北大计量经济学讲义-第四讲
第四讲之二: 异方差问题

xi
异方差情型
f(Yi)
.
x11 x12 x13
.
பைடு நூலகம்
.
Var(i) = E(i2)
= i2
income
x1i
东北财经大学数量经济系
Heteroscedastic pattern of errors
.
yi
Small i associated with small value of Xi
东北财经大学数量经济系
Detection of heteroscedasticity
1. Graphical method :
^ plot the estimated residual ( ^i ) or squared (i 2 ) against the ^ predicted dependent Variable (Yi) or any independent variable(Xi).
东北财经大学数量经济系
三、怀特检验(2)
3.求辅助回归方程的R2值。在零假设:不存在异方差 2 下,怀特证明了R2值与样本容量n的乘积服从 分布:
nR 2 ~ 2 (d . f .)
自由度等于辅助回归方程中解释变量的个数,不包 括截距项。
4.如果从辅助回归方程中计算得到的统计量值大于 所选显著水平下分布的临界值,则拒绝零假设,表 示存在异方差。如果计算的统计量的值小于临界值, 则不能拒绝零假设。 东北财经大学数量经济系
^ 2
yes
^ Y
^ Y
^ Y
东北财经大学数量经济系
Yes, heteroscedasticity
Yes, heteroscedasticity
北大计量经济学讲义-工具变量与两阶段最小二乘法

large numbers. 当假定(15.4) 和(15.5) 成立时,可以应用大
数定律证明IV估计是b1的一致估计。
Intermediate Econometrics,
That is, Cov(z,u) = 0 (15.4) 即Cov(z,u) = 0
Intermediate Econometrics,
Yan Shen
8
Instrumental Variable: Who qualifies? 什么样的变量可以作为IV?
The instrument must be correlated with the endogenous variable x 工具变量应与内生变量 x 相关
Intermediate Econometrics,
Yan Shen
5
Why Use Instrumental Variables? 为何使用工具变量?
Instrumental Variables (IV) estimation is used when your model has endogenous x’s 当模型解释变量具有内生性时,使用工具 变量估计
Suppose the true model regresses log(wage) on education (educ) and ability (abil). 假定真实模型将对数工资对教育和能力回归
Now ability is unobserved, and the proxy, IQ, is not available. 现在能力不可观测,而且没有代理变量IQ
b1 . 当z=x时,我们得到b1的OLS估计
计量经济学讲义

计量经济学讲义第一部分:引言计量经济学是研究经济现象的量化方法,它结合了统计学和经济学原理,旨在提供对经济现象进行定量分析的工具和技术。
本讲义将介绍计量经济学的基本概念和方法,帮助读者理解和应用计量经济学的基本原理。
第二部分:经济数据和计量经济学模型1. 经济数据的类型- 我们将介绍经济数据的两种主要类型:时间序列数据和截面数据。
时间序列数据是在一段时间内收集的数据,而截面数据是在同一时间点上收集的数据。
2. 计量经济学模型- 我们将讨论计量经济学模型的基本原理和应用,例如最小二乘法和线性回归模型。
这些模型可以帮助我们分析经济数据之间的关系,并进行预测和政策评估。
第三部分:经济数据的描述性统计分析1. 描述性统计分析的概念- 我们将介绍描述性统计分析的基本概念和方法,包括中心趋势测量、离散度测量和分布形态测量。
这些方法可以帮助我们理解和总结经济数据的基本特征。
2. 经济数据的描述性统计分析实例- 我们将通过实例演示如何使用描述性统计分析方法来分析和解释经济数据。
例如,我们可以使用均值和方差来描述一个国家的经济增长和收入分配。
第四部分:计量经济学的统计推断1. 统计推断的概念- 我们将讨论统计推断的基本概念和方法,包括假设检验和置信区间。
这些方法可以帮助我们从样本数据中推断总体参数,并评估推断的精度和可靠性。
2. 统计推断的实例- 我们将通过实例演示如何使用统计推断方法来研究和解释经济现象。
例如,我们可以使用假设检验来判断一个政策措施对经济增长的影响。
第五部分:计量经济学的回归分析1. 单变量线性回归模型- 我们将介绍单变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析一个因变量和一个自变量之间的关系,并进行预测和政策评估。
2. 多变量线性回归模型- 我们将讨论多变量线性回归模型的基本原理和应用。
这个模型可以帮助我们分析多个自变量对一个因变量的影响,并进行政策评估和变量选择。
第六部分:计量经济学的时间序列分析1. 时间序列模型的基本概念- 我们将介绍时间序列模型的基本概念和方法,包括自回归模型和移动平均模型。
北京大学金融专业考研《计量经济学》辅导讲义4

(三)重点掌握阶段(7 月初——10 月上旬) : 关键词:分清重点、地毯式全面记忆、不断循环巩固、检测督促
这一阶段最重要的任务是抓住重点、掌握重点。要抓住重点,一是要分析真题;二是要 专业化辅导;三是内部资料,如出题老师的论文、讲义、当前学术热点等。在此基础上坚持 专业课复习的 80/20 法则,对核心概念、基础概念、重要知识点、要点、常见公式一定要地 毯式全面记忆,并反复强化,达到永久记忆。提醒广大考生要自我检测或者让专业课辅导老 师及时检测,不断督促,有压力才能保障效果。
这一阶段最重要的任务是:全面的自我分析基础上,定下自己的目标院校和专业,并进 一步明确自己报考专业的参考书目、报考人数、招生人数、复试分数线、该专业必备考研资 料。提醒广大考生:选择院校和专业要综合考虑兴趣、专业课基础、外语水平、未来职业规 划、 报考专业的就业前景等因素。 考研就是给自己一次机会, 无论跨考与否, 报考名校与否, 择校、择专业一定要要建立在全面自我分析的基础上。一旦决定,要抱定信念,切勿轻易中 途换学校、转专业!中途换院校和专业会极大浪费有限的备考时间和精力。
(四)框架专题阶段(10 月上旬——11 月上旬) : 关键词:将知识系统化、体系化,建立知识结构树
这一阶段最重要的任务是将知识体系化,系统化。知识点掌握的零散,不体系化,会造成 只见树木不见森林,思路狭隘,影响答题发挥,尤其是做大题的时候。必须要按照参考书的 章节架构或者通过总结专题将知识体系化,系统化。对参考书做到提纲挈领,纲举目张。总 结了全国各学校专业课的专题和章节联系, 能在这一阶段帮助广大考生建立系统化的知识体
1 高中 D2 0 否则
1 大学及以上 D3 否则 0
三、包含一个定量变量 X, 一个多分定性变量 D 的回归 • 若性质有 m 个类别,应引入 m-1 个虚拟变量 D • 注意区分哪个类别是基底 例:P219 表 10-4 学校教师薪水的地区差异 四、包含一个定量变量 X, 多个定性变量 D 的回归 • 之前:方程中只考虑某一种属性的出现与否,即只有一个 m 分定性变量,需要 m-1 个虚拟变量。 (如性别,2 分,需 1 个 D) • 现在:方程中同时考虑几种属性出现与否,即需要多个 m 分定性变量(如性别、肤 色都考虑) • P221 例子不好,另给一例方便理解 ★ 重要规律: 关于虚拟变量个数的确定
计量经济学讲义(一到四章)(计量经济学-东北财经大学,王

计量经济学讲义王维国讲授课程的性质计量经济学是一门由经济学、统计学和数学结合而成的交叉学科,从学科性质来看,计量经济学是一门应用经济学。
具体来说,计量经济学是在经济学理论指导下,借助于数学、统计学和计算机等方法和技术,研究具有随机特征的经济现象,目的在于揭示其发展变化规律。
课程教学目标计量经济学按其内容划分为理论计量经济学和应用计量经济学。
本课程采用多媒体教学手段,结合Eviews软件应用,讲解理论计量经济学的最基本内容。
本课程教学目标:一是使学生了解现实经济世界中可能存在的计量经济问题,掌握检测及解决计量经济问题的方法和技术;二是使学生能够在计算机软件辅助下,建立计量经济模型,为其他专业课的学习及对经济问题进行实证分析研究奠定基础。
课程适用的专业与年级本大纲适用于数量经济专业2001级计量经济学课程的教学。
课程的总学时和总学分课程总学时为72,共计4学分。
本课程与其他课程的联系与分工学习本课程需要学生具备概率论与数理统计、微积分、线性代数、Excel、微观经济学、宏观经济学、经济统计等学科知识。
概率论与数理统计等数学课是计量经济学的方法论基础,计量经济学主要解决的是实际中不满足数理统计假定时经济变量之间关系及经济变量发展变化规律分析方法和技术,而经济学为计量经济学提供经济理论的准备,它仅就经济变量之间的关系提出一些理论假设,而不进行实证分析,只有具备了计量经济学的基本知识才能更好地解决一些实际问题。
课程使用的教材及教学参考资料使用的教材:计量经济学(Basic Econometrics) 第三版,[美]古扎拉蒂(DamodarN.Gujarati) 著,林少宫译,中国人民大学2000年3月第1版。
该教材畅销美国,并流行于英国及其他英语国家。
该书充分考虑了学科发展的前沿,十分重视基础知识的教学及训练,内容深入浅出。
教学参考资料:1. 王维国,《计量经济学》,东北财经大学2001.2.Aaron C. Johnson, Econometrics Basic and Applied学时分配表第一讲引言:经济计量学的特征及研究X围第一节什么是计量经济学一、计量经济学的来源二、计量经济学的定义计量经济学几种定义。
北京大学计量经济学讲义chapter

Y 消 费 支 出
1
2=MPC 1
收入
X
17
(3)消费的计量模型的设定 纯数学模型是一种确定性关系,一般不是
计量经济学家研究的对象。 给定收入,支出还受其他因素的影响,例
如家庭大小,家庭成员的年龄等。
18
(3)消费的计量模型的设定
消费支出
60000
40000
u
20000
0
0
20000 40000 60000 80000 100000 120000
3
II、主要教学参考书 :
《计量经济学导论:现代观点》,伍德里 奇著,费剑平等译,中国人民大学出版社, 2003年3月。
《数据分析与Eviews应用》,易丹辉主编, 中国统计出版社,2002年10月。
4
其他教学参考书:
《计量经济学》(第三版),古扎拉蒂著, 林少宫译,中国人民大学出版社,2000年3 月。
发现,虽然有一个趋势,父母高,儿女也高;父 母矮,儿女也矮。但是,给定父母的身高,儿女 辈的平均身高却趋向于或者“回归”到全体人口 的平均身高。
回归分析是关于研究一个叫做因变量的变量对另 一个或多个叫做解释变量的变量的依赖关系,其 用意在于通过后者(在重复抽样中)的已知或设 定值,去估计和(或)预测前者的(总体)均值
收入(GDP)
19
(3)消费的计量模型的设定
计量经济模型: Y= 1+2X+u
u是随机扰动项或随机误差项,是一个随机 变量,有良好定义的概率性质。
u可用来代表所有未经指明的对消费有所影 响的那些因素。
20
(4)获得数据
年
1985
为了估计计量模型,
1986
第四讲(计量经济学第二章)PPT课件

12
六、参数估计量的概率分布及随机扰 动项方差的估计
13
经典假设下,普通最小二乘估计的分布
^
0 0 wii
ˆ1 1 ki i
^
0~N(0,2
w2) i
^
1~N(1,2
k2) i
14
古典假设下,随机扰动项方差的估计
^
2
1
n2
ei2
^2
(n2)2 ~2(n2) (证明略)
6
2、一元线性回归模型普通最小二乘估 计量的性质
高斯—马尔可夫定理(Gauss-Markov theorem)
在古典回归模型的基本假定下,最小 二乘估计量是具有最小方差的线性 无偏估计量,具有一致性。
7
无偏性:即
^
^
E00,E11
证: ˆ1 1 ki i
E ( ˆ 1 ) E ( 1 k ii ) 1 k i E ( i ) 1
1
x12i x22i(x1ix2i)2
[( x2 2i)x1iyi][( x1ix2i)x2iyi]
[ ]y x1 2i x2 2i(x1ix2i)2
( x2 2i)x1i( x1ix2i)x2i x12i x2 2i(x1ix2i)2 i
^
( x22i)x1i( x1ix2i)x2i
参数β0的区间估计所需要的统计量:
~t(n2) ^
T 00
0
S^
0
设置信水平 1
p{T|0|t}1
2
^
^
得置信区间: ( 0t2S^0, 0t2S^0)
17
二元线性回归模型
二元线性回归模型 Y i01 X 1 i2 X 2 i u i
计量经济学讲义 共十讲

第一讲 普通最小二乘法的代数一、 问题假定y 与x 具有近似的线性关系:01y x ββε=++,其中ε是随机误差项。
我们对01ββ、这两个参数的值一无所知。
我们的任务是利用样本数据去猜测01ββ、的取值。
现在,我们手中就有一个样本容量为N 的样本,其观测值是:1122(,),(,),...,(,)N N y x y x y x 。
问题是,如何利用该样本来猜测01ββ、的取值?为了回答上述问题,我们可以首先画出这些观察值的散点图(横轴x ,纵轴y )。
既然y 与x 具有近似的线性关系,那么我们就在图中拟合一条直线:01ˆˆˆy x ββ=+。
该直线是对y 与x 的真实关系的近似,而01ˆˆ,ββ分别是对01,ββ的猜测(估计)。
问题是,如何确定0ˆβ与1ˆβ,以使我们的猜测看起来是合理的呢?笔记:1、为什么要假定y 与x 的关系是01y x ββε=++呢?一种合理的解释是,某一经济学理论认为x 与y 具有线性的因果关系。
该理论在讨论x 与y 的关系时认为影响y 的其他因素是不重要的,这些因素对y 的影响即为模型中的误差项。
2、01y x ββε=++被称为总体回归模型。
由该模型有:01E()E()y x x x ββε=++。
既然ε代表其他不重要因素对y 的影响,因此标准假定是:E()0x ε=。
故进而有:01E()y x x ββ=+,这被称为总体回归方程(函数),而01ˆˆˆy x ββ=+相应地被称为样本回归方程。
由样本回归方程确定的ˆy与y 是有差异的,ˆy y -被称为残差ˆε。
进而有:01ˆˆˆy x ββε=++,这被称为样本回归模型。
二、 两种思考方法法一:12(,,...,)N y y y '与12ˆˆˆ(,,...,)N y y y '是N 维空间的两点,0ˆβ与1ˆβ的选择应该是这两点的距离最短。
这可以归结为求解一个数学问题:由于ˆi i y y -是残差ˆi ε的定义,因此上述获得0ˆβ与1ˆβ的方法即是0ˆβ与1ˆβ的值应该使残差平方和最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Sampling Distributions: Review 样本分布:复习
CLM assumptions and Sampling Distributions of the OLS Estimators 经典假设与OLS估计量的样本分布
Background review of hypothesis testing 假设检验的背景知识
Intermediate Econometrics,
Yan Shen
5
Sampling Distribution: Review 样本分布:复习
The “exact” approach entails deriving a formula for the sampling distribution that holds exactly for any value of n. “准确”方式需要对任何n的取值都得到样本分布的精确 表达式。
One-sided and two-sided t tests 单边与双边t检验
Calculating the p values 计算p值
Intermediate Econometrics,
Yan Shen
3
Sampling Distribution: Review 样本分布:复习
Simple random sampling is the case where n objects are selected at random from a population, and each member of the population is equally likely to be included in the sample.
如果y1, y2,…, yn 来自于同一分布且相互独立,则称这一 组随机变量独立同分布(i.i.d.)
Intermediate Econometrics,
Yan Shen
4
Sampling Distribution: Review 样本分布:复习
Sampling distributions play a central role in the development of statistical and econometric procedures. 样本分布在统计学和计量经济学发展中具有核心地位
Intermediate Econometrics,
Yan Shen
6
Sampling Distribution: Review 样本分布:复习
The “approximate” approach uses approximations to the sampling distributions that rely on the sample size being large. “近似”方式对样本分布进行大样本下的近似。
The large sample approximation to the sampling distribution is often called the asymptotic distribution.
It is the probability distribution of an estimator over all possible outcomes. 它是指一个估计量在其所有可能取值上的概率分布
There are two approaches charactering sampling distributions: an “exact” approach and an “approximate” approach. 刻画样本分布的两种方式:“准确”方式和“近似”方 式
Testing Hypothesis About a Single Population Parameter: The t test 单个总体参数的假设检验:t检验
Confidence Intervals 置信区间
Testing Hypotheses About a Single Linear Combination of the Parameters 参数线性组合的假设检验(一维情形)
Testing Multiple Linear Restrictions: The F Test 多个线性约束的假设检验:F检验
Reporting Regression Results 报告回归结果
Intermediate Econometrics,
Yan Shen
2
Lecture Outline 本课提纲
Multiple Regression Analysis: Inference
多元回归分析:推断 (1)
y = b0 + b1x1 + b2x2 + . . . bkxk + u
Intermediate Econometrics,
Yan Shen
1
Chapter Outline 本章提纲
Sampling Distributions of the OLS Estimators OLS估计量的样本分布
简单随机抽样是指从总体中随机取样n次,使得总体中的 每个元素在样本中的出现的可能性相同。
When y1, y2,…, yn are drawn from the same ddently distributed, they are said to be independently and identically distributed, or i.i.d.
Such distribution is called the exact distribution or finite-sample distribution.
这样的分布被称为小样本(有限样本)的准确 分布
Fyofnonraoreerxmai.mia.dlp,dletihs,teirfniybtuhisteinoirnoar.vmearallgyedhisatsriabnuteexda,catnddisytr1i,byu2t,i…on, 例则如其,均如值果恰y好服服从从正正态态分分布布,且y1, y2, …, yn 独立同分布,