spss相关分析案例多因素方差分析
使用SPSS软件进行多因素方差分析

使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析是一种重要的统计方法,用于分析多个自变量对因变量的影响。
它可以帮助研究人员确定不同因素对研究对象的差异产生的影响,以及这些因素之间是否存在交互作用。
SPSS软件是一款功能强大且易于使用的统计分析工具,可以帮助用户在进行多因素方差分析时快速、准确地得出结果。
本文将介绍使用SPSS软件进行多因素方差分析的步骤,并通过一个案例来具体说明。
二、SPSS软件介绍SPSS(Statistical Package for the Social Sciences)是一款专业的统计分析软件,被广泛应用于社会科学、医学、商业等领域。
它提供了丰富的统计方法和分析工具,并具备数据清洗、可视化、报告生成等功能。
在多因素方差分析中,SPSS 可以帮助用户进行方差分析表的生成、方差分析的可视化、方差齐性检验和事后比较等操作,大大简化了分析过程。
三、多因素方差分析的步骤1. 数据准备:将需要分析的数据录入SPSS软件,并确定自变量和因变量的测量水平。
一般自变量为定类变量,而因变量可以是定量或定类变量。
2. 方差分析表的生成:选择“分析”菜单中的“一元方差分析”选项,然后将因变量添加到依赖变量框中,将自变量添加到因子框中。
接下来,点击“选项”按钮设置参数,如设定显著性水平和置信区间。
点击“确定”后,SPSS会生成方差分析表。
3. 方差分析的可视化:在方差分析表中,用户可以查看各个因素的主效应和交互作用,以及统计指标如F值、p值等。
此外,SPSS还提供了绘制效应图、交互作用图等功能,帮助用户更直观地理解分析结果。
4. 方差齐性检验:方差齐性检验用于验证因变量的变异是否在各组间具有相同的方差。
SPSS软件可以通过选择“分析”菜单中的“Compare Means”选项,进而进行多个组间方差齐性检验。
5. 事后比较:当发现方差分析存在显著差异时,需要进一步进行事后比较以确定差异所在。
SPSS重复测量的多因素方差分析

SPSS重复测量的多因素方差分析多因素方差分析(ANOVA)是一种统计方法,用于比较两个或更多个因素对于一个或多个变量的影响。
在实验设计中,重复测量多因素方差分析常用于研究不同因素(比如治疗、时间、性别等)对同一测量结果的影响。
多因素方差分析假设各个因素之间相互独立,并将数据分为各个因素的组合。
例如,一个的实验可能包括两个因素:治疗和时间。
治疗可以有两个水平:A和B,时间可以有三个水平:T1、T2和T3、通过重复测量同一个变量,并结合不同的因素水平,可以得到一个完整的数据集。
进行多因素方差分析需要检验三个假设:主效应假设、交互效应假设和均等性假设。
主效应是指每个因素对于因变量的直接影响,交互效应是指多个因素之间相互作用的影响,均等性假设是指各组之间的方差是否相等。
首先,我们需要计算各组的平均值、总平均值、因素间平方和、误差平方和以及均方。
平均值是各组数据的均值,总平均值是所有数据的均值。
因素间平方和是各组均值与总平均值之差的平方和乘以每组的样本量。
误差平方和是各个样本与其对应组均值之差的平方和。
均方是因素间平方和和误差平方和除以对应的自由度。
接下来,我们需要计算F统计量,并进行假设检验来确定各个因素是否显著影响因变量。
F统计量是因素间均方和误差平方的比值。
根据假设检验的结果,如果得到的p值小于设定的显著性水平(通常为0.05),则我们拒绝原假设,即说明该因素对因变量有显著影响。
当我们观察到交互作用时,可以进行进一步的分析来确定具体哪些因素交互作用显著。
可以通过绘制交互作用图来进行可视化分析。
此外,还有很多其他的方法可以对多因素方差分析的结果进行进一步分析。
比如,事后检验(post-hoc analysis)常用于确定哪些因素水平之间存在显著差异。
Tukey's HSD、Bonferroni修正和Sidak校正是常用的事后检验方法之一总结起来,多因素方差分析是一种强大的统计方法,可以研究多个因素对一个或多个变量的影响。
SPSS多因素方差分析

SPSS多因素方差分析体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。
多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
下面用例子的形式来说说多因素方差分析的运用。
还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
分析:1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级页脚内容1(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2.因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。
在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。
在大多数场合,交互作用的信息比主效应的信息更为有用。
根据上面的判断。
根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。
spss多因素方差分析报告例子

作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
SPSS-多因素方差分析

④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25
SPSS教程-多因素方差分析(优质参考)

多因素方差分析多因素方差分析是对一个独立变量是否受一个或多个因素或变量影响而进行的方差分析。
SPSS调用“Univariate”过程,检验不同水平组合之间因变量均数,由于受不同因素影响是否有差异的问题。
在这个过程中可以分析每一个因素的作用,也可以分析因素之间的交互作用,以及分析协方差,以及各因素变量与协变量之间的交互作用。
该过程要求因变量是从多元正态总体随机采样得来,且总体中各单元的方差相同。
但也可以通过方差齐次性检验选择均值比较结果。
因变量和协变量必须是数值型变量,协变量与因变量不彼此独立。
因素变量是分类变量,可以是数值型也可以是长度不超过8的字符型变量。
固定因素变量(Fixed Factor)是反应处理的因素;随机因素是随机地从总体中抽取的因素。
[例子]研究不同温度与不同湿度对粘虫发育历期的影响,得试验数据如表5-7。
分析不同温度和湿度对粘虫发育历期的影响是否存在着显著性差异。
表5-7 不同温度与不同湿度粘虫发育历期表相对湿度(%)温度℃重复1 2 3 4100 25 91.2 95.0 93.8 93.0 27 87.6 84.7 81.2 82.4 29 79.2 67.0 75.7 70.6 31 65.2 63.3 63.6 63.380 25 93.2 89.3 95.1 95.5 27 85.8 81.6 81.0 84.4 29 79.0 70.8 67.7 78.8 31 70.7 86.5 66.9 64.940 25 100.2 103.3 98.3 103.8 27 90.6 91.7 94.5 92.2 29 77.2 85.8 81.7 79.7 31 73.6 73.2 76.4 72.5数据保存在“DATA5-2.SAV”文件中,变量格式如图5-1。
1)准备分析数据在数据编辑窗口中输入数据。
建立因变量历期“历期”变量,因素变量温度“A”,湿度为“B”变量,重复变量“重复”。
(完整word版)SPSS方差分析案例实例

SPSS第二次作业——方差分析1、案例背景:在一些大型考试中,为了保证结果的准确和一致性,通常针对一些主观题,都采取由多个老师共同评审的办法。
在评分过程中,老师对学生的信息不可见,同时也无法看到其他评分,保证了结果的公正性。
然而也有特殊情况的发生,导致了成绩的不稳定,这就使得对不同教师的评分标准考察变得十分必要。
2、案例所需资料及数据的获取方式和表述,变量的含义以及类型:所需资料:抽样某地某次考试中不同教师对不同的题目的学生成绩的评分;获取方式:让一组学生前后参加四次考试,由三位教师进行批改后收集数据;变量含义、类型:一份试卷的每道主观题由三名教师进行评定,3个教师的评定结果可看成事从同一总体中抽出的3个区组,它们在四次评定的成绩是相关样本。
表1如下:3、分析方法:用方差分析的方法对四个总体的平均数差异进行综合性的F检验。
4、数据的检验和预处理:a) 奇异点的剔除:经检验得无奇异点的剔除;b) 缺失值的补齐:无;c) 变量的转换(虚拟变量、变量变换):无;d) 对于所用方法的假设条件的检验:进行正态性和方差齐性的检验。
✓正态性,用QQ图进行分析得下图:得到近似满足正态性。
✓对方差齐性的检验:用SPSS对方差齐性的分析得下表:Test of Homogeneity of Variances分数Levene Statistic df1 df2 Sig..732 2 9 .508易知P〉0.05,接受方差齐性的假设。
5、分析过程:a) 所用方法:单因素方差分析;方差分析中的多重比较。
b) 方法细节:●单因素方差分析第一步,提出假设:H0:μ1=μ2=μ3;(教师的评定基本合理,即均值相同)H1:μi(i=1,2,3)不全相等;(教师的评定不够合理,均值有差异)第二步,为检验H0是否成立,首先计算以下统计量:1,计算水平均值及总体均值:表2 三位教师评选结果的均值2-计算平方和和自由度:总离差平方和:SST=211)-(∑∑==ki n j iij x x =16.947,自由度为n-1=11组内离差平方和:SSE=211)x -(i ∑∑==ki n j iij x =16.275,自由度为n-k=9组间平方和:SSA=211)-(∑∑==ki n j ii x x =0.672,自由度为k-1=23-计算均方:MSA=1SSA -k =0.336MSE=kn -SSE =1.8084-计算检验的统计量F : F=MSEMSA ~F(k-1,n-k) 计算F=0.186将结果汇集到表中:第三步,统计决断:查F 值表得F 0.01(2,11)=7.21>0.186。
spss多因素方差分析例子

1, data0806-height 是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打 开 spss 软 件 , 打 开 data0806-height 数 据 , 点 击 Analyze->General Linear Model->Univariate 打开:把 plot 和 species 送入 Fixed Factor(s) ,把 height 送入 Dependent Variable ,点击 Model 打开:选择 Full factorial , Type III Sum of squares , Include intercept in model (即 全部默认选项) ,点击 Continue 回到 Univariate 主对话框,对其他选项卡不做任何选 择, 结果输出:因无法计算 ???? ??rror ,即无法分开 ???? intercept的影响,无法进行方差分析,重新 Analyze->General Linear Model->Univariate 打开:选择好 Dependent Variable 和 Fixed Factor(s) 点击Custom,把主效应变量 species 和plot 送入 Model 框,点击 Continue 回到Univariate 主对话框,点击 Plots : 把 date 送入 Horizontal Axis ,把 depth 送入 Separate Lines ,点击 Add ,点击 Continue 回到 Univariate 对话框,点击 Options :把 OVERALL,species, plot 送入 Display Means for 框,选择 Compare main effects , Bonferroni ,点击 Continue 回到 Univariate 对话框,输出结果:可以看到: SS species =, df species =7, MS species= ;SS plot =, df plot =7, MS plot= ;SS error =, df error =14, MS error= ;Fspecies= , p=<;Fplot=,p=<;所以故认为在 5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。
本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒及饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况。
在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:
表一
如表一,因为该例中样本数n=31<2000,所以此处选用Shapiro-Wilk统计量。
由正态性检验结果的sig.值可以看到,人均粮食支出、烟酒及饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量。
另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。
如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。
具体情况这里
不再赘述。
下面进行多因素方差分析:
一、多变量检验
表二
由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig.值小于,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。
二、主体间效应检验
如表三,可以看到三个指标地区一栏的(即第三栏)Sig.值分别为、、,说明三个地区在人均衣着支出指标上没有明显的差别(Sig.值大于,不拒绝地区取值不同,对指标的取值没有显著影响的原假设),反之,而在人均副食支出和日用杂品支出指标上有显著差别。
三、多重比较
表四
Contrast Results (K Matrix)
地区 Simple Contrast a
Dependent Variable
人均副食支出(元/
人)
人均日用杂品支
出(元/人)
人均衣着支出(元
/人)
Level 1 vs. Level 3Contrast Estimate
Hypothesized Value000 Difference (Estimate -
Hypothesized)
Std. Error
Sig..001.036.517
95% Confidence Interval for Difference Lower
Bound
.173 Upper
Bound
Level 2 vs. Level 3Contrast Estimate
Hypothesized Value000 Difference (Estimate -
Hypothesized)
Std. Error
Sig..668.343.638
95% Confidence Interval for Difference Lower
Bound
Upper
Bound
a. Reference category = 3
如表四,在显著水平下,东部和西部的人均副食支出(Sig.值为)和日用杂品支出(Sig.值为)指标有明显差别(小于,拒绝原假设),而在人均衣着支出(Sig.
值为)指标上没有明显的差别。
并且东部的人均副食支出、衣着支出和日用杂品
支出三项指标均高于西部地区,说明东部的城镇居民月平均消费水平较西部来
说,高出很多,符合实际的情况。
另外,中部和西部的人均副食支出、衣着支出
和日用杂品支出(Sig.值分别为、、,均大于显著水平)三个指标均无明显差别,但中部的人均副食支出和日用杂品支出指标低于西部地区,人均衣着支出指标高
于西部,说明中、西部的城镇居民月平均消费水平差不多,但消费结构有差异,符合实际的情况。
表五是上面多重比较可信性的度量,由Sig.的值可以看到(均小于),比较检验是可信的。
四、协方差阵相等检验
表六
Box's Test of Equality of
Covariance Matrices a
Box's
M
F
df112
df2
Sig..085
Tests the null hypothesis
that the observed covariance
matrices of the dependent
variables are equal across
groups.
a. Design: + 地区
如表六,是协方差阵相等检验,检验统计量是Box’s M,由Sig.值>可以看到,可以认为三个地区(总体)的协方差阵是相等的。
表七给出了各地区同一指标误差的方差检验,在水平下,人均副食支出、衣
着支出和日用杂品支出(Sig.值分别为、、,均大于)三个指标的误差平方在三个地区间均没有显著差别,这说明,除了地区因素外,其他因素对人均副食支出、
衣着支出和日用杂品支出三个指标的影响很小。
综上所述,对三个地区的城镇居民月平均消费水平进行了具体的比较分析,所得结果表明,东部地区较中、西部地区的城镇居民月平均消费水平差别较大,远高于中、西部两个地区。
而中部和西部之间的城镇居民月平均消费水平差别不太明显,主要是消费结构有所不同,这说明西部地区在国家施行西部大开发政策之后发展很快,人民生活水平显著提高,赶上中部地区,体现政策的有效性。