初二数学一次函数练习题(附答案)

合集下载

初二数学一次函数经典试题含答案

初二数学一次函数经典试题含答案
( 1)y 与 x 成正比,且当 x=9 时, y=16; ( 2) y=kx+b 的图象经过点( 3, 2)和点( -2 , 1).
23.( 12 分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱 备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的钱数(含备用
钱)的关系如图所示,结合图象回答下列问题: ( 1)农民自带的零钱是多少? (2)降价前他每千克土豆出售的价格是多少? (3)降价后他按每千克 0.4 元将剩余土豆售完,这时他手中的钱(含备用零钱)是 问他一共带了多少千克土豆?
课堂上,李老师请学生画出他行进的路程 y?(千米)与行进时间 t (小时)的函数图象
的示意图,同学们画出的图象如图所示,你认为正确的是(

10.一次函数 y=kx+b 的图象经过点 ( 2,-1 )和( 0,3),?那么这个一次函数的解析式为 ( )
A . y=-2x+3 B . y=-3x+2 二、你能填得又快又对吗?(每小题
应点的上方. 15.已知一次函数 y=-x+a 与 y=x+b 的图象相交于点( m, 8),则 a+b=_________. 16.若一次函数 y=kx+b 交于 y?轴的负半轴, ?且 y?的值随 x?的增大而减少, ?则 k____0 ,
b______0 .(填“ >”、“ <”或“=”)
xy30
.( -2 , 1) C .( 2,0)
D .( -2 ,0)
3.下列函数中, y 是 x 的正比例函数的是( )
A . y=2x-1 B . y= x 3
C . y=2x2 D . y=-2x+1

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题含答案

八年级数学《一次函数》经典练习题一、选择题(1)当自变量x增大时,下列函数值反而减小的是()A.B.C.D.(2)对于正比例函数,下列结论正确的是()A.B.y随x的增大而增大C.D.y随x的增大而减小(3)如果函数的图像经过(-1,8)、(2,-1)两点,那么它也必经过点()A.(1,-2)B.(3,4)C.(1,2)D.(-3,4)(4)对于一次函数,若,则函数图像不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限(5)直线与y轴交点在x轴下方,则b的取值为()A.B. C. D.(6)如图所示,函数的图像可能是()(7)已知一次函数的图像经过点,且与两坐标轴围成的三角形面积是8,则这个函数的解析式是()A.B.C.或D.或(8)已知直线如图所示,要使y的值为正,自变量x必须满足()A. B. C. D.(9)下列图像中(如图所示),不可能是关于x的一次函数的图像的是()(10)对于直线,若b减少一个单位,则它的位置将()A.向左平移一个单位B.向右平移一个单位C.向下平移一个单位D.向上平移一个单位二、填空题(1)一次函数中,k、b都是_______,且,自变量x的取值范围是_________,当,b__________时,它是正比例函数.(2)若,当时,,则.(3)直线与x轴的交点是_________,与y轴的交点是__________.(4)若函数的图像过第一、二、三象限,则,这时,y随x 的增大而________.(5)直线与x轴、y轴交于A、B两点,则的面积为_________.(6)直线若经过原点,则,若直线与x轴交于点(-1,0),则.(7)直线与直线的交点为__________.(8)已知一次函数的图像如图所示,则这个一次函数的解析式为_________.(9)已知函数,当时,有.(10)已知直线上两点和,且,当时,与的大小关系式为___________.三、解答题1.已知与成正比例(其中a、b都是常数).(1)试说明y是x的一次函数;(2)如果时,;时,,求这个一次函数的解析式.2.已知三点.试判断这三点是否在同一条直线上,并说明理由.四、应用题(1)1.将长为30cm,宽为10cm的长方形的白纸,按图所示方法粘合起来,粘合部分的宽为3cm.求5张白纸粘合后的长度;(2)设x张白纸粘合后的总长度为y cm,写出y与x之间的函数关系式,并求时,y的值.2.对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在着某种函数关系.从温度计的刻度上可以看出,摄氏(℃)温度x与华氏(℉)温度y 有如下的对应关系:x(℃)…-10 0 10 20 30 …y(℉)…14 32 50 68 86 …(1)通过①描点连线;②猜测y与x之间的函数关系;③求解;④验证等几个步骤,试确定y与x之间的函数关系式;(2)某天,A市的最高气温是8℃,澳大利亚悉尼的最高气温是91℉,问这一天悉尼的最高气温比A市的最高气温高多少摄氏度(结果保留整数)?3.某同学将父母给的零用钱按每月相等的数额存放在储蓄盒内,准备捐给希望工程,盒内原有60元,2个月后盒内有钱80元.(1)求盒内钱数y(元)与存钱月数x之间的函数关系式;(2)按上述方法,该同学几个月能存够300元?参考答案一、(1)C (2)D (3)C (4)C (5)C(6)D (7)C (8)C (9)C (10)C二、(1)常数,,全体实数,,;(2)-4;(3),(0,-2);(4),增大;(5);(6);(7);(8);(9);(10).三、1.(1)因为与成正比例,所以(k是不等于0的常数),即.因为k是不等于0的常数,a、b都是常数,所以也是常数,所以y是x的一次函数;(2)因为时,;时,,所以有解得所以这个一次函数的解析式为.2.在同一条直线上,理由如下:设经过A、B两点的直线为,由,得解得所以经过A、B两点的直线为.当时,.所以在这条直线上.所以三点在同一条直线上.1.(1)5张白纸粘合后的长度为(cm);(2)(x为大于1的整数).当时,(cm).2.(1)①描点连线(略)②通过观察可猜测y是x的一次函数,③设,现将两对数值分别代入,得解得所以.④验证:将其余三对数值分别代入,得;;.结果等式均成立.所以y与x的函数关系式为:.(2)当时,,所以.而(℃),所以这一天悉尼的最高气温比A市的最高气温约高25℃.3.(1)设.因为当时,;当时,,所以解得所以;(2)当时,,所以.所以该同学24个月能存够300元.。

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。

初二数学一次函数练习题(附答案)

初二数学一次函数练习题(附答案)

初二数学一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网打出时间t(分钟)与打出费s(元)的函数关系如图3,当打出150分钟时,这两种方式费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。

八年级(初二)数学(一次函数)试卷试题附答案解析

八年级(初二)数学(一次函数)试卷试题附答案解析

一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。

八年级一次函数练习题及答案

八年级一次函数练习题及答案

八年级一次函数练习题及答案一次函数是初中数学中的重要内容之一,它在实际生活中的应用非常广泛。

下面,我将为大家提供一些八年级一次函数练习题及答案,希望能帮助大家更好地理解和掌握这一知识点。

1. 已知一次函数y = 2x + 3,求当x = 4时,y的值。

解答:将x = 4代入函数中,得到y = 2(4) + 3 = 11。

所以当x = 4时,y的值为11。

2. 已知一次函数y = 3x - 2,求当y = 10时,x的值。

解答:将y = 10代入函数中,得到10 = 3x - 2。

移项得到3x = 12,再除以3得到x = 4。

所以当y = 10时,x的值为4。

3. 已知一次函数y = -2x + 5,求函数的斜率和截距。

解答:斜率即为函数的系数,所以斜率为-2。

截距即为函数的常数项,所以截距为5。

4. 已知一次函数y = kx + 3,当x = 2时,y = 7。

求函数的斜率和截距。

解答:将x = 2和y = 7代入函数中,得到7 = 2k + 3。

移项得到2k = 4,再除以2得到k = 2。

所以函数的斜率为2,截距为3。

5. 已知一次函数经过点(1, 4)和(3, 10),求函数的表达式。

解答:设函数的表达式为y = mx + b。

将点(1, 4)代入函数中,得到4 = m(1) + b,即m + b = 4。

将点(3, 10)代入函数中,得到10 = m(3) + b,即3m + b = 10。

解这个方程组,可以得到m = 3,b = 1。

所以函数的表达式为y = 3x + 1。

通过以上的练习题,我们可以看到一次函数的特点和求解方法。

一次函数的表达式可以写成y = kx + b的形式,其中k为斜率,b为截距。

我们可以通过给定的点或已知条件来求解函数的表达式。

除了以上的练习题,我们还可以通过一些实际问题来应用一次函数的知识。

例如,假设小明每天骑自行车去上学,他发现骑行20分钟可以骑行5公里,那么他骑行1小时可以骑行多少公里呢?我们可以通过建立一次函数来解决这个问题。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案一、选择题1.已知函数y = 2x + 3,若x = 4,则y =a) 8b) 11c) 7d) 9答案:b) 112.若函数y = kx + 5,当x = 3时,y = 17,则k的值为:a) 3b) 4c) 5d) 6答案:d) 63.已知函数y = -3x + 2,若x = -2,则y =a) 4b) 8c) -2d) -8答案:a) 44.若函数y = 4x - 5,当x = -1时,y =a) -4b) 9c) -9d) 11答案:c) -9二、填空题1.函数y = 2x + 3表示一条直线,其斜率为____,截距为____。

答案:2,32.已知一次函数y = -5x + k,当x = 2时,y = 9,则k的值为____。

答案:193.已知函数y = 3x + 4,若x = -1,则y的值为____。

答案:14.函数y = -2x - 1与y轴交于点(____,0)。

答案:-0.5三、解答题1.已知函数y = 2x + 1,求:(1)当x = 3时,y的值为多少?(2)当y = 5时,求相应的x值。

解:(1)将x = 3代入函数中,得到y = 2*3 + 1 = 7。

所以当x = 3时,y的值为7。

(2)将y = 5代入函数中,得到5 = 2x + 1,解方程得到x = 2。

所以当y = 5时,相应的x值为2。

2.已知函数y = -3x + 5,求:(1)求函数与x轴和y轴的交点坐标。

(2)求函数的斜率和截距。

解:(1)当函数与x轴交点时,y = 0,代入函数得到0 = -3x + 5,解方程得到x = 5/3。

所以与x轴的交点坐标为(5/3, 0)。

当函数与y轴交点时,x = 0,代入函数得到y = 5。

所以与y轴的交点坐标为(0, 5)。

(2)已知函数y = -3x + 5,斜率为-3,截距为5。

四、应用题1.一个移动应用程序每下载一个应用,需支付固定的5元服务费和每个应用的2元费用。

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案

初二数学一次函数练习题及答案《一次函数》练习题及参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y(元)与产品数x(个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y(元)与产品数量x(个)的函数关系式;③完成250个以上产品得到的报酬y(元)与产品数量x(个)的函数关系式.答案:① (0② (150③ (x250)第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t(小时)的关系.答案: (0t30)第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t(分)的关系答案: (t0)第5题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y (cm),底边长为x(cm),则y 与x的函数关系式为______.答案:第7题. 若函数y=(m-3)xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为 .答案:. y=3n+1(n为1、2、3、4、…….)第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1km加收1元,则路程x2km时,车费y(元)与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量y(L),与工作时间x(h)之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%…………某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y(元)与其工资x(元)之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1 km加收1元,则路程x2 km时,车费y(元)与路程x(km)之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为y(cm),y与x之间的函数关系式是什么?答案:138cm,y=30x-3(x-1)=27x+3.第16题. 已知y+a与x-b成正比例(其中a、b都是常数),试说明:y是x 的一次函数答案:设y+a=k(x-b)(x0)y=kx-(a+bk)第17题. 已知y+a与x-b成正比例(其中a、b都是常数)(1)试说明y是x的一次函数;(2)如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:(1)因为y+a与x-b成正比例,所以y+a=k(x-b)(k0),即y=kx-(bk+a)因为k不等于0,a、b为常数,所以y是x的一次函数;(2)代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程S(km)与行驶时间t(h)之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x 之间的函数关系式为 .答案:y=x+39.18%x(x0)第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次第23题. 点 (填:“在”或“不在”)直线上答案:在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初二数学一次函数练习题(附答案)初二数学一次函数练习题(附答案)选择题1.已知一次函数,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。

那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) > (B) < (C) = (D)以上均有可能4.若函数( 为常数)的图象如图所示,那么当时,的取值范围是A、B、C、D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB 最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l′,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若∠ADE=∠C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,∠B=∠DEF=90°,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为.下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m≠0)和反比例函数y= (n≠0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y 轴交于正半轴,则|a―1|+ =。

8.已知,如图,一轮船在离A港10千米的P地出发,向B港匀速行驶,30分钟后离A港26千米(未到达B港),设出发x小时后,轮船离A 港y千米(未到达B港),则y与x的函数关系式为四、解答题1.某产品每件成本10元,试销阶段每件产品的日销售价(元)与产品的日销售量(件)之间的关系如下表:(元)15 20 25 30 …(件)25 20 15 10 …⑴在草稿纸上描点,观察点的颁布,建立与的恰当函数模型。

⑵要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?2.】李红和张明正在玩掷骰子游戏,两人各掷一枚骰子。

⑴当两枚骰子点数之积为奇数时,李红得3分,否则,张明得1分,这个游戏公平吗?为什么?⑵当两枚骰子的点数之和大于7时,李红得1分,否则张明得1分,这个游戏公平吗?为什么?如果不公平,请你提出一个对双方公平的意见。

3.小明子在银行存入一笔零花钱,已知这种储蓄的年利率为n 。

若设到期后的本息和(本金+利息)为y(元),存入的时间为x(年),那么(1)下列那个图像更能反映y与x之间的函数关系?从图中你能看出存入的本金是多少元?一年后的本息和是多少元?(2)根据(1)的图象,求出y于x的函数关系式(不要求写出自变量x的取值范围),并求出两年后的本息和。

4.某商场的营业员小李销售某种商品,他的月收入与他该月的销售量成一次函数关系,其图象如图所示,根据图象提供的信息,解答下列问题:(1)求出小李的个人月收入y(元)与他的月销售量x(件)( 之间的函数关系式;(2)已知小李4月份的销售量为250件,求小李4月份的收入是多少元?5、如图,在平面直角坐标系中,正方形AOCB的边长为6,O为坐标原点,边OC在x轴的正半轴上,边OA在y轴的正半轴上,E是边AB上的一点,直线EC交y轴于F,且S△FAE∶S四边形AOCE=1∶3。

⑴求出点E的坐标;⑵求直线EC的函数解析式.6如图,表示神风摩托车厂一天的销售收入与摩托车销售量的关系; 表示摩托车厂一天的销售成本与销售量的关系。

(1)写出销售收入与销售量之间的函数关系式;(2)写出销售成本与销售量之间的函数关系式;(3)当一天的销售量为多少辆时,销售收入等于销售成本;(4)当一天的销售超过多少辆时,工厂才能获利?(利润=收入-成本)7.在“五一黄金周”期间,小明和他的父母坐游船从甲地到乙地观光,在售票大厅看到表(一),爸爸对小明说:“我来考考你,你能知道里程与票价之间有何关系吗?”小明点了点头说:“里程与票价是一次函数关系,具体是……”.在游船上,他注意到表(二),思考一下,对爸爸说:“若游船在静水中的速度不变,那么我还能算出它的速度和水流速度.”爸爸说:“你真聪明!”亲爱的同学,你知道小明是如何求出的吗?请你和小明一起求出:(1)票价(元)与里程(千米)的函数关系式;(2)游船在静水中的速度和水流速度.里程(千米) 票价(元)甲→乙16 38甲→丙20 46甲→丁10 26… … …出发时间到达时间甲→乙8:00 9:00乙→甲9:20 10:00甲→乙10:20 11:20… … …表(一)表(二)8.教室里放有一台饮水机(如图),饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求出饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式;(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,求出在课间10分钟内班级中最多有多少个同学能及时接完水?9.某出版社出版一种适合中学生阅读的科普读物,若该读物首次出版印刷的印数不少于5000册时,投入的成本与印数间的相应数据如下:印数x(册) 5000 8000 10000 15000 ……成本y(元) 28500 36000 41000 53500 ……(1)经过对上表中数据的探究,发现这种读物的投入成本y(元)是印数x(册)的一次函数,求这个一次函数的解析式(不要求写出x的取值范围);(2)如果出版社投入成本48000元,那么能印该读物多少册?10.阅读:我们知道,在数轴上,x=1表示一个点,而在平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①.观察图①可以得出:直线=1与直线y=2x+1的交点P的坐标(1,3)就是方程组的解,所以这个方程组的解为在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它左侧的部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它下方的部分,如图③。

回答下列问题:(1)在直角坐标系中,用作图象的方法求出方程组的解;(2)用阴影表示,所围成的区域。

11一天上行6点钟,汪老师从学校出发,乘车上市里开会,8点准时到会场,中午12点钟回到学校,他这一段时间内的行程S(km)(即离开学校的距离)与时间(h)的关系可用图4中的折线表示,根据图4提供的有关信息,解答下列问题:(1)开会地点离学校多远?(2)求出汪老师在返校途中路程S(km)与时间t(h)的函数关系式;(3)请你用一段简短的话,对汪老师从上午6点到中午12点的活动情况进行描述.12.已知正比例函数y=kx与反比例函数y= 的图象都过A(m,,1)点,求此正比例函数解析式及另一个交点的坐标.13.小明暑假到华东第一高峰—黄岗山(位于武夷山境内)旅游,导游提醒大家上山要多带一件衣服,并介绍当地山区气温会随海拔高度的增加而下降.沿途小明利用随身带的登山表(具有测定当前位置高度和气温等功能)测得以下数据:海拔高度x米400 500 600 700 …气温y(0C) 28.6 28.0 27.4 26.8 …(1)以海拔高度为x轴,气温为y轴,根据上表提供的数据在下列直角坐标系中描点;(2)观察(1)中所苗点的位置关系,猜想y与x之间的函数关系,求出所猜想的函数表达式,并根据表中提供的数据验证你的猜想;(3)如果小明到达山顶时,只告诉你山顶的气温为18.1,你能计算出黄岗山的海拔高度大约是多少米吗?13.在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y(cm)与燃烧时间x(h)的关系如图12所示。

请根据图象所提供的信息解答下列问题:⑴甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是;⑵分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;⑶当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?14.如图,A、B两点的坐标分别是(x1,0)、(x2,O),其中x1、x2是关于x的方程x2+2x+m-3=O的两根,且x1<0(1)求m的取值范围;(2)设点C在y轴的正半轴上,∠ACB=90°,∠CAB=30°,求m的值;(3)在上述条件下,若点D在第二象限,△DAB≌△CBA,求出直线AD的函数解析式:参考答案一、选择题1.B2.B3.A4.D5.B6.A7.A8.B9.C10.D11.C12.A13.C二、填空题1. 6.2.3.4.答案不唯一;如5.甲(或电动自行车)2乙(或汽车)218906.107.18.三、解答题1、⑴经观察发现各点分布在一条直线上∴设(k≠0)用待定系数法求得⑵设日销售利润为z则=当x=25时,z最大为225每件产品的销售价定为25元时,日销售利润最大为225元2、⑴这个游戏对双方公平∵P(奇)= ,P(偶)=3P(奇)=P(偶),∴这个游戏对双方公平⑵不公平列表:1 2 3 4 5 61 2 3 4 5 6 72 3 4 5 6 7 83 4 5 6 7 8 94 5 6 7 8 9 105 6 7 8 9 10 116 7 8 9 10 11 12得:P(和大于7)= ,P(和小于或等于7)=李红和张明得分的概率不等,∴这个游戏对双方不公平3、(1)图16能反映y与x之间的函数关系从图中可以看出存入的本金是100元一年后的本息和是102.25元(2)设y与x的关系式为:y=100n x+100 把(1,102.25)代入上式,得n=2.25∴y=2.25x+100当x=2时,y=2.25*2+100=104.5(元)4、(1)由题意可设与的函数关系式为:由图象可知:当时,,时,有解得,与的函数关系式为:(2)当时,(元)5、⑴∵S△FAE∶S四边形AOCE=1∶3,∴S△FAE∶S△FOC=1∶4,∵四边形AOCB是正方形,∴AB∥OC,∴△FAE∽△FOC,∴AE∶OC=1∶2,∵OA=OC=6,∴AE=3,∴点E的坐标是(3,6)⑵设直线EC的解析式是y=kx+b,∵直线y=kx+b过E(3,6)和C(6,0)∴3k+b=66k+b=0 ,解得:k=-2b=12∴直线EC的解析式是y=-2x+126、1)y=x(2)设∵直线过(0,2)、(4,4)两点∴又∴∴(3)由图像知,当时,销售收入等于销售成本或∴(4)由图像知:当时,工厂才能获利或时,即时,才能获利。

相关文档
最新文档