高考试题回归分析,独立性检验

合集下载

高中选修1-2回归分析和独立性检验知识总结与联系

高中选修1-2回归分析和独立性检验知识总结与联系

高中选修1-2回归分析和独立性检验知识总结与联系-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑选修1-2第一部分 变量间的相关关系与统计案例【基础知识】一、回归分析1.两个变量的线性相关:判断是否线性相关 ①用散点图(1)正相关:在散点图中,点散布在从左下角到右上角的区域.对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关:在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)线性相关关系、回归直线:如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线. ②用相关系数r(3)除用散点图外,还可用样本相关系数r 来衡量两个变量x ,y 相关关系的强弱,ni ix y nx yr -•=∑当r >0,表明两个变量正相关,当r <0,表明两个变量负相关,r 的绝对值越接近于1,表明两个变量的线性相关性越强;r 的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系,通常|r |0.75>时,认为这两个变量具有很强的线性相关关系. 2.回归方程:两个变量具有线性相关关系,数据收集如下:可用最小二乘法得到回归方程ˆy bx a =+,其中3.回归分析的基本思想及其初步应用(1)回归分析是对具有相关关系的两个变量进行统计分析的方法,其常用的 研究方法步骤是画出散点图,求出回归直线方程,并利用回归直线方程进行预报.(2)对n 个样本数据(x 1,y 1)、(x 2,y 2)、…、(xn ,yn ),(,)x y 称为样本点的中心.样本点中心一定落在回归直线上。

4、回归效果的刻画:用相关指数2R来刻画回归的效果,公式是2 2121()1()ni iiniiy yRy y==-=--∑∑2R的值越大,说明残差平方和越小,也就是说模型拟合效果好二.独立性检验的基本思想及其初步应用题型一相关关系的判断【例1】对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是()A.r2<r4<0<r3<r1B. r4<r2<0<r 1<r3C. r4<r2<0<r3<r1D. r2<r4<0<r1<r3【变式1】 根据两个变量x ,y 之间的观测数据画成散点图如图所示,这两个变量是否具有线性相关关系________(填“是”与“否”).题型二 线性回归方程【例2】在2013年元旦期间,某市物价部门对本市五个商场销售的某商品一天的销售量及其价格进行调查,五个商场的售价x 元和销售量y 件之间的一价格x 9 9.5 10 10.5 11销售量y11 10 8 6 5 y 关于商品的价格x 的线性回归方程为________.(参考公式:b ^= ,a ^=y -b ^x )【变式3】为了解儿子身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高x /cm 174 176 176 176 178儿子身高y /cm175 175 176 177 177则y 对x 的线性回归方程为( ). A .y =x -1 B .y =x +1C .y =88+12x D .y =176题型三 独立性检验【例4】通过随机询问110名性别不同的行人,对过马路是愿意走斑马线由K 2=n (ad -dc )(a +b )(c +d)(a +c )(b +d ),算得K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A. 有99%以上的把握认为“选择过马路的方式与性别有关”B. 有99%以上的把握认为“选择过马路的方式与性别无关”C. 在犯错误概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”D. 在犯错误概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关【变式2】 某企业有两个分厂生产某种零件,按规定内径尺寸(单位:mm)的值落在[29.94,30.06)的零件为优质品.从两个分厂生产的零件中各抽出了500件,(2)由以上统计数据填下面2×2列联表,并问是否有99%的把握认为“两个分附 K 2巩固提高1.下列说法:①将一组数据中的每个数据都加上或减去同一个常数后,方差恒不变;②设有一个回归方程y ^=3-5x ,变量x 增加一个单位时,y 平均增加5个单位;③线性回归方程y ^=b ^x +a ^必过(x ,y );④在一个2×2列联表中,由计算得K 2=13.079,则有99%的把握确认这两个变量间有关系;其中错误的个数是( )A. 0B. 1C. 2D. 32.已知回归直线斜率的估计值为1.23,样本点的中心为点(4,5),则回归直线的方程为( ) A. y ^=1.23x +4 B. y ^=1.23x +5 C. y ^=1.23x +0.08 D. y ^=0.08x +1.23 3.从所得的散点图分析可知:y 与x 线性相关,且y =0.95x +a ,则a =( ) A. 1.30 B. 1.45 C. 1.65 D. 1.804.根据上表可得回归直线方程:y =0.56x +a ,据此模型预报身高为172 cm 的高三男生的体重为( )A. 70.09 kgB. 70.12 kgC. 70.55 kgD. 71.05 kg5.调查了某地若干户家庭的年收入x (单位:万元)和年饮食支出y (单位:万元),调查显示年收入x 与年饮食支出y 具有线性相关关系,并由调查数据得到y 对x的回归直线方程:y ^=0.254x +0.321.由回归方程可知,家庭年收入每增加1万元,年饮食支出平均增加________万元.6.利用独立性检验对两个分类变量是否有关系进行研究时,若在犯错误的概率不超过0.005的前提下认为事件A 和B 有关系,则具体计算出的数据应该是( )A .k≥6.635B .k <6.635C .k≥7.879D .k <7.8797.某高校“统计初步”课程的教师随机调查了选该课的一些学生的情况,具体数据如下表:非统计专业统计专业男13 10女7 20为了判断主修统计专业是否与性别有关系,根据表中数据得到,k=50(13×20-10×7)220×30×23×27≈4.844,因为k>3.841,所以确定主修统计专业与性别有关系,那么这种判断出错的可能性为________.与销售额(单位:百万元)之间有如下对应数据:(1)画出散点图;(2)求线性回归方程;(3)试预测广告费支出为百万元时,销售额多大?9.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程;(3)已知该厂技改前吨甲产品的生产能耗为吨标准煤,试根据(2)求出的线性回归方程,预测生产吨甲产品的生产能耗比技改前降低多少吨标准煤(参考数值:)9.某大学餐饮中心为了了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:喜欢甜品不喜欢甜品合计南方学生60 20 80北方学生10 10 20合计70 30 100(1)甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系学生,其中2名习惯甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.10、我市某校某数学老师这学期分别用两种不同的教学方式试验高一甲、乙两个班(人数均为人,入学数学平均分和优秀率都相同,勤奋程度和自觉性都一样)。

高考数学第1部分 重点强化专题 专题3 突破点8 独立性检验与回归分析

高考数学第1部分 重点强化专题 专题3 突破点8 独立性检验与回归分析
9
10
11
12
13
14
15
16
零件尺寸
10.26
9.91
10.13
10.02
9.22
10.04
10.05
9.95
(1)求(xi,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
2.在分析两个变量的相关关系时,可根据样本数据作出散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.
[变式训练1]二手车经销商小王对其所经营的A型号二手汽车的使用年数x与销售价格y(单位:万元/辆)进行整理,得到如下数据:
使用年数x
2
3
4
5
6
7
售价y
[高考真题回访]
回访1变量的相关性
1.(2015·全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是()
图8 1
A.逐年比较,2008年减少二氧化硫排放量的效果最显著
B.2007年我国治理二氧化硫排放显现成效
C.2006年以来我国二氧化硫年排放量呈减少趋势
D.2006年以来我国二氧化硫年排放量与年份正相关
D[对于A选项,由图知从2007年到2008年二氧化硫排放量下降得最多,故A正确.对于B选项,由图知,由2006年到2007年矩形高度明显下降,因此B正确.对于C选项,由图知从2006年以后除2011年稍有上升外,其余年份都是逐年下降的,所以C正确.由图知2006年以来我国二氧化硫年排放量与年份负相关,故选D.]

高考试题回归分析,独立性检验

高考试题回归分析,独立性检验

高考试题回归分析,独立性检验标准化工作室编码[XX968T-XX89628-XJ668-XT689N]回归分析与独立性检验1.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看,①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .2.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显着B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关3.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程ˆˆˆybx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元家庭年支出为( )]A .万元B .万元C .万元D .万元4.在画两个变量的散点图时,下面哪个叙述是正确的( )A .预报变量在x 轴上,解释变量在y 轴上B .解释变量在x 轴上,预报变量在y 轴上C .可以选择两个变量中任意一个变量在x 轴上D .可以选择两个变量中任意一个变量在y 轴上5( )A .种子经过处理跟是否生病有关B .种子经过处理跟是否生病无关2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年190020002100220023002400250026002700C .种子是否经过处理决定是否生病D .以上都是错误的 6.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际问题中,y 的预报最大取值是10,则x 的最大取值不能超过( )A .16B .17C .15D .127.在研究身高和体重的关系时,求得相关指数≈2R ___________,可以叙述为“身高解释了64%的体重变化,而随机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。

考点11 回归分析与独立性检验(学生版)

考点11  回归分析与独立性检验(学生版)

考点11 回归分析与独立性检验概率与统计,是历年高考的必考点,尤其是新高考改革后,各卷都有考查,其主要考查内容有:数字特征与概率的计算问题、随机变量的均值与方差、回归分析与独立性检验、二项分布及其应用等。

例如:2021年全国高考乙卷(文)、(理)[17],2022年全国新高考卷Ⅱ[19],2022年全国乙卷(文)、(理)[19],2022年全国甲卷(文)[17],2022年北京高考[18]等都对数字特征与概率的计算问题进行了考查。

〔1〕回归分析的实际应用1.求回归直线方程(线性回归方程)的一般步骤 (1)画散点图; (2)求回归直线方程; (3)用回归直线方程进行预报。

2.利用回归方程进行预测,把回归直线方程看作一次函数,求函数值。

3.利用回归直线判断正、负相关,决定正相关还是负相关的是系数bˆ。

4.回归方程的拟合效果,可以利用相关系数判断,当||r 越趋近于1时,两变量的线性相关性越强。

〔2〕独立性检验的实际应用 1.独立性检验的一般步骤(1)根据样本数据列出2×2列联表;(2)计算随机变量2K 的观测值k ,查表确定临界值0k ;(3)如果0k k ≥,就推断“X 与Y 有关系”,这种推断犯错误的概率不超过()02k K P ≥;否则,就认为在犯错误的概率不超过()02k K P ≥的前提下不能推断“X 与Y 有关系”,或者在样本数据中没有发现足够证据支持结论“X 与Y有关系”。

2.独立性检验的应用可以利用独立性检验来推断两个分类变量是否有关系,并且能较精确地给出这种判断的可靠程度。

具体做法是: (1)根据实际问题需要的可信程度(或容许犯错误概率的上界)确定临界值0k ; (2)利用公式,由观测数据计算得到随机变量2K 的观测值k ;(3)如果0k k ≥,就说有()()%100102⨯≥-k K P 的把握认为“X 与Y 有关系”(或说在犯错误的概率不超过()2k K P ≥的前提下认为“X 与Y 有关系”),否则就说样本观测数据没有提供“X 与Y 有关系”的充分证据(或说在犯错误的概率不超过()02k K P ≥的前提下不能认为“X 与Y 有关系”)。

高考必备——独立性检验-独立性检验

高考必备——独立性检验-独立性检验

k0
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.82
P( K 2 k0 )
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
例 1:研究吸烟与患肺癌的关系. 1.确定研究对象:吸烟与患肺癌的关系. 2.采集数据——列联表: 不患肺癌 不吸烟 吸烟 总计 7775 2099 9874 患肺癌 42 49 91 总计 7817 2148 9965
不吸烟不患肺癌 吸烟不患肺癌 a c .即“ ” ab cd 不吸烟总数 吸烟总数
得 ad bc 0 ,所以 | ad bc | 越小,说明吸烟与患肺癌关系越弱,反之越强. (2)构造随机变量 K 2
n(ad bc) 2 (其中 n a b c d ) (a b)(c d )(a c)(b d )
2 2
0.15 2.072
0.10 2.706
0.05 3.841
0.025 5.024
0.010 6.635
0.005 7.879
0.001 10.828
,其中 n=a+b+c+d)
5.某校在规划课程设置方案的调研中, 随机抽取 160 名理科学生, 想调查男生、 女生对 “坐标系与参数方程” 与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等 式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多 25 人,根据调研情况制成如下图所示的列联表: 选择坐标系与参数方程 男生 女生 合计 160 60 选择不等式选讲 合计

回归分析与独立性检验

回归分析与独立性检验

建构数学
• 1.计算公式
相关系数

r=
(x
i=1 n i=1
n
i
- x)(yi - y)
n
x y
i1
n
i i
nxy
_ _
(xi - x)2 (yi - y)2
i=1
_ 2 n _ 2 n 2 2 xi n x yi n y i1 i1
y a bx
其中a+bx是确定性函数, 是随机误差
注: 产生的主要原因:
(1)所用确定性函数不恰当; (2)忽略了某些因素的影响; (3)观测误差。
正相关
负相关
散点图只是形象地描述点的分布情况,它的“线性”是否 明显只能通过观察,要想把握其特征,必须进行定量的研究
问题:有时散点图的各点并不集中在一条 直线的附近,仍然可以按照求回归直线方 程的步骤求回归直线,显然这样的回归直 线没有实际意义。在怎样的情况下求得的 回归直线方程才有实际意义? 即建立的线性回归模型是否合理? 如何对一组数据之间的线性相关程 度作出定量分析?
1
1 5.54 5.54 1
2
2 7.52 15.04 4
3
3 10.02 30.06 9
4
4 11.73 46.92 16
5
5 15.69 78.45 25
6
6 16.12 96.72 36
7
7 16.98 118.9 49
8
8 4.50 21.06 13.08 168.5 64 560.1 204
2
K2 即在 H 0 成立的情况下, 大于6.635概率非常小, 近似为0.010 K2 现在的 =56.632的观测值远大于6.635,

高考五大高频考点例析

高考五大高频考点例析

(1)作散点图检验是否线性相关; (2)求回归方程;
(3)若市政府下一步再扩大两千煤气用户,试预测该市
煤气消耗量.
解:(1)作出散点图(如图),观察呈线性正相关.
1+1.1+1.5+1.6+1.8 7 (2) x = = , 5 5 6+7+9+11+12 y= =9, 5
x2=12+1.12+1.52+1.62+1.82=10.26, i
3π 第四次:sin 2π>sin 成立,a=1,T=T+a=2,k=5,5<6, 2 继续循环; 5π 第五次:sin >sin 2π 成立,a=1,T=T+a=3,k=6,6<6 2 不成立,跳出循环,输出 T 的值为 3.
答案:3
4.某保险公司业务流程如下:(1)保险投保,填单交费, 公司承保,出具保单;(2)保险提赔,公司勘查;同 意,则赔偿,否则拒赔.画出该公司的业务流程图. 解:业务流程图如下:
1)+3=-3,i=1;S=(-3)×(-1)+2= 5,i=0;S=-5+1=-4,i=-1,结 束循环,故输出的S=-4.
[答案]
-4
[跟踪演练]
3.(2012· 江西高考)下图为某算法的程序框图,则程序运
行后输出的结果是____________.
解析:此框图依次执行如下循环: π 第一次:T=0,k=1,sin >sin 0 成立,a=1,T=T+a=1, 2 k=2,2<6,继续循环; π 第二次:sin π>sin 不成立,a=0,T=T+a=1,k=3,3<6, 2 继续循环; 3π 第三次: sin >sin π 不成立, a=0, T=T+a=1, k=4, 4<6, 2 继续循环;
2
所以数列{an}的前 n 项和

高考数学 命题角度3.3 独立性检验及回归分析大题狂练 文

高考数学 命题角度3.3 独立性检验及回归分析大题狂练 文

命题角度3.3 独立性检验及回归分析1.已知随机抽查这100名学生中的一名学生,抽到善于使用学案的学生概率是0.6.(1)请将上表补充完整(不用写计算过程);(2)试运用独立性检验的思想方法分析:有多大的把握认为学生的学习成绩与对待学案的使用态度有关?(3)若从学习成绩优秀的同学中随机抽取10人继续调查,采用何种方法较为合理,试说明理由.【答案】(1)(2)故有的把握认为学生的学习成绩与对待学案的使用态度有关.(3)分别从善于使用学案和不善于使用学案的学生中抽取8人和2人,这样更能有效的继续调查.(1)2. 某种多面体玩具共有12个面,在其十二个面上分别标有数字1,2,3,…,12.若该玩具质地均匀,则抛掷该玩具后,任何一个数字所在的面朝上的概率均相等.为检验某批玩具是否合格,制定检验标准为:多次抛掷该玩具,并记录朝上的面上标记的数字,若各数字出现的频率的极差不超过0.05.则认为该玩具合格.(1)对某批玩具中随机抽取20件进行检验,将每个玩具各面数字出现频率的极差绘制成茎叶图(如图所示),试估计这批玩具的合格率;(2)现有该种类玩具一个,将其抛掷100次,并记录朝上的一面标记的数字,得到如下数据:1)试判定该玩具是否合格;2)将该玩具抛掷一次,记事件A :向上的面标记数字是完全平方数(能写成整数的平方形式的数,如293 ,9为完全平方数);事件B :向上的面标记的数字不超过4.试根据上表中的数据,完成以下列联表(其中A 表示A 的对立事件),并回答在犯错误的概率不超过0.01的前提下,能否认为事件A 与事件B 有关.(参考公式及数据: ()()()()()22n ad bc K a b c d a c b d -=++++, ()2 6.6350.01P K ≥=)【答案】(1)85%;(2)1)该玩具合格;2)见解析.试题解析:(1)由题意知,20个样本中,极差为0.052,0.071,0.073的三个玩具不合格,故合格率可估计为170.8520=,即这批玩具的合格率约为85%.(2)1)由数据可知,5点或9点对应最大频率0.10,4点对应最小频率0.06,故频率极差为0.040.05≤,故该玩具合格.2)根据统计数据,可得以下列联表:于是2K 的观测值()21001560151030702575k ⨯⨯-⨯=⨯⨯⨯ 010014.2857 6.6357k =≈>=, 故在犯错误的概率不超过0.01的前提下,能认为事件A 与事件B 有关.3.某城市随机抽取一年(365天)内100天的空气质量指数API 的检测数据,结果统计如下:记某企业每天由空气污染造成的经济损失(单位:元),空气质量指数为.在区间对企业没有造成经济损失;在区间对企业造成经济损失成直线模型(当为150时造成的经济损失为500元,当为200时,造成的经济损失为700元);当大于300时造成的经济损失为2000元.(1)试写出的表达式;(2)估计在本年内随机抽取一天,该天经济损失大于200元且不超过600元的概率;(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下列列联表,并判断能否有的把握认为该市本年空气重度污染与供暖有关?【答案】(1);(2);(3)有95%的把握认为空气重度污染与供暖有关.试题解析:(1).(2)设“在本年内随机抽取一天,该天经济损失大于200元且不超过600元”为事件.由,得,频数为39,所以.(3)根据以上数据得到如下列联表:的观测值.所以有95%的把握认为空气重度污染与供暖有关.【方法点睛】本题主要考查分段函数的解析式图、古典概型概率公式以及独立性检验,属于难题.独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3) 查表比较与临界值的大小关系,作统计判断.(注意:在实际问题中,独立性检验的结论也仅仅是一种数学关系,得到的结论也可能犯错误.)4. 在中学生综合素质评价某个维度的测评中,分优秀、合格、尚待改进三个等级进行学生互评.某校高一年级有男生500人,女生400人,为了了解性别对该维度测评结果的影响,采用分层抽样方法从高一年级抽取了45名学生的测评结果,并作出频数统计表如下:表一:男生表二:女生(1)从表二的非优秀学生中随机抽取2人交谈,求所选2人中恰有1人测评等级为合格的概率;列联表,并判断是否有90%的把握认为“测评结果优秀与性别有关”.(2)由表中统计数据填写下面的22参考公式: ()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:【答案】(1)5.(2)见解析.试题解析:(1)设从高一年级男生中抽出m 人,则45500500400m =+, 25m =,则从女生中抽取20人, 所以251555x =--=, 201532y =--=.表二中非优秀学生共5人,记测评等级为合格的3人为a , b , c ,尚待改进的2人为A , B ,则从这5人中任选2人的所有可能结果为(),a b , (),a c , (),b c , (),A B , (),a A , (),a B , (),b A , (),b B ,(),c A , (),c B ,共10种,设事件C 表示“从表二的非优秀学生中随机选取2人,恰有1人测评等级为合格”,则C 的结果为(),a A ,(),a B , (),b A , (),b B , (),c A , (),c B ,共6种,所以()63105P C ==,即所求概率为35. (2)22⨯列联表如下:点睛:首先要了解分层抽样的特点,按照抽取比例分层抽取即可,对于独立性检验则需熟悉列联表的写法明确公式中的每一个数值代入即可5.某医学院读书协会欲研究昼夜温差大小与患感冒人数多少之间的关系,该协会分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下频数分布直方图:该协会确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.(1)求选取的2组数据恰好是相邻两个月的频率;(2)已知选取的是1月与6月的两组数据.(i)请根据2至5月份的数据,求出就诊人数关于昼夜温差的线性回归方程;(ii)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问该协会所得线性回归方程是否理想?(参考公式:,)【答案】(1);(2)(i);(ii)是理想的.(2)(i )由数据求得,由公式求得,所以,所以关于的线性回归方程为.(ii )当时,,;同样,当时,,.所以,该协会所得线性回归方程是理想的.6.某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由); (2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价i x (单位:元/件,整数)和销量i y (单位:件)(1,2,,8i )如下表所示:①请根据下列数据计算相应的相关指数2R ,并根据计算结果,选择合适的回归模型进行拟合; ②根据所选回归模型,分析售价x 定为多少时?利润z 可以达到最大.(附:相关指数()()22121ˆ1n i i i n ii y yR y y ==-=--∑∑)【答案】(1)年度平均销售额与方案1的运作相关性强于方案2.(2)①采用回归模型211003ˆ2yx =-+进行拟合最为合适. ②40x =试题解析:(1)由等高条形图可知,年度平均销售额与方案1的运作相关性强于方案2.(2)①由已知数据可知,回归模型1200l 500ˆn 0yx =-+对应的相关指数210.6035R =; 回归模型271700ˆyx =-+对应的相关指数220.9076R =; 回归模型211003ˆ2yx =-+对应的相关指数230.9986R =.因为222321R R R >>,所以采用回归模型211003ˆ2yx =-+进行拟合最为合适. ②由(1)可知,采用方案1的运作效果较方案2好, 故年利润()211200153z x x ⎛⎫=-+- ⎪⎝⎭, ()()3040z x x '=-+-, 当()0,40x ∈时, ()211200153z x x ⎛⎫=-+- ⎪⎝⎭单调递增; 当()40,x ∈+∞时, ()211200153z x x ⎛⎫=-+- ⎪⎝⎭单调递减, 故当售价40x =时,利润达到最大.7.在“一带一路”的建设中,中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了几口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探.由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料下表:(1)在散点图中号旧井位置大致分布在一条直线附近,借助前5组数据求得回归线方程为,求,并估计的预报值; (2)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(1)中的值之差(即:)不超过10%,则使用位置最接近的已有旧井,否则在新位置打井,请判断可否使用旧井?(参考公式和计算结果:,)(3)设出油量与钻探深度的比值不低于20的勘探井称为优质井,在原有井号的井中任意勘探3口井,求恰好2口是优质井的概率.【答案】(1),的预报值为24;(2) 可以使用位置最接近的已有旧井;(3).试题解析:(1)因为,回归直线必过样本中心点,则,故回归直线方程为,当时,,即的预报值为24;(2)因为,所以,,即,,均不超过10%,因此可以使用位置最接近的已有旧井;点睛:一是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.8.参加衡水中学数学选修课的同学,对某公司的一种产品销量与价格进行统计,得到如下数据和散点图:(参考数据:)(I)根据散点图判断,与,与哪一对具有较强的线性相关性(给出判断即可,不必说明理由)?(II)根据(I)的判断结果有数据,建立关于的回归方程(方程中的系数均保留两位有效数字);(III)定价为多少元/时,年利润的预报值最大?附:对一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.【答案】(I)由散点图可知,与具有较强的线性相关性; (II); (III)定值为元/时,年利润的预报值最大.试题解析:(I)由散点图可知,与具有较强的线性相关性.(II)由题得,,,,又,则,∴线性回归方程为,则关于的回归方程为.9.在“新零售”模式的背景下,某大型零售公司咪推广线下分店,计划在S市的A区开设分店,为了确定在该区开设分店的个数,该公司对该市已开设分店听其他区的数据作了初步处理后得到下列表格.记x表示在各区开设分店的个数,y表示这个x个分店的年收入之和.(1)该公司已经过初步判断,可用线性回归模型拟合y 与x 的关系,求y 关于x 的线性回归方程ˆy bx a =+;(2)假设该公司在A 区获得的总年利润z (单位:百万元)与,x y 之间的关系为20.05 1.4z y x =--,请结合(1)中的线性回归方程,估算该公司应在A 区开设多少个分店时,才能使A 区平均每个分店的年利润最大?(参考公式: ˆy bxa =+,其中()()()1122211ˆ,ˆnni i iii i nni ii i x y nxy x x y y b a y bxx nx x x ====---===---∑∑∑∑) 【答案】(1) 0.850.6y x =+;(2) 该公司应开设4个分店时,在该区的每个分店的平均利润最大. 【解析】试题分析:(1)根据所给数据,按照公式计算回归方程中的系数即可; (2)利用(1)得利润z 与分店数x 之间的估计值,计算zx,由基本不等式可得最大值. 试题解析:(1)由表中数据和参考数据得: 4,4x y ==,()()()5521110,8.5ii i i i x x x x y y ==-=--=∑∑,∴()()()1218.50.851ˆ0niii nii x x y y bx x ==--===-∑∑,∴440.850.6ˆˆa y bx=-=-⨯=, ∴0.850.6y x =+.10.在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如表:(Ⅰ)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;(Ⅱ)用表中数据画出散点图易发现历史成绩y 与语文成绩x 具有较强的线性相关关系,求y 与x 的线性回归方程(系数精确到0.1).参考公式:回归直线方程是ˆˆˆybx a =+,其中()()121()ˆniii niix x y y b x x ==--=-∑∑, ˆˆa y bx=- 【答案】(Ⅰ)24、16.(Ⅱ) 0.624.2y x =+ 【解析】试题分析:(1)将频率试作概率,按照表中所给数据计算优秀人数即可;(2)利用计算公式分别求得ˆˆ,ba 的值即可求得回归直线方程.点睛:回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义. 根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考试题回归分析,独
立性检验
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
回归分析与独立性检验
1.高三年级267位学生参加期末考试,某班37位学生的语文成绩,数学成绩与总成绩在全年级中的排名情况如下图所示,甲、乙、丙为该班三位学生. 从这次考试成绩看,
①在甲、乙两人中,其语文成绩名次比其总成绩名次靠前的学生是 ; ②在语文和数学两个科目中,丙同学的成绩名次更靠前的科目是 .
2.根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )
A .逐年比较,2008年减少二氧化碳排放量的效果最显着
B .2007年我国治理二氧化碳排放显现成效
C .2006年以来我国二氧化碳年排放量呈减少趋势
D .2006年以来我国二氧化碳年排放量与年份正相关
3.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:
根据上表可得回归直线方程ˆˆˆy
bx a =+ ,其中ˆˆˆ0.76,b a y bx ==- ,据此估计,该社区一户收入为15万元
家庭年支出为( )]
A .万元
B .万元
C .万元
D .万元
4.在画两个变量的散点图时,下面哪个叙述是正确的
( )
A .预报变量在x 轴上,解释变量在y 轴上
B .解释变量在x 轴上,预报变量在
y 轴上
C .可以选择两个变量中任意一个变量在x 轴上
D .可以选择两个变量中任意一个变量在y
轴上
5
2004年 2005年 2006年 2007年 2008年 2009年 2010年 2011年 2012年 2013年
合计 93 314 407
( ) A .种子经过处理跟是否生病有关 B .种子经过处理跟是否生病无关 C .种子是否经过处理决定是否生病 D .以上都是错误的
6.变量x 与y 具有线性相关关系,当x 取值16,14,12,8时,通过观测得到y 的值分别为11,9,8,5,若在实际
问题中,y 的预报最大取值是10,则x 的最大取值不能超过
( )
A .16
B .17
C .15
D .12
7.在研究身高和体重的关系时,求得相关指数≈2
R ___________,可以叙述为“身高解释了64%的体重变化,而随
机误差贡献了剩余的36%”所以身高对体重的效应比随机误差的效应大得多。

8.下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图
(I )由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (II )建立y 关于t 的回归方程(系数精确到),预测2016年我国生活垃圾无害化处理量。

参考数据:
7
1
9.32i
i y
==∑,7
1
40.17i i i t y ==∑,
7
2
1
()
0.55i
i y y =-=∑,
7≈.
参考公式:相关系数1
2
2
1
1
()()
()(y
y)n
i
i
i n n
i i
i i t t y y r t t ===--=
--∑∑∑,
回归方程
y a bt =+ 中斜率和截距的最小二乘估计公式分别为:
9.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图. 根据该折线图,下列结论错误的是 A .月接待游客量逐月增加 B .年接待游客量逐年增加
C .各年的月接待游客量高峰期大致在7,8月
D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 10.为了研究某班学生的脚长x (单位:厘米)和身高y (单位:厘米)的关系,从该班随机抽取10名学生,根
据测量数据的散点图可以看出
y 与x 之间有线性相关关系,设其回归直线方程为ˆˆˆy
bx a =+.已知10
1
225i
i x
==∑,10
1
1600i i y ==∑,ˆ4b
=.该班某学生的脚长为24,据此估计其身高为 (A )160 (B )163 (C )166 (D )170
11.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100 个网箱,测量各箱水产品的产量(单位:kg )某频率分布直方图如下:
(1) 设两种养殖方法的箱产量相互独立,记A 表示事件:“旧养殖法的箱产量低于50kg, 新养殖法的箱产量不
低于50kg”,估计A 的概率;
(2) 填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
箱产量<50kg 箱产量≥50kg
旧养殖法 新养殖法
(3) 根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到)
附:。

相关文档
最新文档