密度; (3) 问Y X 与是否独立?八、已知总体X 的概率密度为, ,00,1)(⎪⎩⎪⎨⎧>θ=θ-其它x e x f x其中未知参数0>θ, n X X X ,,,21Λ为取自总体的一个样本. (1) 求θ的最大似然估计量; (2) 说明该估计量是无偏估计.九、用热敏电阻测温仪测量温度,重复7次,测得温度(0 C )样本均值,8.112=X 样本方差29.12=S 而用精确办法测得温度为112.6(可看作温度真值).试问用用热敏电阻测温仪间接测量温度有无系统偏差?(α=0.05)十.设连续型随机变量X 的概率密度⎩⎨⎧≤≤=其他)()(b x a x x f ϕ且存在期望E(X),试证明b X E a ≤≤)(答案:一、1.a= b= ;2.x=1/3 y=2/9 z=1/9 3. 4. ),(222121σσμμ+-N5.. 28;6.. ),(588.5 412.4; 二、1. A ;2. A ;3. B ;4. C. 三、53; 四、.4910(2) ;52 )1(;五、(1)⎪⎪⎭⎫ ⎝⎛12581253612554125273210;(2)⎪⎪⎪⎩⎪⎪⎪⎨⎧≤<≤<≤<≤<=xx x x x x F 1 ,132 ,125/11721 ,125/8110 ,125/270,0)(;(3).2518)( ,56)(==X D X E六、,121(1) ⎪⎪⎩⎪⎪⎨⎧π==B A ;)1(1 )3( ;41 )2(2x +π⎪⎩⎪⎨⎧>⋅+π=其它,)()( ,00 1ln 11)4(2y y y y f Y, 七、(1)⎪⎩⎪⎨⎧∈=其它,,0),( 21),(D y x y x f ,; ,011 ,212110 ),1(21)( , ,0),1( ,21)( )2(2222⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤-<<-=⎪⎩⎪⎨⎧∈=其它其它y e y e y e y f e x xx f Y X 不独立Y X , )3(;八、X =θˆ )1(; 九、无系统偏差.概率统计试题2一、 填空题1.若事件_____)(_____,)(,5.0)(,4.0)(,==+==AB P B A P B P A P B A 则互不相容,;若事件_____)(_____,)(,6.0)(,5.0)(,==+==CD P D C P D P C P D C 则相互独立,.2. 随机变量并用标准则 _______,)23( _______,)23( ),3 ,2(~2=-=-X D X E N X 正态分布函数._________)2|(|)(=≤ΦX P x 表示概率3. 已知.________)( 8.0)|(,8.0)(,5.0)(=+===B A P A B P B P A P ,则且4. 设随机变量(Y X ,)的分布函数为 )3(2(y arctg C xarctg B A y x F ++=)),(, 则A =___________,B =____________,C =_____________.(A ≠0)5. 设总体X 服从正态分布)9,5(N ,6021,,,X X X Λ是来自总体X 的样本,x 、2s 分别表示样本平均值及样本方差,则35-X 服从正态分布 ;x 服从正态分布 ;60/35-x 服从正态分布 ;60/5s x -服从自由度为 的 分布;9592s 服从自由度为 的 分布;X 的概率密度函数=)(x f ;X 的分布函数=)(x F ;概率()=≤≤b X a P 。
6. 电路中,电压超过额定值的概率为1p 。
在电压超过额定值的情况下,电气设备被烧坏的概率为2p 。
则由于电压超过额定值而使电气设备烧坏的概率为____________。
二、 单项选择(1. 若随机事件A 与B 同时出现的概率P (AB )=0,则( ). (A )A 和B 不相容; (B )AB 是不可能事件; (C )AB 未必是不可能事件; (D )P (A )=0或P (B )=02. 设随机事件A 、B 及其和事件A+B 的概率分别为0.4,0.3,0.6若B 表示B 的对立事件,则事件A B 的概率P (A B )为( ). (A )0.1 ; (B )0.2 ; (C )0.3 ; (D )0.4 3. 设随机变量X 概率密度为)(,21)(4)3(2+∞<<-∞=+-x ex f x π,则Y =( )~N (0,1).(A )23+X ; (B )23+X ; (C )23-X ; (D )23-X . 4. 根据德莫佛—拉普拉斯中心极限定理可知:( ) (A )二项分布是正态分布的极限分布; (B )正态分布是二项分布的极限分布; (C )二项分布是指数分布的极限分布; (D )二项分布与正态分布没有关系.5. 在假设检验中,记0H 为待检假设,则犯第一类错误指的是( ). (A )0H 成立,经检验接受0H ; (B )0H 成立,经检验拒绝0H ; (C )0H 不成立,经检验接受0H ;(D )0H 不成立,经检验拒绝0H 三设随机变量X 的分布密度为⎩⎨⎧≤>=-.0,,0;0,)(x x Axe x f x (1)求系数A ;(2)求随机四.有朋友自远方来,他乘汽车、轮船、火车、飞机来的概率分别为0.1,0.2,0.3,0.4,若他乘汽车、轮船、火车来的话,迟到的概率分别是1/12,1/3,1/4,而乘坐飞机则不会迟到,结果他迟到了,问他乘火车来的概率?五。
已知10个零件中有7个正品,3个次品。
每次任取一个来测试,测试后不放回去,直至把3个次品都找到为止,求测试次数等于4的概率。
变量X 落在区间)1,0(内的概率;(3)求随机变量X 的分布函数;(4)求随机变量X 的数学期望与方差。
六、已知产品的尺寸与规定尺寸的偏差(毫米)服从正态分布)5.2,0(N 。
如果产品的尺寸与规定尺寸的偏差的绝对值不超过3毫米者为合格品,求生产5件产品中至少有4件合格品的概率。
七、设随机变量X 服从标准正态分布,(1)求随机变量函数 32+=X Y 的分布密度;(2)求随机变量函数 X Y 2= 的分布密度。
八、设二维连续型随机变量),(Y X 的联合密度⎩⎨⎧≤≤≤≤+=,0;20,10,3/)(),(y x y x y x f求随机变量X 、Y 的数学期望、方差和相关系数XY ρ。
九、设随机变量X 与Y 相互独立,并且分别服从参数为μλ,的指数分布: 求随机变量Y X Z +=的分布密度(考虑μ=λ及μ≠λ两种情形)。
十、从一批零件中随机地抽取16个,测得其长度X 的平均值403=x (毫米),样本标准差16.6=s 。
已知),400(~2σN X ,σ未知,问这批零件是否合格?)05.0(=α。
十一。
若总体)(~2n x X ,n X X X ,,,21Λ是来自总体的一个简单随机样本,且X 为样本均值.试证明:E (X )=n ,D (X )=2.答案:一、1. .3.0 , 8.0 ; 0 , 9.0 2. 2134 ,81 ,4-⎪⎭⎫ ⎝⎛Φ; 3. 9.0; 4.;2,12π==π=C B A 21.6p p ;二、1。