一次函数中(特殊三角形)的存在性问题优秀教学设计
一次函数与特殊三角形~存在性问题

一次函数与特殊三角形~存在性问题坚持的力量,时间的证明,难忘的经历!一次函数与特殊三角形~存在性问题—【数学压轴题】盘点思考题目:一次函数与等腰三角形~存在性问题【两定一动】一次函数与直角三角形~存在性问题【两定一动】一次函数与等腰直角三角形~存在性问题【一定两动】适用范围:初二与初三学生【考点串讲,拓展思路,体味方法】解题方法:一次函数与等腰三角形~存在性问题【两定一动】一次函数与直角三角形~存在性问题【两定一动】一次函数与等腰直角三角形~存在性问题【一定两动】【考点总结】1.一次函数与等腰三角形~存在性问题:(1)类型:两定一动&一定两动。
(2)思路:代数法&几何法。
注意:遇到'一定两动'时,尽量先画图,再结合【等腰三角形性质——等边对等角&三线合一】进行思考。
另外,这里的“等腰三角形~存在性问题”与初三数学中的“菱形~存在性问题”密切相关,大家必须掌握。
2.一次函数与直角三角形~存在性问题:(1)类型:两定一动&一定两动。
(2)思路:代数法&几何法&函数法。
注意:三种方法都可以使用,'代数法'侧重—计算量;“几何法”侧重—构图及转化能力;“函数法”—侧重公式记忆的应用及特殊情况的处理。
另外,这里的“直角三角形~存在性问题”与初三数学中的“矩形~存在性问题”密切相关,大家必须掌握。
3.一次函数与等腰直角三角形~存在性问题:(1)类型:两定一动&一定两动。
(2)思路:几何法——构造“一线三垂直~全等三角形模型”。
注意:这里的“等腰直角三角形~存在性问题”与初三数学中的“正方形~存在性问题”密切相关,大家必须掌握。
综上所述,这种【数学压轴题】需要思考,敢于挑战,发挥想象,坚持总结,重在积累,走好初中的每一步,在会的基础上提升自己的做题速度,节省时间才能在考试中发挥出真实水平。
加油,我们一起同行【从不同的出发点思考,便会发现不一样的风景】。
一次函数之等腰直角三角形的存在性 (讲义及答案)

一次函数之等腰直角三角形的存在性(讲义及答案).1. 在正方形网格中,网格线交点称为格点。
已知A、B是两个格点,若点C也是格点且使△ABC为等腰直角三角形,则符合条件的点C只有一个。
2. 做讲义第一题时,先看知识点,再用铅笔计算并将演算保留在讲义上。
如果思路受阻(例如某个点做了2-3分钟),重复上述动作。
如果仍无法解决,重点听课堂讲解。
知识点:1. 解决存在性问题的处理思路①分析不变特征:分析所求图形中的定点、定线、定角等不变特征。
②分类、画图:结合所求图形的形成因素,依据其判定、定义等确定分类,并画出符合题意的图形。
通常先尝试画出其中一种情形,分析解决后,再类比解决其他情形。
③求解、验证:围绕不变特征、画图依据来设计方案进行求解。
验证时,要回归点的运动范围,画图或推理,判断是否符合题意。
注:复杂背景下的存在性问题往往需要研究背景图形,几何背景往往研究点、线、角;函数背景研究点坐标、表达式等。
2. 等腰直角三角形存在性的特征分析及操作要点:三角形的三个顶点分别为直角顶点进行分类,在直角的基础上,再考虑等腰。
通常借助构造弦图模型进行求解。
精讲精练:1. 如图,直线y=-2x+6与x轴、y轴分别交于点A、B。
点P是第一象限内的一个动点,若以A、B、P为顶点的三角形为等腰直角三角形,则点P的坐标为。
2. 如图,直线y=-x+b与x轴、y轴分别交于点A、B。
点C在直线y=-x+b上,且其纵坐标为1。
△___的面积为。
(1)求直线y=-x+b的表达式及点C的坐标。
(2)点P是第二象限内的一个动点,若△ACP是等腰直角三角形,则点P的坐标为。
3. 如图,在平面直角坐标系中,点A的坐标为(2,0)。
点P是y轴正半轴上的一个动点,Q是直线x=3上的一个动点。
若△APQ为等腰直角三角形,则点P的坐标为。
4. 如图,直线y=3x+4与y轴交于点A,点P是直线x=6上的一个动点,点Q是直线y=3x+4上的一个动点,且点Q在第一象限。
第4章一次函数-一次函数之等腰直角三角形的存在性(教案)

五、教学反思
今天我们在课堂上探讨了《一次函数之等腰直角三角形的存在性》,整体来看,学生的学习效果还是不错的。但在教学过程中,我也发现了一些值得思考的问题。
首先,我发现有些学生对一次函数图像与等腰直角三角形之间的关系理解不够深入。在讲解过程中,我尽量用生动的例子和形象的比喻来帮助他们理解,但显然,这部分内容对于他们来说还是有一定难度的。在今后的教学中,我需要更加关注这部分学生的需求,尽可能用简单易懂的方式讲解难点,让他们能够真正消化吸收。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解一次函数和等腰直角三角形的基本概念。一次函数是形如y=kx+b的函数,其中k是斜率,b是y轴截距。等腰直角三角形是一种特殊的三角形,它的两条腰相等且与底边成直角。在一次函数图像中,等腰直角三角形的存在性与函数的斜率有关。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何在一次函数图像中找出等腰直角三角形,以及它如何帮助我们解决实际问题。
-运用逻辑推理和分析数据的能力,解决一次函数图像中等腰直角三角形的定位问题。
举例解释:
-解释斜率为1或-1时,图像上的点与原点的连线和x轴或y轴形成的特殊角度题时,指导学生如何从问题描述中提取关键信息,构建一次函数模型,并利用等腰直角三角形的性质进行解答。
其次,在实践活动环节,学生们的参与度很高,但部分小组在讨论时显得有些拘谨,可能是因为对等腰直角三角形在实际生活中的应用不够了解。在今后的教学中,我会多设计一些与实际生活紧密相关的案例,让学生在实践中更好地理解理论知识。
一次函数中特殊三角形的存在性问题(上课)

如图,线段AB的端点A在直线l上,AB与l的夹角是30°,请在 直线l上另找一点C,使△ABC是等腰三角形。这样的点能找到几个? 请找出所有符合条件的点C。
C3 l
C1 C4 A
B C2
合作交流,探索新知
如图,直线 y 3 x 3与x轴、y轴分别交于A、B两点.
4
(1)直接写出A、B两点的坐标; (2)在x轴上是否存在点P,使以A,B,P为顶点的三角形是
y
B
O
A
x
2、本节课涉及了哪些数学思想或方法?
(1).数形结合思想
(2).分类讨论思想
(3).方程思想
课后练习,巩固提高
1、如图,在平面直角坐标系xOy中,四边形OABC的边OC,OA
分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,
BC= ,点C的坐标为(-9,0).
(1)求点B的坐标.
件的点;
存(2象.在的2为)交点底在点P:,就x做轴是使已上符以知合是线A条否、段件的的垂点直.平分线,中垂线y与所要求的图
B、P为顶点的三角
形是等腰三角形?
若存在,求出点P的
B 3 4-m
坐标;若不存在, 请说明理由;
P3
P1 O m P4 4-mA
P2
x
合作解交决存流在,性问探题小索策新略:知 如图假若,设能直存导线在出合→y 理推 的理3结论x 果证3与,→就得x轴做出、出结“论y轴存。分在别”的交判于断A;、B两点. 导出矛盾,就做4出不存在的判断。
B
么问题?你能解决它吗?
O
A
x
合作交流,探索新知
如图,直线 y 3 x 3与x轴、y轴分别交于A、B两点.
一次函数与三角形面积问题教学设计

一次函数与三角形面积问题教学设计本教学设计旨在介绍一次函数与三角形面积问题的重要性和应用背景。
一次函数与三角形面积问题是数学中重要的概念,其应用广泛,能够帮助学生理解和应用数学知识。
一次函数是数学中最简单的一种函数,它的表达式为 y = ax + b,其中 a 和 b 是常数。
一次函数可以描述线性关系,如直线的斜率和截距。
三角形面积问题是几何学中的经典问题,涉及到三角形的面积计算与相关性质。
通过解决三角形面积问题,学生不仅能够掌握计算面积的方法,还能加深对三角形的认识和理解。
在日常生活和实际工作中,一次函数与三角形面积问题有着重要的应用。
例如,建筑师需要计算房屋的地板面积;经济学家需要分析市场的需求曲线;物理学家需要测量三角形形状的物体的面积等等。
因此,通过研究一次函数和三角形面积问题,学生能够培养数学思维和解决实际问题的能力。
接下来,我们将介绍一次函数和三角形面积问题的基本概念,并设计教学活动帮助学生理解和应用这些概念。
教学目标明确学生在研究过程中应达到的目标,例如掌握一次函数与三角形面积问题的基本概念和计算方法。
本教学设计将详细列举教学内容和分步骤的教学方法,包括一次函数的定义、性质和常见例题,以及三角形面积计算公式和实际问题的解决方法。
一次函数的定义和性质一次函数的定义:介绍一次函数的定义,即形如 y = kx + b 的函数,其中 k 和 b 是常数。
一次函数的性质:讲解一次函数的性质,如斜率 k 的含义、截距 b 的含义、函数图像的倾斜方向等。
一次函数的例题演练一次函数的图像绘制:给出几个一次函数的表达式,要求学生绘制出相应的函数图像,并分析图像的特征。
一次函数的斜率计算:给出一些一次函数的表达式,要求学生计算出相应函数的斜率,并解释其意义。
一次函数的解方程:提供一些一次函数的方程,要求学生解出方程的根,并用图像验证结果。
三角形面积的计算三角形面积的计算公式:介绍三角形面积的计算公式,即面积等于底边长乘以高的一半。
第四章一次函数-一次函数与等腰三角形(教案)

(3)培养学生的空间想象力和几何直观。
举例:在教学过程中,通过画图、举例子等方式,帮助学生建立空间观念,提高对等腰三角形和一次函数图像的理解。
(4)指导学生掌握合作交流、自主探究的学习方法。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数与等腰三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
2.在实践活动和小组讨论中,关注学生的个体差异,给予他们更多的指导和鼓励,使每个学生都能参与到课堂讨论中来。
3.课后及时进行教学反思,调整教学策略,以提高教学效果。
五、教学反思
在今天的教学过程中,我发现学生们对一次函数与等腰三角形的联系表现出浓厚的兴趣。在导入新课环节,通过提问方式引起学生的好奇心,他们能够积极参与课堂讨论,这是一个很好的开始。
在讲授新课内容时,我尽量用简单明了的语言解释一次函数与等腰三角形的内在联系,让学生们能够更好地理解这两个概念。同时,通过案例分析,让学生们看到一次函数在解决实际问题时的重要作用。在此过程中,我发现有些学生对一次函数图像的对称性质掌握不够牢固,需要我在课堂上进一步强调和解释。
举例:讲解一次函数y=kx+b(k≠0)的图像在坐标系中的对称性,引导学生发现等腰三角形的轴对称性质。
(2)运用一次函数解决与等腰三角形相关的实际问题,如求解等腰三角形的面积、周长等。
函数动点问题中等腰三角形存在性问题优秀教学设计(教案)

课题:函数动点问题中的等腰三角形存在性问题教课目的:1、经过实质问题的研究,使学生经历绘图、演算,列方程等掌握由函数动点问题产生等腰三角形存在性问题一般解题方法2、掌握数形联合思想,方程思想,分类议论思想的实质运用、教课要点:研究出函数动点问题中的等腰三角形存在性问题的一般解题方法教课难点:分类议论思想教课协助:多媒体课件,圆规,尺子教课过程:一、情境引入函数动点问题是近几年中考取的热门问题,也是中考试卷的压轴题。
特别是在函数中由动点产生等腰三角形存在性问题居多。
本节课我们将商讨解决此类问题的一般方法。
我们知道有两边相等的三角形是等腰三角形,那么思虑以下问题:1、若△ ABC 是等腰三角形,请写出相等的边。
2、如图,在平面直角坐标系xOy 中,已知线段 OD,点 P 是 x 轴上的一个动点,假如△DOP 是等腰三角形,请画出P 点的地点。
谈谈你的方法。
变式:若其余条件不变,点P 是坐标轴上的一个动点。
请画出点P 的地点。
(说明:经过写出相等的边,画等腰三角形。
让学生回首:知道一边时,这个边可能是底点也可能是腰,表现分类议论思想)二,合作研究例题:如图,抛物线y=ax2+bx﹣ 3(a≠0)的极点为 E,该抛物线与 x 轴交于 A、B 两点,与 y 轴交于点 C,且 BO=OC=3AO,直线 y=﹣ x+1 与 y 轴交于点 D.(1)求抛物线的分析式。
(2)在抛物线的对称轴上能否存在点 P,使△ PBC是等腰三角形?若存在,请直接写出切合条件的 P 点坐标,若不存在,请说明理思虑( 1)、求分析式我们需要求出分析式的什么?有几个未知的需要确立,确立未知的我们需要几个条件。
请写出解题过程。
(2)、相像三角形的判断方程法有哪些?依据本题的已知条件,我们采用哪个方法适合?试一试看。
请写出证明过程。
(3)存在与否我们怎么确立?用什么方法适合呢?不如大家先绘图试一试看。
若存在你能求出点 P 的坐标吗小结:经过以上问题的解题过程。
初中数学课件一次函数中三角形的存在性问题

求出的值,并求此时点的坐标;若不能,请说明理由.
课堂小结
等腰三角形的存在性:两圆加一中垂线,记得去掉共线点.
知识讲解
直角三角形的存在性
关联知识点
1
尺规作图:作弧
2
直角三角形斜边上的中线等于斜边上的
一半
知识讲解
直角三角形的存在性:一圆加上两垂线,构造思想得坐标.
△ 为直角三角形 ,写出所有符合条件的点的坐标.
课堂小结
直角三角形的存在性:一圆加上两垂线,构造思想得坐标.
原题证明
一次函数 =
4
3
+ 4分别交轴、y轴于、两点,在轴上取一点C,使
△ 为等腰三角形 ,写出所有符合条件的点的坐标.
原题证明
如图,点坐标为(4,0),点在第一象限,且在直线 = − + 5上,
此时,2 = = 4 − (−3) = 7,点2 在第一象限,离轴的距离为7,离
轴的距离为4,∴ 2 (4, 7);
③当∠3 是直角时,∵∠ = 45∘
∴此情况不存在,应舍去
综上所述,当取0.5或4时,△ 是直角三角形.
应用练习
一次函数 =
4
3
+ 4分别交轴、y轴于、两点,在轴上取一点C,使
当 = 时,3 点的坐标为(2, 0),
当 = 时,4 点的坐标为(0, 0),
综上所述,点的坐标为(2 2 − 2, 0),(−2 2 − 2, 0),(2, 0),(0, 0).
应用练习
如图,在平面直角坐标系中,一次函数 = 1 + 的图象与轴交于点
(−3, 0),与 轴交于点 ,且与正比例函数 = 的图象交点为(3, 4).求:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
辅助策略:借助几何画板,使学生直观形象地观察、操作。
2、教法
演示法:通过几何画板演示两圆一中垂线和外K全等,使学生直观、形象的感知因动点的移动,在何时会出现等腰三角形和等腰直角三角形,思考在没有几何画板的时候,我们自己该如何作图,快速确定动点的位置。
《一次函数中特殊三角形的存在性问题》教学设计
【教学目标】
1、知识与技能
(1)使学生体会定点与动点之间的关系,做到以静制动。
(2)通过数形结合,利用几何法和代数法求一次函数中特殊三角形的存在性问题。
2、过程与方法
(1)借助几何画板探究一次函数中特殊三角形的存在性问题,使学生初步形成正确、科学的分析解决问题的方法。
①设点:设点P(0,m)A(3,0),B(0,4)
②表示三条边:
③列方程:
三、小组讨论
已知A(2,0),B(0,4),在第一象限内是否存在一点P,使得△PAB是等腰直角三角形,若存在请求出点P的坐标;若不存在,请说明理由。
讨论目标:①这样的动点P可能有多少个?如何分类?
②你能不能画出等腰直角三角形?
等腰三角形可以是两条边相等或者两个角相等,在我们所学的知识中,是边好表示,还是角好表示呢?
探究一:用几何法确定动点的位置——两圆一中垂线
例1、已知,A(3,0),B(0,4),在y轴上是否存在一点P,使得△PAB是等腰三角形,若存在,请求出点P的坐标,若不存在,请说明理由
探究二:用代数法确定动点的位置——设点法
实验法:让学生自己动手、在探究过程中,自己发现动点的规律
讨论法:在学生进行了自主探索之后,进行小组讨论,让他们进行合作交流,使之互相促进,共同提高。
【教学过程】
1、创设情境,引入新课
同学们已经学过了等腰三角形,一个普通的、一般的三角形满足什么条件时,才能进化成一个相对特殊的等腰三角形呢?
2、探究活动,集思广益
(2)学会以静制动
【学情分析】
学生已经初步掌握了用待定系数法求解一次函数的解析式,联立方程组求解两个一次函数图像的交点,求解三个顶点为定点的三角形的面积以及用铅锤法表示有顶点是动点的三角形的面积,但是对一次函数中特殊三角形的存在问题还存在一定的困难。
【教学活动策略及教法设计】
1.活动策略
课堂组织策略:创设贴近学生生活、生动有趣的问题情境,开展有效的数学活动,组织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流中,主动发现特殊三角形中动点坐标的规律。
③如何求点P的坐标?
如果我们把三个图画在同一个直角坐标系中,会有什么发现呢?
3、学以致用,牛刀小试
我们已经探究出了等腰三角形的几何法与代数法,等腰直角三角形的外K全等。如何将这些知识更好的加以运用,接下来我们就应用这些知识来解决实际问题。
例1、 在平面直角坐标系中,正比例函数 与一次函数 的图像交于点A(4,3),过点P(2,0)作x轴的垂线,分别交正比例函数的图像于点B,交一次函数的图像于点C连接OC。
4、课堂小结
(1)以静制动,分清定点和动点,用定点来表示动点的坐标
(2)数形结合
【板书设计】一次函数中特殊ຫໍສະໝຸດ 角形的存在性问题一、集思广益
二、等腰三角形
1、几何法——两圆一中垂线
2、代数法——设点法
三、等腰直角三角形
外K全等
例1:思路
几何法:
代数法:
例2:思路
(2)学生与其他人交流的过程中,能合理清晰地表达自己的思维过程。
(3)在自己动手画图的过程中,培养学生的动手实践能力及丰富的想象力,积累数学活动经验,增强学生的创新意识。
3、情感态度与价值观
(1)通过新媒体手段和个性化的学习方式,培养学生交流合作的意识,激发学生学习数学的兴趣,树立学生学好数学的信心,培养学生良好的学习习惯。
射出点M的坐标,表示出AO、AM、OM的长度,列方程求解。
例2、如图,直线y=2x+6交y轴于点A,点B
是这条直线上的一点,并且位于第一象限,P是直线
x=8上的一动点,若△APB是等腰直角三角形,则点B的
坐标为__________
方法提炼:要使△APB是等腰直角三角形,用外K全等。其中点A是定点,B和P都是动点。要求点B的坐标,所以设B点的坐标为(m,2m+6),先利用正方形画出点P的位置,再表示出点P的坐标,因为点P再直线x=8上,所以点P的横坐标为8,列出方程,求出m的值,最后再代入AB的解析式。
(1)求两个函数解析式
(2)求△OBC得面积
(3)在y轴上是否存在点M,使
△AOM是等腰三角形?若存在,
直接写出M的坐标;若不存在,
请说明理由
方法提炼:第(3)小问,使△AOM是
等腰三角形,其中A、O是定点,M是
动点,若用几何法,分别以A、O为圆心,
AO为半径画圆交y轴于点M;作AO的
中垂线,交y轴于点M;若用代数法,则
(2)以小组活动形式对本节内容进行综合探索,在与他人的合作过程中,培养学生敢于面对挑战和勇于克服困难的意志,鼓励学生大胆尝试,从中获得成功的体验,培养学生的合作意识和团队精神。
【教学重、难点】
教学重点:(1)一次函数中的动点问题;
(2)两圆一中垂线求等腰三角形;外K全等求等腰指教三角形。
教学难点:(1)分类讨论思想的运用;