《概率初步》3第一节概率意义导学案

合集下载

初中数学九年级上册《25.3 概率初步》导学案

初中数学九年级上册《25.3 概率初步》导学案

第二十五章概率初步年级:九年级内容:概率的意义(1课时)课型:新授学习目标:1、记忆并理解概率的定义,并从频率稳定性的角度了解概率的意义。

2、让学生经历试验、统计、分析、归纳、总结,进而了解并感受概率的意义。

3、学会怎样用概率描述随机事件发生的可能性的大小。

学习重点:对概率意义的正确理解学习难点:对随机事件的统计规律的深刻认识。

学习过程一、学前准备1、把全班学生分成10个小组做抛掷硬币试验,每组同学抛掷100次,并整理获得的实验数据记录在下面的统计表中。

根据数据利用描点的方法绘制出函数图像并总结其中的规律。

2、下表记录了一名球员在罚球线上投篮的结果计算表中投中的频率(精确到0.01)并总结其规律。

二、自学、合作、探究1、根据抛掷硬币的频率分布图规律总结出抛掷硬币的概率,并用自己的语言描述出概率的定义。

根据频率的取值范围总结出概率的取值范围。

2、同学之间相互讨论总结出概率的定义和取值范围。

3、同学们之间相互讨论,分析总结频率与概率有什么样的区别于联系?最后由教师点评补充,学生做出最后总结。

(1)一般的,频率是随着试验次数的变化而。

(2)概率是一个客观的。

(3)频率是概率的近似值,概率是频率的稳定制,他是频率的科学抽象,当试验次数越来越多时,频率围绕概率摆动的平均幅度会越来越,即频率靠近概率。

4、在一个不透明的口袋中装着大小、外形一模一样的5个红球、3个蓝球、2个白球,从中任意摸出一球则:(1)P(摸到红球)= (2)P(摸到蓝球)=(3)P(摸到白球)=5、在1、2、3、4四个数字中,取任意两个数,则他们都是偶数的概率为。

6、从一批种子中抽取若干粒,在同一条件下进行发芽试验,有关数据如下:计算表中发芽种子的频率(精确到0.01),估计发芽种子的概率。

三、 学习体会1、 体会一下试验、统计、分析、归纳、总结,进而了解并感受概率的定义的过程。

2、 知道频率与概率的定义和取值范围。

3、 了解频率与概率的区别于联系。

高中数学《3.1.2 概率的意义》导学案 新人教A版必修3

高中数学《3.1.2 概率的意义》导学案 新人教A版必修3
例3.为了增强学生对世园会的了解和认识,某校决定在全校30 00名学生中随机抽取10名学生举行一次有关西安世园会的知识问卷,小明认为被选取的可能性为 ,不可能抽到他, 所以他就不想去查阅、咨询有关世园会的知识,你认为他的做法对吗?请说明理由.
达标训练
1.课本p129练习1
2.课本p132练习1 2 3
精讲互动
例1.(1)某厂产品的次品率为0.02,问“从该厂产品中任意地抽取100件,其中一定有2件次品”这一说法对不对?为什么?
(2)一次抽奖活动中,中奖的概率为0.3,解释该概率的含义;
(3)某种病治愈的概率是0.3,那么,现有10人得这种病,在治疗 中前7人没有治愈,后3人一定能治 愈吗?
例2.抛一枚硬币(质地均匀),连 续出现5次正面向上,有 人认 为下次出现反面向上的概率大于1/2,这种理解正确吗?
3 .已知射手甲射中靶的概率为0.9,因此我们认为即使射手甲比较优秀,他射击 10发子弹也不可能全中,其中必有一发不中,试判断这种认识是否正确.
作业
布置
1.习题3-1 A3,B组
2.教辅资料
学习小结/教学
反思
探索新知:
1.阅读课本p127“思考交流”,讨论其结果:
2.问题1:抛掷10次硬币,是否一定是5次“正面朝上”和 5次“5次反面朝上”?
3.问题2:有四个阉,其中两 个分别代表两件奖品,四个人按排序依次抓阉来决定这两件奖品的归属.先抓的人中奖率一定大吗?
4.阅读课本p127-130,你发现了什么问题?
§3.1.2概率的意义
授课
时间
第周星期第 节
课型
新授课
主备课人
学习
目标
1.理解概率的意义;
2.能正确利用概率知识解决现实中的生活问题.

概率初步全章教案

概率初步全章教案

概率初步全章教案第一章:概率的基本概念教学目标:1. 理解概率的定义和意义;2. 掌握必然事件、不可能事件和随机事件的区别;3. 学会用概率来描述事件的可能性。

教学内容:1. 概率的定义和意义;2. 必然事件、不可能事件和随机事件的定义;3. 概率的计算方法。

教学活动:1. 通过实例引入概率的概念,引导学生理解概率的意义;2. 通过讨论和练习,让学生掌握必然事件、不可能事件和随机事件的区别;3. 通过例题和练习,让学生学会用概率来描述事件的可能性。

教学评估:1. 通过课堂讨论和练习,检查学生对概率的基本概念的理解;2. 通过课后作业和练习题,检查学生对必然事件、不可能事件和随机事件的区分能力;3. 通过期末考试,检查学生对概率计算方法的掌握情况。

第二章:概率的计算教学目标:1. 掌握概率的基本计算方法;2. 学会用排列组合来计算事件的概率;3. 理解条件概率和独立事件的含义。

教学内容:1. 概率的基本计算方法;2. 排列组合的应用;3. 条件概率和独立事件的定义和计算方法。

教学活动:1. 通过例题和练习,让学生掌握概率的基本计算方法;2. 通过实例和练习,让学生学会用排列组合来计算事件的概率;3. 通过讨论和练习,让学生理解条件概率和独立事件的含义。

教学评估:1. 通过课堂练习和作业,检查学生对概率计算方法的掌握;2. 通过课后练习题,检查学生对排列组合的应用能力;3. 通过期末考试,检查学生对条件概率和独立事件的理解和计算能力。

第三章:几何概率教学目标:1. 理解几何概率的概念;2. 学会用几何概率来描述事件的可能性;3. 掌握几何概率的计算方法。

教学内容:1. 几何概率的定义和意义;2. 几何概率的计算方法;3. 几何概率的应用实例。

教学活动:1. 通过实例引入几何概率的概念,引导学生理解几何概率的意义;2. 通过讨论和练习,让学生掌握几何概率的计算方法;3. 通过实例和练习,让学生学会用几何概率来描述事件的可能性。

概率的意义导学案

概率的意义导学案

3. 1.2概率的意义学习目标:1、理解概率的意义;2、用概率解决生活中的实际问题.教学过程:一.创设情境,引入新课。

对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率稳定在某个常数上,把这个常数记作P(A),称为事件A的概率,简称为A的概率。

频率与概率的有什么区别和联系?区别:①频率是随机的,在实验之前不能确定;②概率是一个确定的数,与每次实验无关;范围:[0,1].联系③随着实验次数的增加,频率会越来越接近概率;④频率是概率的近似值,概率是用来度量事件发生可能性的大小.二.新课探究:1.有人说,既然抛掷一枚硬币出现正面向上的概率为0.5,那么连续抛掷两次一枚质地均匀的硬币,一定是一次正面向上,一次反面向上.你认为这种想法正确吗?2,①频率是反映事件发生的频繁程度,概率反映事件发生的可能性的大小;②做n次随机试验,事件A发生的频率mn就是事件的概率;③百分率是频率,但不是概率;④频率是不能脱离具体的n次试验的实验值,而概率是具有确定性的不依赖于试验次数的理论值;⑤频率是概率的近似值,概率是频率的稳定值.其中正确的是___.3.如果某种个彩票的中奖概率为1/1000,那么买1000张这种彩票一定能中奖吗?4.围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸出1枚棋子后再放回,一共摸10次,你认为一定有一次会摸到黑子吗?说明你的理由.2.游戏的公平性探究1:在一场乒乓球比赛前,裁判员是利用抽签器来决定由谁先发球,请用概率的知识解释其公平性.裁判员操作:拿出一个抽签器,它是-个像大硬币似的均匀塑料圆板,一面是红圈,一面是绿圈,然后随意指定一名运动员,要他猜上抛的抽签器落到球台上时,是红圈那面朝上还是绿圈那面朝上。

如果他猜对了,就由他先发球,否则,由另一方先发球.探究2:某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。

由于某种原因,一班必须参加,另外再从二至十二班中选1个班。

概率初步全章教案

概率初步全章教案

概率初步全章教案第一章:概率的概念与基础1.1 概率的定义与性质引入概率的概念,解释概率的含义和作用探讨概率的基本性质,如非负性、区间概率等1.2 随机事件与样本空间定义随机事件和样本空间的概念举例说明随机事件和样本空间的运用1.3 条件概率与独立事件引入条件概率的概念,解释条件概率的计算方法探讨独立事件的性质,说明独立事件的概率计算方法第二章:概率的计算与应用2.1 排列组合复习排列组合的基本原理,如排列数、组合数等应用排列组合知识计算事件的概率2.2 概率分布引入概率分布的概念,解释离散概率分布和连续概率分布的特点探讨概率分布的性质,如期望、方差等2.3 概率的应用举例说明概率在实际问题中的应用,如概率论的基本定理、中心极限定理等第三章:随机变量与概率分布3.1 随机变量的定义与分类定义随机变量的概念,解释离散随机变量和连续随机变量的特点举例说明随机变量的运用3.2 概率分布函数引入概率分布函数的概念,解释概率分布函数的性质和计算方法探讨概率分布函数的应用,如概率查询、累积分布函数等3.3 期望与方差定义随机变量的期望和方差的概念,解释期望和方差的计算方法探讨期望和方差的意义和应用,如期望值的最小化、方差的减小等第四章:大数定律与中心极限定理4.1 大数定律介绍大数定律的概念,解释大数定律的含义和作用探讨大数定律的证明方法和应用,如样本均值的收敛性等4.2 中心极限定理引入中心极限定理的概念,解释中心极限定理的含义和作用探讨中心极限定理的证明方法和应用,如样本均值的分布等4.3 随机过程与马尔可夫链简介随机过程的概念,解释随机过程的特点和应用引入马尔可夫链的概念,解释马尔可夫链的性质和应用第五章:概率论在实际问题中的应用5.1 概率论在社会科学中的应用举例说明概率论在社会科学领域的应用,如统计调查、社会统计等5.2 概率论在自然科学中的应用举例说明概率论在自然科学领域的应用,如物理学中的随机过程、生物学中的遗传概率等5.3 概率论在经济学与管理学中的应用举例说明概率论在经济学与管理学领域的应用,如风险分析、决策理论等5.4 概率论在工程与应用科学中的应用举例说明概率论在工程与应用科学领域的应用,如通信系统中的概率论、可靠性工程等第六章:离散型随机变量及其分布6.1 离散型随机变量的定义引入离散型随机变量的概念,解释其在概率论中的重要性举例说明离散型随机变量的运用6.2 概率质量函数与分布列定义概率质量函数的概念,解释如何计算离散型随机变量的概率分布探讨分布列的性质,如边缘分布、条件分布等6.3 离散型随机变量的期望与方差定义离散型随机变量的期望和方差的概念,解释它们的计算方法探讨期望和方差在离散型随机变量分析中的应用第七章:连续型随机变量及其分布7.1 连续型随机变量的定义引入连续型随机变量的概念,解释其在概率论中的重要性举例说明连续型随机变量的运用7.2 概率密度函数与分布函数定义概率密度函数的概念,解释如何计算连续型随机变量的概率分布探讨分布函数的性质,如累积分布函数、生存函数等7.3 连续型随机变量的期望与方差定义连续型随机变量的期望和方差的概念,解释它们的计算方法探讨期望和方差在连续型随机变量分析中的应用第八章:大数定律与中心极限定理的应用8.1 大数定律的应用探讨大数定律在实际问题中的应用,如估计总体均值、检验总体分布等举例说明大数定律的运用8.2 中心极限定理的应用探讨中心极限定理在实际问题中的应用,如估计样本均值的分布、构建置信区间等举例说明中心极限定理的运用8.3 随机过程与马尔可夫链的应用探讨随机过程在实际问题中的应用,如排队理论、随机行走等举例说明马尔可夫链的运用,如状态转移矩阵、稳态分布等第九章:概率论在实际问题中的应用案例分析9.1 概率论在生物学中的应用案例分析概率论在遗传学、流行病学等生物学领域中的应用案例讨论案例中的概率模型和解决方法9.2 概率论在金融学中的应用案例分析概率论在金融市场分析、风险管理等金融学领域中的应用案例讨论案例中的概率模型和解决方法9.3 概率论在工程学中的应用案例分析概率论在可靠性工程、通信系统等工程学领域中的应用案例讨论案例中的概率模型和解决方法第十章:概率论与现代概率论简介10.1 概率论的发展与现代概率论的起源回顾概率论的历史发展,介绍现代概率论的起源和发展趋势10.2 随机变量的进一步概念与方法探讨现代概率论中的一些高级概念和方法,如随机变量的高级性质、随机过程的分类等10.3 随机分析与随机微积分简介随机分析的概念和基本方法,解释随机微积分在现代概率论中的应用10.4 概率论在当代科学研究中的应用探讨概率论在物理学、生物学、计算机科学等当代科学研究领域中的应用和前景重点解析本章教案主要涵盖了概率初步的全貌,从概率的概念与基础,到概率的计算与应用,再到随机变量与概率分布,到大数定律与中心极限定理,以及概率论在各个领域中的应用。

数学:3.1.2《概率的意义》导学案.doc

数学:3.1.2《概率的意义》导学案.doc

课题 3. 1. 2概率的意义主备人:魏鹏程使用时间:2010-5-13使用人:枣庄八中高一数学组全体教一、目标展示一、学习目标1、通过现实生活中对概率的错误理解的纠正,正确理解概率的意义;2、了解概率在实际问题中的应用,增强学生的学习兴趣;3、进一步理解概率统计中随机性与规律性的关系。

二、教学重点概率的正确理解及其在实际中的应用三、教学难点随机试验结果的随机性与规律性之间的关系二、学导结合一.概率的正确理解问题1:抛掷一枚质地均匀的硬币,出现正、反面的概率都是0.5,那么连续两次抛掷一•枚硬币,一•定是出现一次正面和一次反面吗?探究:全班同学各取一枚同样的硬币,连续抛掷两次,观察它落地后的朝向. 将全班同学的试验结果汇总,计算三种结果发生的频率.你有什么发现?随着试验次数的增多,三种结果发生的频率会有什么变化规律?试验小组正反面朝上各一次的频率两次均正面朝上的频率两次均反面朝上的频率123456次正面朝上,一次反面朝上"的频率约为''两次正面朝上〃的频率约为,''两次反面朝上〃的频率约为,问题2:如果某种彩票的中奖概率为一」,那么买1000张这种彩票一定能1000中奖吗?为什么?练习:围棋盒里放有同样大小的9枚白棋子和1枚黑棋子,每次从中随机摸1枚棋子后再放回,一共摸10次,你认为一•定有一次会摸到黑子吗?说明你的理由.三,深化拓展二、概率在实际问题中的应用 1. 游戏的公平性 探究:某中学高一年级有12个班,要从中 选2个班代表学校参加某项活动。

由于某 种原因,一班必须参加,另外再从2至12 班中选一个班.有人提议用如下的方法:掷 两个骰子得到的点数和是儿,就选儿班, 你认为这种方法公平吗?哪个班被选中的 概率最大?2. 决策中的概率思想想一•想:在一个不透明的袋子中有两种球, 一种白球,一种红球,并且这两种球一种有99个,另一种只有1个,若一 个人从中随机摸出1球,结果是红色的,那你认为袋中究竟哪种球会是99 个?极大似然法3. 天气预报的概率解释生活中,我们经常听到这样的议论:“天气预报说昨天降水概率为90%, 结果根本一点雨都没下,天气预报也太不准确了。

概率的意义教学教案

概率的意义教学教案

概率的意义教学教案第一章:概率的初步概念1.1 教学目标1. 了解概率的定义和基本性质。

2. 掌握随机事件和必然事件的概念。

3. 学会使用概率公式计算简单事件的概率。

1.2 教学内容1. 概率的定义:概率是描述随机事件发生可能性大小的数值。

2. 随机事件和必然事件:随机事件是指在相同条件下可能发生也可能不发生的事件,必然事件是指在相同条件下一定发生的事件。

3. 概率公式:P(A) = 事件A发生的次数/ 所有可能发生的次数。

1.3 教学活动1. 引入话题:通过抛硬币、掷骰子等实例,引导学生思考事件发生的可能性。

2. 讲解概念:讲解概率的定义、随机事件和必然事件的区别。

3. 练习计算:让学生运用概率公式计算简单事件的概率,如抛硬币两次正面朝上的概率。

1.4 教学评价1. 通过小组讨论,让学生解释概率的定义和基本性质。

2. 布置练习题,让学生计算不同事件的概率。

第二章:条件概率2.1 教学目标1. 理解条件概率的概念。

2. 学会使用条件概率公式计算事件A在事件B发生的条件下发生的概率。

2.2 教学内容1. 条件概率的定义:事件A在事件B发生的条件下发生的概率称为条件概率,记作P(A|B)。

2. 条件概率公式:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和事件B 发生的概率。

2.3 教学活动1. 引入话题:通过抛硬币和抽球的实例,引导学生思考事件发生的条件概率。

2. 讲解概念:讲解条件概率的定义和条件概率公式。

3. 练习计算:让学生运用条件概率公式计算事件A在事件B发生的条件下发生的概率。

2.4 教学评价1. 通过小组讨论,让学生解释条件概率的概念和条件概率公式。

2. 布置练习题,让学生计算不同事件的条件概率。

第三章:独立事件的概率3.1 教学目标1. 理解独立事件的定义。

2. 学会使用独立事件的概率公式计算两个独立事件发生的概率。

3.2 教学内容1. 独立事件的定义:两个事件A和B相互独立,是指事件A的发生不影响事件B的发生概率,反之亦然。

概率的意义导学案

概率的意义导学案

高中数学人教社A版必修33.1.2概率的意义一教学目标1.知识与技能:(1)正确理解概率的意义;(2)利用概率知识正确理解现实生活中的实际问题;2.过程与方法:通过对现实生活中的“掷币”、“游戏的公平性”、“彩票中奖”等问题的探究,感知应用数学知识解决数学问题的方法.3.情感态度与价值观:通过对概率的实际意义的理解,体会知识来源于实践并应用于实践的辩证唯物主义观,进而体会数学与现实世界的联系.二重点与难点:重点:对概率含义的正确理解及其在实际中的应用;难点:随机试验结果的随机性与规律性的联系.三学法:试验观察自主探究四教学过程:(一)天气预报的概率解释1、思考:某地气象局预报说,明天本地降水概率为90%.你认为下面两个解释哪一个能代表气象局的观点?(1)明天本地有90%的区域下雨,有10%的区域不下雨;(2)明天本地下雨的机会是90%.2、如果明天没有下雨肯定有很多市民议论:“天气预报说昨天降水概率为90%,结果一点雨没下,天气预报也太不准确了.”你能给出解释吗?(二)游戏的公平性1、在一场足球比赛前,要决定由谁先发球,你注意到裁判是怎样确定场地和发球权的吗?为什么要这样做?2、现有两张形状大小颜色完全一致的门票,其中只有一张是上海世博会的参观票,甲、乙两位同学按照顺序从中各抽一张以决定谁得到其中的参观票,那么先抽还是后抽(后抽人不知先抽人的结果)对各人来说是公平的吗?也就是说各人抽到参观票的概率相等吗?细节决定成功 读书改变命运3、某中学高一年级有12个班,要从中选2个班代表学校参加某项活动。

由于某种原因,一班必须参加,另外再从二至十二班中选1个班。

有人提议用如下的方法:掷两个骰子得到的点数和是几,就选几班,你认为这种方法公平吗?为什么?问:你有公平的方法吗?(三)概率的正确理解1、思考:有人说,既然抛掷一枚硬币出现正面的概率为0.5,那么连续两次抛掷一枚质地均匀的硬币,一定是一次正面朝上,一次反面朝上。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《概率初步》3第一节概率意义导学案
主编人:占利华主审人:
班级:学号:姓名:
学习目标:
【知识与技能】
1、从概率的稳定性的角度了解概率的意义
2、了解可能性与频率的关系
【过程与方法】
经历试验、统计、分析、归纳、总结,进而了解并感受概率的意义的过程,引导学生从数学的视角观察客观世界;用数学的思维思考客观世界;以数学的语言描述客观世界。

【情感、态度与价值观】
经历试验、整理、分析、归纳、确认等数学活动,感受数学活动充满了探索性与创造性,感受量变与质变的对立统一规律,同时为概率的精准、新颖、独特的思维方式所震撼。

【重点】
概率意义的理解
【难点】
对随机现象的统计规律性的深刻认识
学习过程:
一、自主学习
(一)复习巩固
1、⑴必然事件:
⑵不可能事件:
⑶随机事件:
2、下列事件中,那些是必然事件,哪些是随机事件,哪些是不可能事件?
⑴、一个玻璃杯从10层高楼落到水泥地面上会摔碎;
⑵、明天太阳从西方升起;
⑶、掷一枚硬币,正面朝上;
⑷、某人买彩票,连续两次中头奖;
⑸、今天天气不好,飞机会晚些到达。

(二)自主探究
1、思考:在同样条件下,某一随机事件可能发生,也可能不发生,那么它发生的可能
性有多大呢?能否用数值进行刻画呢?
实验一:从分别标有1、2、3、4、5号的5根纸签中随机抽取一根,抽出的签上的号码有()种可能,即(),由于纸签的形状、大小相同,又是随机抽取的,所以我们认为:每个号码抽到的可能性是否相等(),都是()。

实验二:掷一个骰子,向上一面的点数有()种可能,即(),由于骰子的构造、质地均匀,又是随机掷出的所以我们断言:每种结果的可能性()都是()。

总结:一般地对于一个随机事件A,我们把刻画其发生可能性大小的,称为随
机事件A发生的概率,记作_________。

观察与思考:以上两个试验有两个共同特点:
(1)_______________________________________________________________________
(2)_______________________________________________________________________
(三)、归纳总结:
1、概率:
2、随机事件概率的大小:
⑴、当A是必然发生的事件时,P(A)=_______.
⑵、当A是不可能发生的事件时,P(A)=_______.
⑶、当A是随机事件时,______P(A)__________.
(四)自我尝试:
投币实验:每组中有一名同学投掷硬币,另一名同学作记录,其余同学观察试验。


抛掷过程中采取同一种方式:都向正上方抛,下落时用手把它接住,这样可以保证在同一条
件下进行试验。

每组掷币50次,要以实事求是的态度,认真统计“正面朝上”的频数及“正
面朝上”的频率,将数据填入下表中:
思考:频率与概率有什么区别与联系?
二、教师点拔
1、本节学习的数学知识是概率的意义;
2、本节学习的数学方法是统计思想。

3、概率是通过大量重复试验中频率的稳定性得到的一个0——1的常数。

它反映了事件
发生可能性的大小的规律。

而大量试验所反映的规律并非在每一次试验中一定存在。

如天气
预报说今天下雨的概率是85%。

而今天并未下雨。

这并不奇怪,也不矛盾,因为天气预报是
根据大量统计记录而来,是符合大多数同等气象条件下的实际情况的,个别意外情况是可能
也是允许发生的。

4、通过实验方法用频率来估计概率的大小,要求实验必须是要相同条件下进行的;在
相同条件下,实验的次数越多,就越有可能得到较好的估计值,但各人所得的值也并不相同。

X|k |b| 1 . c|o |m
三、课堂检测
1、在生产的100件产品中,有95件正品,5件次品。

从中任抽一件是次品的概率为( ).
A.0.05
B.0.5
C.0.95
D.95
2、下列说法中正确的是( ).
A.抛一枚均匀的硬币,出现正面、反面的概率不能确定;
B 、抛一枚均匀的硬币,出现正面的概率比较大;
C 、抛一枚均匀的硬币,出现反面的概率比较大;
D 、抛一枚均匀的硬币,出现正面、反面的概率相等。

3、从不透明的口袋中摸出红球的概率为
A 、5个
B 、8个4、柜子里有5
5、某储蓄卡的密码是一组四位数字,未记准储蓄卡密码的最后一位数字,位数字,正好输对密码的概率是多少?
四、课外训练
1、小新抛一枚质地均匀的硬币,连续抛三次,硬币落地均正面朝上,如果他第四次抛硬
币,那么硬币正面朝上的概率为( ) A.12; B 、14; C 、1; D 、3
4。

2、从只装有4个红 2、从只装有4个红球的袋中随机摸出一球,若摸到白球的概率是1p ,摸到红球的概率是2p ,则( )。

A.121,1p p ==; B 、120;1p p ==; C 、1210;4p p ==; D 、1214p p ==。

3、袋里有红、绿、黄三种除颜色外其余都相同的球,其中有红球4个,绿球5个,任意摸
出一个绿球的概率是1
3。

求:⑴、袋中黄球的个数;
⑵、任意摸出一个球为红球的概率。

4、2011年8月,某书店各类图书的销售情况如下图:
某书店2011年8月各类图书销售情况统计图
(1)这个月数学书与自然科学书销售量的比是多少?
(2)这个月总共销售了多少图书?
(3)数学书占了总销售量的百分之多少?
(4)四种类型的书籍中哪一种所占的百分比最大?哪一种最小呢?
5、小明和小刚正在做掷骰子游戏,两人各掷一枚骰子.•当两枚骰子的点数之和为奇数,小刚得1分,否则小明得1分,这个游戏对双方公平吗?。

相关文档
最新文档