初二数学一次函数习题及答案详解(一).docx
八年级一次函数练习题及答案

八年级一次函数练习题及答案八年级一次函数练习题及答案一次函数是初中数学中的重要内容之一,也是学生们在数学学习过程中需要掌握的知识点。
通过练习一次函数的题目,可以帮助学生更好地理解和掌握一次函数的概念和性质。
下面将给大家提供一些八年级一次函数的练习题及答案,供大家参考。
题目一:已知函数y=2x+3,求当x=5时,函数的值y为多少?解答:将x=5代入函数中,得到y=2(5)+3=13。
所以当x=5时,函数的值y为13。
题目二:已知函数y=3x-2,求当y=7时,函数的自变量x为多少?解答:将y=7代入函数中,得到7=3x-2。
解这个方程,可以得到x=3。
所以当y=7时,函数的自变量x为3。
题目三:已知函数y=4x-5,求函数的图象与y轴的交点坐标。
解答:当函数与y轴的交点坐标为(x,0)时,代入函数中可以得到0=4x-5。
解这个方程,可以得到x=5/4。
所以函数的图象与y轴的交点坐标为(5/4,0)。
题目四:已知函数y=-2x+6,求函数的图象与x轴的交点坐标。
解答:当函数与x轴的交点坐标为(0,y)时,代入函数中可以得到y=-2(0)+6=6。
所以函数的图象与x轴的交点坐标为(0,6)。
题目五:已知函数y=3x+2和函数y=-x+4,求这两个函数的交点坐标。
解答:将这两个函数相等,得到3x+2=-x+4。
解这个方程,可以得到x=1。
将x=1代入其中一个函数中,可以得到y=3(1)+2=5。
所以这两个函数的交点坐标为(1,5)。
通过以上的练习题,我们可以看到一次函数的基本形式为y=kx+b,其中k为斜率,b为截距。
通过计算和解方程,可以求得函数在不同条件下的值和交点坐标。
掌握了一次函数的基本性质和运算规则,我们可以更好地理解和应用一次函数。
除了以上的练习题,还有许多其他类型的一次函数题目,如求函数的定义域、值域、最值等。
在学习中,我们可以通过大量的练习来巩固和提高对一次函数的理解和应用能力。
同时,也可以通过实际问题来应用一次函数,如通过函数来描述物体的运动、经济问题等。
初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.儿童受伤,小红爸爸的公司急需用车,但又不准备买车,公司准备和一个个体车主或一家出租车公司签订月租车合同,设汽车每月行驶x千米,个体车主收费为y1元,出租车公司收费y2元,观察图象可知,当x_________时,选用个体车主较合算.【答案】>1800.【解析】根据图象可以得到当x>1800千米时,y1<y2,则选用个体车较合算.故答案是>1800.【考点】一次函数的应用.2.与直线y=2x+1关于x轴对称的直线是()A.y="-2x+1"B.y=-2x-1C.D.【答案】B.【解析】∵直线y=f(x)关于x对称的直线方程为y=-f(x),∴直线y=2x+1关于x对称的直线方程为:-y=2x+1,即y=-2x-1.故选B.【考点】一次函数图象与几何变换.3.对于函数y=﹣5x+1,下列结论:①它的图象必经过点(﹣1,5)②它的图象经过第一、二、三象限③当x>1时,y<0④y的值随x值的增大而增大,其中正确的个数是()A.0B.1C.2D.3【答案】B.【解析】∵当x=-1时,y=-5×(-1)+1=-6≠5,∴此点不在一次函数的图象上,故①错误;∵k=-5<0,b=1>0,∴此函数的图象经过一、二、四象限,故②错误;∵x=1时,y=-5×1+1=-4,又k=-5<0,∴y随x的增大而减小,∴当x>1时,y<-4,则y<0,故③正确,④错误.综上所述,正确的只有:③ 故选B .【考点】一次函数的性质.4. A 城有肥料300吨,B 城有肥料200吨,现要把这些肥料全部运往甲,乙两乡,从A 城往甲,乙两乡运肥料的费用分别为每吨20元和25元;从B 城往甲,乙两乡运肥料的费用分别为每吨25元和15元.现甲乡需要肥料260吨,乙乡需要肥料240吨.设从A 城运往甲乡的肥料为x 吨. (1)请你填空完成下表中的每一空:(3)怎样调运化肥,可使总运费最少?最少运费是多少?【答案】(1)填空见下表;(2)y==-15x+13100;(3) A 城运往甲乡的化肥为260吨,A 城运往乙乡的化肥为40吨,B 城运往甲乡的化肥为20吨,B 城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【解析】(1)根据A 城运往甲乡的化肥为x 吨,则可得A 城运往乙乡的化肥为(300-x )吨,B 城运往甲乡的化肥为(260-x )吨,B 城运往乙乡的化肥为[240-(300-x )]吨; (2)根据(1)中所求以及每吨运费从而可得出y 与x 大的函数关系; (2)x 可取60至260之间的任何数,利用函数增减性求出即可. 试题解析:(1)填表如下:(2)根据题意得出:y=20x+25(300-x )+25(260-x )+15[240-(300-x )]=-15x+13100; (3)因为y=-15x+13100,y 随x 的增大而减小,根据题意可得:,解得:60≤x≤260,所以当x=260时,y最小,此时y=9200元.此时的方案为:A城运往甲乡的化肥为260吨,A城运往乙乡的化肥为40吨,B城运往甲乡的化肥为20吨,B城运往乙乡的化肥为200吨,使总运费最少,最少为9200元【考点】1.一次函数的应用;2.一元一次不等式组的应用.5.两个全等的直角三角形重叠放在直线上,如图14-1,AB=6cm,BC=8cm,∠ABC=90°,将Rt△ABC在直线上向左平移,使点C从F点向E点移动,如图14-2所示.(1)求证:四边形ABED是矩形;请说明怎样移动Rt△ABC,使得四边形ABED是正方形?(2)求证:四边形ACFD是平行四边形;说明如何移动Rt△ABC,使得四边形ACFD为菱形?(3)若Rt△ABC向左移动的速度是1cm/s,设移动时间为t秒,四边形ABFD的面积为Scm.求s随t变化的函数关系式.【答案】(1)证明见解析;(2)证明见解析;(3)S=3t2+24.【解析】(1)四边形ACFD为Rt△ABC平移形成的,推出AD∥BE,AB∥DE,∠ABE=90°,根据矩形的判定得出即可;根据正方形的判定得出即可;(2)根据平移得出AD∥CF,AC∥DF,根据平行四边形的判定得出即可;根据菱形的判定得出即可;(3)根据平行四边形的性质得出AD=CF,求出BF,根据梯形的面积公式求出即可.试题解析:(1)证明:∵Rt△ABC从Rt△DEF位置平移得出图2,∴AD∥BE,AB∥DE,∠ABE=90°,∴四边形ABED是矩形;当Rt△ABC向左平移6cm时,四边形ABED是正方形;(2)证明:∵四边形ACFD为Rt△ABC平移形成的,∴AD∥CF,AC∥DF,∴四边形ACFD为平行四边形,在Rt△ABC中,由勾股定理得:AC==10cm,即当Rt△ABC向左平移10cm时,四边形ACFD为菱形;(3)解:分为以上图形中的三种情况,∵由(2)知:四边形ACFD为平行四边形,∴AD=CF=1s×tcm/s=tcm,∴BF=(8+t)cm,∵四边形ABFD的面积为Scm2,∴三种情况的四边形ABFD的面积S=(AD+BF)×AB=•(t+8+t)•6,S=3t2+24,即三种情况S随t变化的函数关系式都是S=3t2+24.【考点】几何变换综合题.6.甲、乙两地之间有一条笔直的公路L,小明从甲地出发沿公路L步行前往乙地,同时小亮从乙地出发沿公路L骑自行车前往甲地,小亮到达甲地停留一段时间,按原路原速返回,追上小明后(米)与行走的时间为x(分两人一起步行到乙地.如图,线段OA表示小明与甲地的距离为y1(米)与行走的时间为x(分钟)钟)之间的函数关系;折线BCDEA表示小亮与甲地的距离为y2之间的函数关系.请根据图像解答下列问题:(1)小明步行的速度是米/分钟,小亮骑自行车的速度米/分钟;(2)图中点F坐标是(,)、点E坐标是(,);(3)求y1、y2与x之间的函数关系式;(4)请直接写出小亮从乙地出发再回到乙地过程中,经过几分钟与小明相距300米?【答案】(1)50,200;(2)8,400;32,1600;(3)y1=50x,y2=﹣200x+2000;(4)经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【解析】(1)根据图象可知小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)(3)分别设小明、小亮与甲地的距离为y1(米)、y2(米)与x(分钟)之间的函数关系式为y1=k1x,y2=k2x+b,由待定系数法根据图象就可以求出解析式;再进一步求得交点的坐标,得出点F、E的坐标即可;(4)分追击问题与相遇的过程中小亮与小明相距300米探讨得出答案即可.试题解析:(1)小明步行的速度是2000÷40=50米/分钟,小亮骑自行车的速度2000÷10=200米/分钟;(2)设小明与甲地的距离为y1(米)与x(分钟)之间的函数关系式为y1=k1x,代入点(40,2000)得:2000=40k1,解得k1=50,所以y1=50x,设小亮与甲地的距离为y2(米)与x(分钟)之间的函数关系式为y2=k2x+b,则代入点(0,2000)和(10,0)得,所以yBC=﹣200x+2000,由图可知24分钟时两人的距离为:S=24×50=1200,小亮从甲地追上小明的时间为24×50÷(200﹣50)=8分钟,也就是32分钟时为0,则y1=50x=1600,则点E坐标为(32,1600);由题意得,解得,所以图中点F坐标是(8,400);(3)由(2)可知y1=50x,yBC=﹣200x+2000(0≤x≤10),设S与x之间的函数关系式为:S=kx+b,由题意,,解得:,∴S=﹣150x+4800,即yED=﹣150x+4800(24≤x≤32);(4)当0≤x≤10时,(2000﹣300)÷(50+200)=6.8(分钟)当8≤x≤10,300÷(50+200)+8=9.2(分钟)当24≤x≤32,则50x﹣(﹣150x+4800)=300,解得x=25.5(分钟)答:小亮从乙地出发再回到乙地过程中,经过6.8分钟,9.2分钟,25.5分钟时与小明相距300米.【考点】一次函数的应用.7.如图,函数y=ax﹣1的图象过点(1,2),则不等式ax﹣1>2的解集是()A.x<1B.x>1C.x<2D.x>2【答案】B【解析】先把点(1,2)代入y=ax﹣1,求出a的值,然后解不等式ax﹣1>2即可.【考点】一次函数与一元一次不等式.8.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是()A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多【答案】B.【解析】结合图象可知:两人同时出发,甲比乙先到达终点,甲的速度比乙的速度快,故选B.【考点】函数的图象.9.一次函数的大致图象是()【答案】A.【解析】主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b <0,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.本题中因为a的取值不明确,故应分两种情况讨论,找出符合任一条件的选项即可.当a>0时,直线经过一,三,四象限,选项A正确;当a<0时,直线经过一,二,四象限,A、B、C、D均不符合此条件.故选A.【考点】一次函数的图象性质.10.某食品加工厂需要一批食品包装盒,供应这种包装盒有两种方案可供选择:方案1:从包装盒加工厂直接购买,购买所需的费用y1与包装盒数x满足如图的函数关系。
精选-初二数学一次函数练习题(附答案)-word文档

初二数学一次函数练习题(附答案)查字典数学网小编为大家整理了初二数学一次函数练习题(附答案),希望能对大家的学习带来帮助!一次函数的图象和性质选择题1.已知一次函数 ,若随着的增大而减小,则该函数图象经过:(A)第一,二,三象限(B)第一,二,四象限(C)第二,三,四象限(D)第一,三,四象限2.某市的出租车的收费标准如下:3千米以内的收费6元;3千米到10千米部分每千米加收1.3元;10千米以上的部分每千米加收1.9元。
那么出租车收费y(元)与行驶的路程x(千米)之间的函数关系用图象表示为3.阻值为和的两个电阻,其两端电压关于电流强度的函数图象如图,则阻值(A) (B) (C) = (D)以上均有可能4.若函数 ( 为常数)的图象如图所示,那么当时,的取值范围是A、 B、 C、 D、5.下列函数中,一次函数是().(A) (B) (C) (D)6.一次函数y=x+1的图象在().(A)第一、二、三象限(B)第一、三、四象限(C)第一、二、四象限(D)第二、三、四象限7.将直线y=2x向上平移两个单位,所得的直线是A.y=2x+2B.y=2x-2C.y=2(x-2)D.y=2(x+2)8.如图,已知点A的坐标为(1,0),点B在直线上运动,当线段AB最短时,点B的坐标为A.(0,0)B.C.D.9.如图,把直线l沿x轴正方向向右平移2个单位得到直线l,则直线l/的解析式为A.y=2x+4B.y=-2x+2C.y=2x-4D.y=-2x-210.直线y=kx+1一定经过点()A.(1,0)B.(1,k)C.(0,k)D.(0,1)11.如图,在△ABC中,点D在AB上,点E在AC上,若ADE=C,且AB=5,AC=4,AD=x,AE=y,则y与x的关系式是()A.y=5xB.y= xC.y= xD.y= x12.下列函数中,是正比例函数的为A.y=B.y=C.y=5x-3D.y=6x2-2x-113如图,△ABC和△DEF是两个形状大小完全相同的等腰直角三角形,DEF=90,点B、C、E、F在同一直线上.现从点C、E重合的位置出发,让△ABC在直线EF上向右作匀速运动,而△DEF的位置不动.设两个三角形重合部分的面积为,运动的距离为 .下面表示与的函数关系式的图象大致是()三、填空题1.若正比例函数y=mx(m0)和反比例函数y= (n0)的图象都经过点(2,3),则m=______,n=_________.2.如果函数,那么3.点A(2,4)在正比例函数的图象上,这个正比例函数的解析式是4.若函数的图象经过点(1,2),则函数的表达式可能是(写出一个即可).5.如图,表示甲骑电动自行车和乙驾驶汽车均行驶90km的过程中,行使的路程与经过的时间之间的函数关系.请根据图象填空:出发的早,早了小时,先到达,先到小时,电动自行车的速度为km/h,汽车的速度为km/h.6.某电信公司推出手机两种收费方式:A种方式是月租20元,B种方式是月租0元.一个月的本地网内打出电话时间t(分钟)与打出电话费s(元)的函数关系如图3,当打出电话150分钟时,这两种方式电话费相差元.7.若一次函数y=ax+1―a中,y随x的增大而增大,且它的图像与y轴交于正半轴,则|a―1|+ =。
初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.(2013河北)如图,A(0,1),M(3,2),N(4,4).动点P从点A出发,沿y轴以每秒1个单位长度的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为t 秒.(1)当t=3时,求l的解析式;(2)若点M,N位于l的异侧,确定t的取值范围;(3)直接写出t为何值时,点M关于l的对称点落在坐标轴上.【答案】(1)y=-x+4 (2)4<t<7 (3)t=1【解析】解:(1)直线y=-x+b交y轴于点P(0,b),由题意,得b>0,t≥0,b=1+t.当t=3时,b=4,∴y=-x+4.(2)当直线y=-x+b过点M(3,2)时,2=-3+b,解得b=5.∵b=1+t,∴5=1+t,∴t=4.当直线y=-x+b过点N(4,4)时,4=-4+b,解得b=8.∵b=1+t,∴8=1+t,∴t=7.∴当点M,N位于l的异侧时,4<t<7.(3)t=1时,落在y轴上;t=2时,落在x轴上.2.如图,在平面直角坐标系xOy中,直线y=x+1与交于点,分别交x轴于点B和点C.(1)求点B、C的坐标;(2)求△ABC的面积.【答案】见解析【解析】(1)当y=0时,由x+1=0,解得x=-1,所以点B的坐标是(-1,0).当y=0时,由,解得x=4,所以点C的坐标是(4,0).(2)因为BC=4-(-1)=5,点A到x轴的距离为,所以.3.如图所示,利用函数图象回答下列问题:(1)方程组的解为________.(2)不等式2x>-x+3的解集为________.【答案】(1) (2)x>1【解析】(1)直线y=2x与x+y=3的交点坐标即为方程组的解.(2)不等式2x>-x+3的解集即为直线y=2x在直线y=-x+3上方时所对应的x的取值集合.4. (2014湖北荆门)如图,直线y1=x+b与y2=kx-1相交于点P,点P的横坐标为-1,则关于x的不等式x+b>kx-1的解集在数轴上表示正确的是( )A.B.C.D.【答案】A【解析】从图象上可以看出当x>-1时,直线y1=x+b在直线y2=kx-1的上方,所以不等式x+b>kx-1的解集是x>-1.5.用画函数图象的方法解不等式3x+2>2x-1.【答案】解法一:原不等式可化为x+3>0.画出函数y=x+3的图象(如图1所示).由图象可以看出:当x>-3时,这条直线上的点在x轴上方,即此时y>0.∴不等式3x+2>2x-1的解集为x>-3.解法二:在同一直角坐标系中分别画出函数y=3x+2与函数y=2x-1的图象(如图2所示),可以看出,它们交点的横坐标为-3.当x>-3时,对于同一个x值,直线y=3x+2上的点总在直线y=2x-1上相应点的上方,这时3x+2>2x-1,故不等式的解集为x>-3.【解析】从函数角度看不等式,画出函数的图象,观察图象即可求出不等式的解集.6.如图,已知函数y=ax+b和y=kx的图象交于点P,则根据图象可得关于x、y的二元一次方程组的解是________.【答案】【解析】由图象可知:点P(-4,-2)是两直线的交点,因此(-4,-2)既满足解析式y=ax+b,也满足解析式y=kx,也就是说,是二元一次方程y=ax+b和y=kx的公共解,从而得出的解是7.已知Z市某种生活必需品的年需求量y1(万件)、供应量y2(万件)与价格x(元/件)在一定范围内分别近似满足下列函数解析式:y1=-4x+190,y2=5x-170.当y1=y2时,称该商品的价格为稳定价格,需求量为稳定需求量;当y1<y2时,称该商品的供求关系为供过于求;当y1>y2时,称该商品的供求关系为供不应求.(1)求该商品的稳定价格和稳定需求量.(2)当该商品的价格为45元/件时,该商品的供求关系如何?【答案】(1)40元/件 30件(2)供过于求【解析】(1)当y1=y2时,-4x+190=5x-170,解得x=40.当x=40时,y1=-4×40+190=30.答:稳定价格为40元/件,稳定需求量为30件.(2)当x=45时,y1=-4×45+190=10,y2=5×45-170=55.因为y1<y2,所以供过于求.8.(2013黔东南州)直线y=-2x+m与直线y=2x-1的交点在第四象限,则m的取值范围是()A.m>-1B.m<1C.-1<m<1D.-1≤m≤1【答案】C【解析】联立两直线解析式求出交点坐标,再根据交点在第四象限列出不等式组求解即可.由解得∵交点在第四象限,∴解不等式①,得m>-1,解不等式②,得m<1,∴m的取值范围是-1<m<1.故选C.9.(2013武汉)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.【答案】【解析】解:∵直线y=2x+b经过点(3,5),∴5=2×3+b,∴b=-1.故不等式2x+b≥0即2x-1≥0,解得.10.(2013衢州)“五一”假期,某火车客运站旅客流量不断增大,旅客往往需要长时间排队等候检票.经调查发现,在车站开始检票时,有640人排队检票.检票开始后,仍有旅客继续前来排队检票进站.设旅客按固定的速度增加,检票口检票的速度也是固定的.检票时,每分钟候车室新增排队检票进站16人,每分钟每个检票口检票14人.已知检票的前a分钟只开放了两个检票口.某一天候车室排队等候检票的人数y(人)与检票时间x(分)之间的关系如图所示.(1)求a的值.(2)求检票到第20分钟时,候车室排队等候检票的旅客人数.(3)若要在开始检票后15分钟内让所有排队的旅客都能检票进站,以便后来到站的旅客随到随检,问:检票一开始至少需要同时开放几个检票口?【答案】(1)10 (2)260 (3)5【解析】解:(1)由图象知,640+16a-2×14a=520,∴a=10.(2)设当10≤x≤30时,y与x之间的函数关系式为y=kx+b(k≠0),由题意得解得∴y=-26x+780.当x=20时,y=260,即检票到第20分钟时,候车室排队等候检票的旅客有260人.(3)设需同时开放n个检票口,则由题意知14n×15≥640+16×15,解得,∵n为整数,∴n=5.答:至少需要同时开放5个检票口.11.如图所示,设函数y=x+4的图象与y轴交于A点,函数y=-3x-6的图象与y轴交于B点,两个函数的图象交于点C.(1)求经过线段AB的中点D及点C的直线的解析式;(2)根据图象回答:当x取什么值时,y=-3x-6的值小于y=x+4的值?【答案】见解析【解析】(1)由题意,得解得,所以C点坐标是.在y=x+4中,令x=0,得y=4,所以A点的坐标是(0,4),在y=-3x-6中,令x=0,得y=-6,点B的坐标为(0,-6),线段AB的中点D的坐标为(0,-1).设直线CD的解析式为y=kx+b(k≠0),把C,D(0,-1)的坐标代入y=kx+b得解得因此,过C,D两点的直线的解析式为y=-x-1.(2)由图象可以看出,当时,x+4>-3x-6,即y=-3x-6的值小于y=x+4的值.12.已知直线y=x-3与y=2x+2的交点坐标为(-5,-8),则方程组的解是________.【答案】【解析】两直线的交点坐标(-5,-8)就是方程组的解.13.(2013四川成都)已知点(3,5)在直线y=ax+b(a,b为常数,且a≠0)上,则的值为________.【答案】【解析】将点(3,5)的坐标代入y=ax+b得,5=3a+b,即b-5=-3a,∴.14.(2013绥化)某地发生地震,某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组所走路程y(千米)、y甲(千米)与时间x(时)之间的函数关系对应的图象.请根据图象所提供的信息,解决下列问题:乙(1)由于汽车发生故障,甲组在途中停留了________小时.(2)甲组的汽车排除故障后,立即提速赶往灾区.请问:甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图象所表示的走法是否符合约定?【答案】解:(1)1.9=kx+b.(2)设直线EF的解析式为y乙∵点E(1.25,0)、点F(7.25,480)均在直线EF上,∴解得∴直线EF的解析式是y乙=80x-100.∵点C在直线EF上,且点C的横坐标为6,∴点C的纵坐标为80×6-100=380,∴点C的坐标是(6,380).设直线BD的解析式为y甲=mx+n.∵点C(6,380)、点D(7,480)在直线BD上,∴解得.∴直线BD的解析式y甲=100x-220.∵B点在直线BD上且点B的横坐标为4.9,∴点B的纵坐标为100×4.9-220=270,∴甲组在排除故障时,距出发点的路程是270千米.(3)由图象可知:甲、乙两组第一次相遇后,在B处,乙超过甲最远,在D处,甲超过乙最远.在点B处,有y乙-y甲=80×4.9-100-(100×4.9-220)=22,22千米<25千米,在点D处,有y甲-y乙=100×7-220-(80×7-100)=20,20千米<25千米.∴按图象所表示的走法符合约定.【解析】(1)由于线段AB与x轴平行,故自3时到4.9时这段时间内甲组停留在途中,所以停留的时间为1.9时;(2)观察图象可知点B的纵坐标就是甲组的汽车在排除故障时距出发点的路程的千米数,所以求得点B的坐标是解答(2)题的关键,这就需要求得直线EF和直线BD的解析式,而EF过点(1.25,0),(7.25,480),利用这两点的坐标即可求出该直线的解析式,然后令x=6,即可求出点C的纵坐标,又因点D(7,480),这样就可求出CD即BD的解析式,从而求出B点的坐标;(3)由图象可知:甲、乙两组第一次相遇后在B和D相距最远,在点B处时,x=4.9,求出此时的y乙-y甲,在点D有x=7,也求出此时的y甲-y乙,分别同25比较即可.15. (2014湖南娄底)一次函数y=kx-k(k<0)的图象大致是( ) A.B.C.D.【答案】A【解析】∵k<0,∴-k>0,∴一次函数y=kx-k(k<0)的图象经过第一、二、四象限,故选A.16. (2014山东东营)直线y=-x+1经过的象限是( )A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限【答案】B【解析】因k=-1<0,所以y随x的增大而减小,又因为b=1,所以直线与y轴的交点在y轴正半轴上,所以直线y=-x+1经过第一、二、四象限.17.在同一平面直角坐标系中画出下列函数的图象.(1)y=2x与y=2x+3;(2)y=2x+1与.【答案】(1)列表:(2)列表:描点、连线,图象如图②所示.【解析】所给函数的自变量x可以是任意实数,列表表示两组对应值,描出两个点,连成直线即可.18.(2013绍兴)图是我国古代计时器“漏壶”的示意图,在壶内盛一定量的水,水从壶底的小孔漏出,壶壁内画有刻度,人们根据壶中水面的位置计时,用x表示时间,y图表示壶底到水面的高度,则y与x之间的函数的图象是()A.B.C.D.【答案】C【解析】由题意知,开始时,壶内盛一定量的水,所以y的初始位置应该大于0,可以排除A、B;由于漏壶漏水的速度不变,所以所对应的函数应该是一次函数,可以排除D选项.19.有下列函数:①y=-8x,②,③y=8x2,④y=8x+1,⑤.其中是一次函数的有()A.0个B.1个C.2个D.3个【答案】D【解析】题中所给函数是一次函数的有①④⑤,共3个.20.如图所示,直线l沿x轴正方向向右平移2个单位,得到直线l′,则直线l′的解析式为()A.y=2x+4B.y=-2x+4C.y=2x-4D.y=-2x-2【解析】由图知直线l的解析式为y=2x,将l向右平移2个单位后所得直线的解析式为y=2x+b,图象过点(2,0),所以b=-4,故y=2x-4.21.(2013遵义)P1(x1,y1),P2(x2,y2)是正比例函数图象上的两点,下列判断中正确的是()A.y1>y2B.y1<y2C.当x1<x2时,y1<y2D.当x1<x2时,y1>y2【答案】D【解析】根据正比例函数图象的性质“当k<0时,y随x的增大而减小”即可求解.∵,,∴y随x的增大而减小.故选D.22.当m________时,正比例函数y=(1-m)x的图象过二、四象限.【答案】>1【解析】由题意得1-m<0,解得m>1.23.(2013广东珠海)已知函数y=3x的图象经过点A(-1,y1),点B(-2,y2),则y 1________y2(填“>”“<”或“=”).【答案】>【解析】分别把点A(-1,y1),点B(-2,y2)的坐标代入函数y=3x,求出点y1,y2的值,并比较出其大小即可.∵点A(-1,y1),点B(-2,y2)是函数y=3x的图象上的点,∴y1=-3,y2=-6,∵-3>-6,∴y1>y2.24.一个正比例函数的图象过点(2,-3),它的表达式为( )A.B.C.D.【答案】A【解析】设正比例函数的解析式为y=kx(k≠0),将(2,-3)代入,得-3=2k,所以.25. (2014陕西)若点A(-2,m)在正比例函数的图象上,则m的值是( )A.B.C.1D.-1【解析】将(-2,m)代入中,得m=1,故选C.26. (2010广西玉林、防城港)对于函数y=k2x(k是常数,k≠0)的图象,下列说法不正确的是( ) A.是一条直线B.过点(,k)C.经过一、三象限或二、四象限D.y随着x的增大而增大【答案】C【解析】y=k2x是正比例函数,且系数为正数,故图象是一条经过第一、三象限的直线,y随x的增大而增大.当时,y=k.27. (2014云南)写出一个图象经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):________.【答案】y=3x(答案不唯一)【解析】对于正比例函数y=kx(k≠0),只要k>0,其图象都经过第一、三象限,所以答案不唯一,如y=3x.28.根据要求,解答下列问题:(1)已知直线l1的函数表达式为y=x,请直接写出过原点且与l1垂直的直线l2的函数表达式;(2)①如图,过原点的直线l3向上的方向与x轴的正方向所成的角为30°,求直线l3的函数表达式;②若过原点的直线l4向上的方向与y轴的正方向所成的角为30°,求直线l4的函数表达式;(3)分别观察(1)、(2)中的两个函数表达式,请猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数之间有何关系.请根据猜想结论直接写出过原点且与直线垂直的直线l5的函数表达式.【答案】见解析【解析】(1)y=-x.(2)①如图,在直线l3上任取一点M,作MN⊥x轴,垂足为N.设MN的长为1,∵∠MON=30°,∴OM=2,.设直线l3的函数表达式为y=kx(k≠0),把(,1)代入y=kx,得,∴.∴直线l3的两数表达式为.②如图,作出直线l4,且在l4上任取一点P,使OP=OM,作PQ⊥y轴于Q,由∠POQ=30°,PO=2,得PQ=1,∴,设直线l4的函数表达式为y=k'x(k'≠0),把(-1,)代入y=k'x,得,∴.∴直线l4的函数表达式为.(3)猜想:当两直线互相垂直时,它们的函数表达式中自变量的系数互为负倒数,即两系数的乘积等于-1.由猜想得过原点且与直线垂直的直线l的函数表达式为y=5x.529.已知正比例函数y=(3k-1)x的图象经过第一、三象限,则k的取值范围是()A.k>0B.k<0C.D.【答案】D【解析】由正比例函数y=(3k-1)x的图象经过第一、三象限,得比例系数3k-1>0,解得,故选D.30.已知y-3与x成正比例,当x=2时,y=7,求y与x之间的函数解析式.【答案】∵y-3与x成正比例,∴设y-3=kx(k≠0).∵当x=2时,y=7,∴7-3=k·2,解得k=2.∴y与x的函数解析式为y=2x+3.【解析】把“y-3”当作“y=kx”里面的y,设函数解析式求解.。
八年级(初二)数学(一次函数)试卷试题附答案解析

一、单选题(共10题;共分)1.下列各曲线中,不表示y是x的函数的是()A. B. C. D.2.函数的图象一定经过点()A. (3,5)B. (-2,3)C. (2,7)D. (4,10)3.y=kx+(k-3)的图象不可能是()A. B. C. D.4.已知一次函数y=kx+b的图象如图,则k、b的符号是()A. k>0,b>0B. k>0,b<0C. k<0,b>0D. k<0,b<05.如图,函数y=kx+b(k≠0)的图象经过点B(2,0),与函数y=2x的图象交于点A,则不等式0<kx+b <2x的解集为()A. 1<x<2B. x>2C. x>0D. 0<x<16.一次函数y=mx+n与正比例函数y=mnx(m、n常数,且m≠0),在同一坐标系中的大致图象是()A. B. C. D.7.洗衣机在洗涤衣服时,每浆洗一遍都经历了注水、清洗、排水三个连续过程(工作前洗衣机内无水).在这三个过程中,洗衣机内的水量y与浆洗一遍的时间x之间关系的图象大致为()A. B.C. D.8.若k<0,在直角坐标系中,函数y=﹣kx+k的图象大致是()A. B. C. D.9.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A. B. C. D.x上,若A1(1,10.如图,在平面直角坐标系中,点A1、A2、A3…A n在x轴上,B1、B2、B3…B n在直线y= √330),且△A1B1A2、△A2B2A3…△A n B n A n+1都是等边三角形,从左到右的小三角形(阴影部分)的面积分别记为S1、S2、S3…S n.则S n可表示为()A. 22n√3B. 22n−1√3C. 22n−2√3D. 22n−3√3二、填空题(共10题;共分)11.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是________ .12.已知一次函数y=kx+b的图象经过两点A(0,1),B(2,0),则当x________时,y≤0.13.一次函数y=kx+b(k≠0)的图象经过A(1,0)和B(0,2)两点,则它的图象不经过第 ________象限.14.函数y=kx+b(k≠0)的图象如图所示,则不等式kx+b<0的解集为 ________.15.如图,在坐标系中,一次函数y=−2x+1与一次函数y=x+k的图像交于点A(−2,5),则关于x的不等式x+k>−2x+1的解集是________.16.如图,A(1,0),B(3,0),M(4,3),动点P从点A出发,以每秒1个单位长的速度向右移动,且经过点P的直线l:y=−x+b也随之移动,设移动时间为t秒.若l与线段BM有公共点,则t的取值范围为________.17.如图,过A点的一次函数图象与正比例函数y=2x的图象相交于点B,则这个一次函数的表达式是________.18.如图,在平面直角坐标系中,矩形AOBC的顶点A,B的坐标分别是A(0,4),B(4√3,0),作点A关于直线y=kx(k>0)的对称点P,△POB为等腰三角形,则点P的坐标为________19.如图1,在某个盛水容器内,有一个小水杯,小水杯内有部分水,现在匀速持续地向小水杯内注水,注满小水杯后,继续注水,小水杯内水的高度y(cm)和注水时间x(s)之间的关系满足如图2中的图象,则至少需要 ________s能把小水杯注满.20.正方形A1B1C1O和A2B2C2C1按如图所示方式放置,点A1,A2在直线y=x+1上,点C1,C2在x轴上.已知A1点的坐标是(0,1),则点B2的坐标为 ________三、解答题(共2题;共22分)21.已知:一次函数的图象与直线y=﹣2x+1平行,且过点(3,2),求此一次函数的解析式.22.我县为了倡导居民节约用水,生活用水按阶梯式水价计费,如图是居民每户每月的水费y(元)与所用的水量x(吨)之间的函数图象,请根据图象所提供的信息,解答下列问题:(1)当用水量不超过10吨时,每吨水收费多少元?(2)当用水量超过10吨且不超过30吨时,求y与x之间的函数关系式;(3)某户居民三、四月份水费共82元,四月份用水比三月份多4吨,求这户居民三月份用水多少吨。
初二数学一次函数试题答案及解析

初二数学一次函数试题答案及解析1.对于正比例函数,y的值随x的值减小而减小,则m的值为。
【答案】-2.【解析】根据正比例函数的意义,可得答案.试题解析:∵y的值随x的值减小而减小,∴m<0,∵正比例函数,∴m2-3=1,∴m=-2,【考点】正比例函数的定义.2.某饮料厂开发了A、B两种新型饮料,主要原料均为甲和乙,每瓶饮料中甲、乙的含量如下表所示.现用甲原料和乙原料各2800克进行试生产,计划生产A、B两种饮料共100瓶.设生产A种饮料x瓶,解析下列问题:原料名称饮料名称甲乙(1)有几种符合题意的生产方案写出解析过程;(2)如果A种饮料每瓶的成本为2.60元,B种饮料每瓶的成本为2.80元,这两种饮料成本总额为y元,请写出y与x之间的关系式,并说明x取何值会使成本总额最低?【答案】(1)21种.(2)y=-0.2x+280.x=40时成本总额最低.【解析】(1)设生产A种饮料x瓶解出不等式方程组即可.(2)如图可得x与y的关系式,可知道x与y的关系.试题解析:(1)根据题意得:,解这个不等式组,得20≤x≤40.因为其中正整数解共有21个,所以符合题意的生产方案有21种.(2)根据题意,得y=2.6x+2.8(100-x),整理,得y=-0.2x+280.∵k=-0.2<0,∴y随x的增大而减小.∴当x=40时成本总额最低.【考点】一元一次不等式组的应用.3.如图,直线y=kx﹣2与x轴交于点A(1,0),与y轴交于点B,若直线AB上的点C在第一象限,且S △BOC =3,求点C 的坐标.【答案】(﹣3,﹣8)【解析】先把A 点坐标代入y=kx ﹣2求出k=2,得到直线解析式为y=2x ﹣2,再确定B 点坐标为(0,﹣2),设C 点坐标为(x ,y )(x <0,y <0),然后根据三角形面积公式得到×2×(﹣x )=3,解得x=﹣3,再求出自变量为﹣3所对应的函数值即可得到C 点坐标. 试题解析:把A (1,0)代入y=kx ﹣2得k ﹣2=0,解得k=2, ∴直线解析式为y=2x ﹣2,把x=0代入y=2x ﹣2得y=﹣2, ∴B 点坐标为(0,﹣2),设C 点坐标为(x ,y )(x <0,y <0), ∵S △BOC =3,∴×2×(﹣x )=3,解得x=﹣3, 把x=﹣3代入y=2x ﹣2得y=﹣8,∴C 点坐标为(﹣3,﹣8).【考点】一次函数图象上点的坐标特征.4. 一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,假设每分的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x(单位:分)之间的关系如图.则每分钟的进水量与出水量分别是( )A .5、2.5B .20、10C .5、3.75D .5、1.25【答案】C .【解析】∵t=4时,y=20, ∴每分钟的进水量==5(升);∴4到12分钟,8分钟的进水量=8×5=40(升),而容器内的水量只多了30升-20升=10升,∴8分钟的出水量=40升-10升=30升,∴每分钟的进水量==3.75(升).故选C.【考点】一次函数的应用.5.已知一次函数y=kx+b,当x=2时,y=﹣3,当x=1时,y=﹣1.(1)求一次函数的解析式;(2)若该一次函数的图形交x轴y轴分别于A、B两点,求△ABO的面积.【答案】(1这个函数的解析式为:y=﹣2x+1;(2)△ABO的面积是.【解析】(1)根据一次函数解析式的特点,可得出方程组,求k,b的值,从而得出这个函数的解析式;(2)根据函数的解析式,先分别求出函数与x轴、y轴分别相交于A、B两点的坐标,再运用三角形的面积公式求解.试题解析:(1)把(2,﹣3)与(1,﹣1),代入y=kx+b,得:,解得:,所以这个函数的解析式为:y=﹣2x+1;(2)当x=0时,y=1;当y=0时,x=,即与x轴、y轴分别相交于A、B两点的坐标是A(,0),B(0,1),所以△ABO的面积是S△ABO=×1×=.【考点】1.待定系数法求一次函数解析式2.一次函数图象上点的坐标特征.6.已知一次函数y=kx+b的图象如图所示,则k、b的符号是()A.k<0,b<0B.k>0,b<0C.k<0,b>0D.k>0,b>0【答案】A.【解析】一次函数的图象有四种情况:①当,时,函数的图象经过第一、二、三象限;②当,时,函数的图象经过第一、三、四象限;③当,时,函数的图象经过第一、二、四象限;④当,时,函数的图象经过第二、三、四象限.∵由图得,函数y=kx+b的图象图象经过第二、三、四象限,∴k、b的符号是k<0,b<0.故选A.【考点】一次函数图象与系数的关系.7.设直线kx+(k+1)y-1=0(为正整数)与两坐标所围成的图形的面积为Sk(k=1,2,3…….,2008),那么S1+S2+….+S2008=_________A.B.C.D.【答案】D.【解析】令x=0,y=;令y=0,x=;则直线kx+(k+1)y﹣1=0(k为正整数)与x轴的交点坐标为(,0),与y轴的交点坐标为(0,);∴直线与两坐标轴所围成的图形的面积为Sk=••=(﹣),当k=1,S1=(1﹣);当k=2,S2=(﹣);…当k=2008,S2008=(﹣).∴S1+S2+…+S2008=(1﹣+﹣+…+﹣)=(1﹣)=×=.故选D.【考点】一次函数的性质.8.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B 两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。
初二数学一次函数练习题及答案

初二数学一次函数练习题及答案《一次函数》练习题及参考答案第1题. 某工厂加工一批产品,为了提前完成任务,规定每个工人完成150个以内,按每个产品3元付报酬,超过150个,超过部分每个产品付酬增加0.2元;超过250个,超过部分出按上述规定外,每个产品付酬增加0.3元,求一个工人:①完成150个以内产品得到的报酬y(元)与产品数x(个之间的函数关系式;②完成150个以上,但不超过250个产品得到的报酬y(元)与产品数量x(个)的函数关系式;③完成250个以上产品得到的报酬y(元)与产品数量x(个)的函数关系式.答案:① (0② (150③ (x250)第2题. 商品的销售量也受销售价格的影响,比如,某衬衣定价为100元时,每月可卖出2000件,价格每上涨10元,销售量便减少50件.那么,每月售出衬衣的总件数y(件)与衬衣价格x(元)销售之间的函数关系式为_________.答案:第3题. 写出下列函数关系式,并指出自变量的取值范围:油箱中有油60升,每小时耗油2升,求耗油量M与时间t(小时)的关系.答案: (0t30)第4题. 写出下列函数关系式,并指出自变量的取值范围:轮子每分钟转60圈,求轮子旋转的转数N与时间t(分)的关系答案: (t0)第5题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第6题. 等腰三角形的周长为20cm,腰长为y (cm),底边长为x(cm),则y 与x的函数关系式为______.答案:第7题. 若函数y=(m-3)xm-1+x+3是一次函数,且x0,则m的值为______.答案:2或1第8题. 一次函数y=kx+b中,k、b都是,且k ,自变量x的取值范围是,当k ,b 时,它是正比例函数.答案:常数,0,全体实数,0,=0第9题. 观察图形上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为 .答案:. y=3n+1(n为1、2、3、4、…….)第10题. △ABC中,一边长为x cm,这边上的高为4cm,面积为y cm2,那么y与x之间的函数关系式为 .答案:y=2x第11题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1km加收1元,则路程x2km时,车费y(元)与x之间的函数关系为____.答案:第12题. 拖拉机开始工作时,油箱中有油36L,如果每小时耗油4L,那么油箱中剩余油量y(L),与工作时间x(h)之间的函数关系式是____,自变量x的取值范围是____.答案:第13题. 《中华人民共和国个人所得税法》规定,公民全月工资、薪金所得不超过800元的部分不必交税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累计进行计算:全月应纳税所得额税率不超过500元的部分 5%超过500元至2000元的部分 10%超过2000元至5000元的部分 15%…………某合资企业一工人工资在1400元-2000元之间变化,求他应交税金y(元)与其工资x(元)之间的函数关系.答案:第14题. 出租车收费按路程计算,2km内(包括2km)收费3元,超过2km,每增加1 km加收1元,则路程x2 km时,车费y(元)与路程x(km)之间的函数关系为______.答案:第15题. 将长为30cm,宽为10cm的长方形白纸,按图所示的方法粘合起来,粘合部分的宽为3cm,则5张白纸粘合后的长度是多少?设x张白纸粘合后的总长度为y(cm),y与x之间的函数关系式是什么?答案:138cm,y=30x-3(x-1)=27x+3.第16题. 已知y+a与x-b成正比例(其中a、b都是常数),试说明:y是x 的一次函数答案:设y+a=k(x-b)(x0)y=kx-(a+bk)第17题. 已知y+a与x-b成正比例(其中a、b都是常数)(1)试说明y是x的一次函数;(2)如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式.答案:(1)因为y+a与x-b成正比例,所以y+a=k(x-b)(k0),即y=kx-(bk+a)因为k不等于0,a、b为常数,所以y是x的一次函数;(2)代入解得k=2,bk+a=13, 所以y=2x-13.第18题. 下列关于函数的说法中,正确的是()A. 一次函数是正比例函数B. 正比例函数是一次函数C. 正比例函数不是一次函数D. 不是正比例函数的就不是一次函数答案:B第19题. 汽车由天津开往相距120km的北京,若它的平均速度为60km/h,则汽车距北京的路程S(km)与行驶时间t(h)之间的函数关系式是______.答案:S=120-60t第20题. 两港相距640千米,轮船以15千米/时的速度航行,t小时后剩下的距离y与t的函数关系式为________.答案:第21题. 某种国库卷的年利率为9.18%,则存满三年的本息和y与本金x 之间的函数关系式为 .答案:y=x+39.18%x(x0)第22题. 一个长为120m,宽为100m的矩形场地要扩建成一个正方形场地,设长增加x米,宽增加y米,则y与x的函数关系式是,自变量的取值范围是,且y是x的函数.答案:y=x+20,x0,一次第23题. 点 (填:“在”或“不在”)直线上答案:在。
八年级一次函数练习题答案

八年级一次函数练习题答案在八年级数学课程中,一次函数是基础且重要的概念。
一次函数的一般形式为 \( y = mx + b \),其中 \( m \) 是斜率,\( b \) 是\( y \) 轴截距。
以下是一些八年级一次函数的练习题及其答案:练习题1:已知一次函数 \( y = 3x + 5 \),求当 \( x = 2 \) 时的 \( y \) 值。
答案:将 \( x = 2 \) 代入函数中,得到 \( y = 3 \times 2 + 5 = 11 \)。
练习题2:如果直线 \( y = -2x + 4 \) 与 \( x \) 轴相交于点 \( (2, 0) \),求这条直线与 \( y \) 轴的交点坐标。
答案:已知 \( x \) 轴交点为 \( (2, 0) \),将 \( x = 2 \) 代入直线方程,得到 \( 0 = -2 \times 2 + 4 \),这与给定的交点一致。
对于\( y \) 轴交点,令 \( x = 0 \),得到 \( y = -2 \times 0 + 4 = 4 \)。
因此,与 \( y \) 轴的交点坐标为 \( (0, 4) \)。
练习题3:一次函数 \( y = kx + b \) 通过点 \( (1, 2) \) 和 \( (-1, -2) \),求 \( k \) 和 \( b \) 的值。
答案:将点 \( (1, 2) \) 代入函数,得到 \( 2 = k \times 1 + b \),即\( k + b = 2 \)。
将点 \( (-1, -2) \) 代入函数,得到 \( -2 = k \times (-1) + b \),即 \( -k + b = -2 \)。
解这个方程组,我们得到 \( k = 2 \) 和 \( b = 0 \)。
练习题4:如果一次函数 \( y = 4x - 1 \) 的图象与 \( x \) 轴相交于点\( (a, 0) \),求 \( a \) 的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一次函数试卷 1
一、相信你一定能填对!(每小题 3 分,共 30 分)1.下列函数中,自变量x 的取值范围是 x≥ 2 的是()
A.y=2x B.y=
1
C.y=4x2D.y=x 2 ·x2 x 2
2.下面哪个点在函数y= 1
x+1 的图象上() A.( 2,1)B.( -2 ,1)2
C.( 2, 0) D.( -2 ,0)
3.下列函数中, y 是 x 的正比例函数的是()
A.y=2x-1 B .y=x C . y=2x2 D . y=-2x+1
3
4.一次函数 y=-5x+3 的图象经过的象限是() A 一、二、三 B.二、三、四C.一、二、四
6.若一次函数 y=( 3-k )x-k 的图象经过第二、三、四象限,则k 的取值范围是()
A.k>3B.0<k≤3C.0≤k<3D.0<k<3
7.已知一次函数的图象与直线y=-x+1 平行,且过点( 8, 2),那么此一次函数的解析式为()A.y=-x-2B. y=-x-6C.y=-x+10
D.y=-x-1
8.汽车开始行驶时,油箱内有油40 升,如果每小时耗油 5 升,则油箱内余油量 y(升)与行驶时间t (时)的函数关系用图象表示应为下图中的()
9.李老师骑自行车上班,最初以某一速度匀速行进,? 中途由于自行车发生故障,停下修车耽误了几分钟,为了按时到校,李老师加快了速度,仍保持
匀速行进,如果准时到校.在课堂上,李老师请学生画出他行进的路程
y? (千米)与行进时间t (小时)的函数图象的示意图,同学们画出的图象如图所示,你认为正确的是()
10.一次函数 y=kx+b 的图象经过点( 2,-1 )和( 0,3), ? 那么这个一次函数的解析式为()
B .y=-3x+2
C .y=3x-2
D .y= 1
x-3 2
二、你能填得又快又对吗(每小题 3 分,共 30 分)
11.已知函数 y=mx+2-m是正比例函数,
则
m=, ?该函数的解析式为_________.
12.若点( 1,3)在正比例函数 y=kx 的图象上,则此函数的解析式为
________.
13.已知一次函数 y=kx+b 的图象经过点 A( 1,3)和 B(-1 , -1 ),则此函数的解析式为 _________.
14.若解方程 x+2=3x-2 得 x=2,则当 x_________时直线 y=x+?2?上的点在直线 y=3x-2 上相应点的上方.
15.已知一次函数 y=-x+a 与 y=x+b 的图象相交于点( m,8),则
a+b=_________.
16.若一次函数 y=kx+b 交于 y? 轴的负半轴, ? 且 y? 的值随 x? 的增大而减少, ? 则 k____0,b______0.(填“ >”、“ <”或“=”)
x y 30 17.已知直线 y=x-3 与 y=2x+2 的交点为( -5 ,-8 ),则方程组
2x y 20的解是 ________.
18.已知一次函数 y=-3x+1 的图象经过点( a,
1)和点( -2 ,b),则 a=________,y
A 4
b=______.3
2 19.如果直线 y=-2x+k 与两坐标轴所围成的三角1
形面积是 9,则 k 的值为 _____.C
-1
O 1 2 34x -1
-2
20.如图,一次函数y=kx+b 的图象经过 A、 B 两
点,与 x 轴交于点 C,则此一次函数的解析式为__________,△ AOC的面积为_________.
三、认真解答,一定要细心哟!(共60 分)
21.( 14 分)根据下列条件,确定函数关系式:
( 1) y 与 x 成正比,且当 x=9 时, y=16;
( 2) y=kx+b 的图象经过点( 3,2)和点( -2 ,1).
22.( 12 分)一农民带了若干千克自产的土豆进城出售,为了方便,他带了一些
零钱备用,按市场价售出一些后,又降价出售.售出土豆千克数与他手中持有的
钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:( 1)农民自带的零钱是多少( 2)降价前他每千克土豆出售的价格是多少( 3)降价后他按每千
克元将剩余土豆售完,这时他手中的钱(含备用零钱)是 26 元,问他一共带了多
少千克土豆
23.( 10 分)如图所示的折线 ABC?表示从甲地向乙地打长途电话所需的电话费y (元)与通话时间 t (分钟)之间的函数关系的图象( 1)写出 y 与 t? 之间的函数关系式.( 2)通话 2 分钟应付通话费多少元通话 7 分钟呢
24.( 12 分)已知雅美服装厂现有 A 种布料 70 米, B 种布料 52 米, ? 现计划用这两种布料生产 M、N两种型号的时装共 80 套.已知做一套 M型号的时装需用 A 种布料 1.?1 米, B 种布料米,可获利 50 元;做一套 N 型号的时装需用 A 种布料米,B 种布料 0.?9 米,可获利 45 元.设生产 M型号的时装套数为 x,用这批布
料生产两种型号的时装所获得的总利润为y 元.①求 y(元)与 x(套)的函数
关系式,并求出自变量的取值范围;②当 M型号的时装为多少套时,能使该厂所获利润最大最大利润是多
一次函数试卷1答案
3.B 4 .C 5 .D 6 .A 7 .C 8 .B 9 .C 10 .A
11.2;y=2x 12 .y=3x 13 .y=2x+1 14 .<2 15 .16
16.<;< 17 .x
518 .0;7 19 .± 6 20 .y=x+2;4 y8
21.① y= 16
x;② y=
1
x+
7
22 . y=x-2 ;y=8;x=14
955
22.① 5 元;②元;③ 45 千克
23.①当 0<t ≤3 时, y=;当 t>3 时, y=.
②元;元
24.① y=50x+45(80-x ) =5x+3600.
∵两种型号的时装共用 A 种布料 [+0.?6(80-x)]米,共用 B 种布料 [+ (80-x ) ] 米,
∴解之得 40≤x≤44,
而 x 为整数,
∴x=40, 41,42,43,44,
∴y 与 x 的函数关系式是 y=5x+3600(x=40,41, 42,43, 44);
②∵ y 随 x 的增大而增大,
∴当 x=44 时, y 最大 =3820,
即生产 M型号的时装 44 套时,该厂所获利
润最大,最大利润是 3820 元.。