汽车平顺性试验(1)(2)
汽车理论:第五章 汽车的平顺性、通过性

▪ 弹性元件的弹性特性是指作用在悬架上的载荷与 其变形之间的关系。
▪ 如果悬架的刚度是常数,则其,变形与所受载荷 成正比,其弹性特性可由一直线表示所以,这种 悬架称为线性悬架,一般钢板弹簧、螺旋弹簧悬 架均属此类。
▪ 采用线性悬架的汽车,往往不能满足行驶平顺性 的要求。
▪ 因为在使用中,汽车的有效载荷,特别是公共汽 车和载货汽车的有效载荷变化较大,载荷的变化 将导致空载、满载的车身振动偏频发生较大的差 异,空载的振动频率过高,使汽车的平顺性变坏。
▪ 减小悬架刚度是降低车身自振频率的一个有力措施。如 用悬架的静挠度来表示其刚度,现代轿车悬架的静挠度 一般为150~200mm(高级轿车的静挠度有达300mm以上的), 载货汽车的静挠度一般在70~120mm左右。
▪ 悬架的刚度太小,会增加非悬挂质量的振动位移,大振 幅的振动有时会使车轮离开地面,因此,过软的弹性元 件也是不可取的。
▪ 汽车的平顺性主要是保持汽车在行驶过程中产生 的振动和冲击环境对乘员舒适性的影响在一定界 限之内,因此平顺性主要根据乘员主观感觉的舒 适性来评价,对于载货汽车还包括保持货物完好 的性能,它是现代高速汽车的主要性能之一。
▪ 汽车的平顺性可由图6-1所示的“路面一汽车一 人”系统的框图来分析。
▪ 路面不平度和车速形成了对汽车振动系统的“输 入”,此“输入”经过由轮胎、悬架、座垫等弹 性、阻尼元件和悬挂、非悬挂质量构成的振动系 统的传递,得到振动系统的“输出”是悬挂质量 或进一步经座椅传至人体的加速度,此加速度通 过人体对振动的反应——舒适性来评价汽车的平 顺性。
▪ 为了改善这种状况,近代汽车的悬架常采 用非线性悬架,即其刚度可随载荷的变化 而变化。这种悬架亦称为变刚度悬架。这 种悬架可以有较大的静挠度,而在载荷较 大时,刚度急剧增大,使汽车的侧倾和纵 向角振动减轻,限制了悬架和车身碰撞的 可能,保证汽车具有较好的行驶平顺性。
汽车的平顺性--(路面谱)

⎛n⎞ −1 Gq (n) = Gq (n0 )⎜ ⎟ ,其中n0 = 0.1m ⎜n ⎟ ⎝ 0⎠ Gq (n0 )参考空间频率下的功率谱密度 路面不平度系数,通常取w = 2
按路面功率谱密度把路面按不平度分为8级,A~H
⎛ n ⎞ ⎟ G q ( n ) = G q ( n 0 )⎜ ⎜ n ⎟ ⎝ 0 ⎠
Gq ( f ) = lim
Δf →0
Δf
1 1 = lim = lim = Gq (n) Δn →0 uΔn Δn →0 Δn u u
空间谱转化为时间频率谱
10
2
10
0
10
-2
时间频率f
10
-4
10
-6
H G F E D C B A
PSD [m2 /Hz]
10
-8
10
-10
10
-1
10
0
10
1
空间频率n
功率谱的物理意义是单位频带内的功率(均方值) Δn 2 σ q − Δn即为路面谱在Δn频带内包含的功率;
Δn →0 2 σ q − Δn 2 σ q − Δn
Gq (n) = lim
2 σ q − Δn
能量守恒
2 σ q − Δn
2 车速u下, Δn频带对应的时间频率频带Δf (= uΔn)包含的功率仍为σ q − Δn
路面等级 G q (n o )×10 -6 m 2/m -1 n o =0.1m -1 下限 几何平均值 上限 32 16 8 128 64 32 512 256 128 2048 1024 512 8192 4096 2048 32768 16384 8192 131072 65536 32768 524288 131072 262144
汽车行驶平顺性

上、下限频率与中心频率的关系为:
f f
u l
1.12 0.89
fc fc
一、汽车行驶平顺性的评价指标
1/3倍频法认为:同时有许多个1/3倍频带都有能量作用于人体 时,各个频带振动作用无明显联系,对人体产生的影响主要是 人体感觉振动强度最大的那个1/3倍频带所造成的。
将振动传至人体加速度的功率谱密度Gp(f)所对应的1/3倍频带中心频 率fci在带宽Δfi区间积分,得到各个1/3倍频带的加速度均方根值分量σpi
车轮动载荷。 评价指标:人体对振动的响应、行驶安全性。
研究平顺性的主要目的:控制汽车振动系 统的动态特性,使振动系统的“输出”在 给定工况的“输入”下不超过一定界限, 以保持乘员的舒适性 。
平顺性分析——建立在随机振动理论的基 础上。
一、随机振动基础和路面输入(补充)
1. 随机振动基本概念
ISO2631用加速度均方根值(σrms)表示人体在1~80Hz范围内的三个感觉 界限,即:
①“舒适—降低界限TCD”——人体感觉良好,可以顺利完成吃、写、读 等动作;
②“疲劳—工效降低界限TFD”——驾驶员能够保持正常进行驾驶; ③“暴露极限”——人体可以承受振动量的上限。
“舒适—降低界限TCD”为“疲劳—工效降低界限TFD”的1/3.15;“暴露 极限”为“疲劳—工效降低界限TFD”的2倍。
人体对加速度敏感度的加权系数
倍频带的中心频率 (Hz)
加权系数 w(fci)
垂直振动
水平振动
1.0
0.5
1.0
2.0
0.71
1.0
4.0
1.0
0.5
8.0
1.0
0.25
中职教育-《汽车运用工程》第四版课件:第六章 汽车通过性和汽车平顺性(二).ppt

2.1/3倍频带分别评价法 上限频率、下限频率与中心频率的关系为
f u 1.12 f c (6-30)
f
l
0.89 f c
分析带宽为 f fu fl
(6-31)
2.1/3倍频带分别评价法
将振动传至人体加速度p(f)的功率谱密度Gp( f ),对 所对应的1/3倍频带各中心频率fci在带宽Δfi区间积分, 得到各个1/3倍频带的加速度均方根值分量σpi,即
3.总加权值评价法
➢ 在处理平顺性试验结果或计算设计参数对 振动的影响时,通常还采用传至人体振动 的加速度均方根值σp或车身振动的加速度均 方根值σz作为评价平顺性的指标。
➢ 这种方法较简单,适用振动频率分布相似 的条件下进行对比。
3.总加权值评价法
σp和σz值等于1~80Hz中20个1/3倍频带加速度均 方根值分量σpi或σzi平方和的平方根。即
共振的行驶速度远离汽车行驶的常用速度。
➢ 在坏路上,汽车的允许行驶速度受动力性的影 响不大,主要取决于行驶平顺性,而被迫降低 汽车行车速度。
➢ 振动产生的动载荷,会加速零件磨损乃至引起 损坏。
➢ 振动还会消耗能量,使燃料经济性变坏。
第六章 汽车通过性和汽车平顺性 第一节 汽车通过性 第二节 汽车行驶平顺性
➢ 在一定频率下,随着暴露(承受振动)时间 加长,感觉界限容许的加速度值下降。
➢ 可用达到某一界限允许暴露时间来衡量人 体感觉到的振动强度的大小。
1.平顺性评价指标
由图6-15的曲线族可知
➢ 人体最敏感的频率范围,对于垂直振动为 4~8Hz;对于水平振动为1~2Hz以下。
➢ 在2.8Hz以下,同样的暴露时间,水平振 动加速度容许值低于垂直振动。
➢ 在激振力作用(如道路不平而引起的冲击和加速、 减速时的惯性力等)以及发动机与传动轴等振动 时,系统将发生复杂的振动。
平顺性评价标准

汽车动力与控制课题组
汽车动力与控制课题组
1 rmq = ( T
a 4 ( t ) dt ) ∫
1 4
汽车动力与控制课题组
BS 6841:1987 6841:
多方向的振动:用各方向r.m.s值的平方和根值计算点的振动总值,
a = (a xw + a yw + a zw )
2 2
2
1 2
注:任一方向的加权值不足其他方向最大值的25%,则略去不计。 多点的振动:不同的点单独评价。 注:对于坐姿人体,振动总值可以由4个向量的平方和根值来计算。 (座椅上的平移和旋转,靠背和放脚处的平移) 振动值对舒适的影响程度同ISO 2631-1:1997 。 ISO 2631-
附加加权值的频率加权曲线
汽车动力与控制课题组
ISO 2631-1:1997 26311.健康 在0.5Hz~80Hz的频率范围内通过座椅底板上任一坐标轴上所确定 的最大频率加权加速度进行振动评估。 坐姿人体的频率加权及方向因数k: x、y轴:Wd,k=1.4 z轴: Wd,k=1
注:当两个或更多坐标轴上的振动是可比的时候,有时可以用矢量和 评估健康风险。
汽车动力与控制课题组
2631ISO 2631-1:1997
一、振动测量
1.测量方向:以振动输入人体 的点为坐标原点测量振动,主要 相关基本中心坐标系如图。必要 时传感器灵敏轴可与这个优选的 中心坐标轴偏移15°。对于坐在 斜靠背椅子上的人,相对坐标原 点应由人体坐标轴来决定。 2.测量位置:在人体和支撑面 的界面上进行测量。
MTVV = ma x[ a w (t 0 )]
四次方振动剂量法
VDV = {∫ [aw (t )]4 dt}
汽车整车试验实验报告(3篇)

第1篇一、实验目的本次实验旨在通过汽车整车试验,验证汽车在各项性能指标上的表现,包括动力性能、经济性能、制动性能、操控稳定性、噪声水平、平顺性等,以评估汽车的整体质量、可靠性和安全性。
二、实验背景随着我国汽车工业的快速发展,汽车性能测试已成为汽车研发和生产的重要环节。
通过对整车进行全面的性能试验,可以确保汽车在实际使用中满足消费者的需求,提高汽车的品质和市场竞争力。
三、实验内容1. 实验车辆本次实验车辆为一款国产中型轿车,搭载1.5T涡轮增压发动机,配备6速自动变速器。
2. 试验项目(1)动力性能试验① 最高车速试验:测试汽车在特定路段上所能达到的最高车速。
② 加速性能试验:测试汽车从静止起步到特定车速的加速时间及加速距离。
③ 爬坡性能试验:测试汽车在特定坡度上的爬坡能力。
(2)经济性能试验① 油耗试验:测试汽车在特定工况下的油耗水平。
② 续航里程试验:测试新能源汽车在满电状态下的续航里程。
(3)制动性能试验① 制动距离试验:测试汽车从特定车速到完全停止所需的距离。
② ABS制动试验:测试汽车在ABS系统作用下,制动距离和制动稳定性。
(4)操控稳定性试验① 转向试验:测试汽车在高速和低速下的转向性能。
② 操稳性试验:测试汽车在直线行驶、弯道行驶和紧急制动时的稳定性。
(5)噪声水平试验测试汽车在行驶过程中的噪声水平,包括发动机噪声、轮胎噪声和风噪。
(6)平顺性试验测试汽车在行驶过程中的平顺性,包括车身振动和座椅振动。
3. 试验条件(1)试验道路:选择清洁、干燥、平坦的沥青或混凝土路面。
(2)气象条件:试验当天天气晴朗,气温适宜。
(3)车辆状态:试验车辆技术状态良好,轮胎气压、胎面花纹高度、制动、转向性能及发动机工作状态等符合要求。
四、实验结果与分析1. 动力性能试验(1)最高车速:实验车辆在特定路段上达到的最高车速为200km/h。
(2)加速性能:实验车辆从静止起步到100km/h的加速时间为8.5秒,加速距离为35米。
车辆平顺性评价方法及试验研究

2、舒适度评价法
2、舒适度评价法
舒适度评价法是一种基于乘员感受的评价方法。该方法通过问卷调查或其他 形式,收集乘员对车辆平顺性的评价数据,并采用统计分析方法进行处理,以得 出乘员对车辆平顺性的整体感受。该方法的优点是能够反映乘员的真实感受,但 是需要足够的样本数据才能得出较为准确的结果。此外,由于不同乘员对舒适度 的要求不同,因此需要制定相应的标准或指南,以避免主观因素对评价结果的影 响。
(2)半主观半客观评价法的优缺点:半主观半客观评价法能够综合考虑乘员 的感受和车辆的振动性能,具有较高的实用价值。但是,半主观半客观评价法的 评价结果容易受到主观因素和客观因素的影响,需要进一步研究和改进。
结论
结论
本次演示通过对汽车平顺性评价方法的研究,总结了汽车平顺性评价方法的 重要性和发展历程,以及现有的评价方法和存在的问题。现有的汽车平顺性评价 方法主要采用客观评价法和半主观半客观评价法,但是都存在一定的局限性和不 足之处。为了更好地反映车辆的振动性能和乘员的感受,需要进一步开展研究工 作,探索更加准确、可靠、实用的汽车平顺性评价方法。今后的研究方向可以包 括以下几个方面:
引言
引言
汽车平顺性是指车辆在行驶过程中,乘员所感受到的振动和冲击程度,它对 于乘员的舒适性和安全性具有重要影响。汽车平顺性评价方法作为车辆性能评估 的重要手段,一直以来备受。随着汽车工业的快速发展,人们对于汽车平顺性的 要求也越来越高,因此,开展汽车平顺性评价方法的研究具有重要的现实意义。
文献综述
结论
1、研究更加精确的试验和测量设备,以提高汽车平顺性评价的准确性和可靠 性。
2、探索更加科学的数据处理和分析方法,以减小主观因素和客观因素对评价 结果的影响。
结论
第六章汽车的平顺性解析

第三节 汽车振动系统的简化、单质量系统振动
0称为系统固有圆频率,定义阻尼比
C n / 0 2 2m2 K
方程的解为
2 z (t ) Ae nt sin( 0 n 2 t )
第三节 汽车振动系统的简化、单质量系统振动
单自由度自由ห้องสมุดไป่ตู้动衰减曲线
第三节 汽车振动系统的简化、单质量系统振动
式中 n—空间频率,m-1 n0—0.1 m-1
w
Gq(n0)—路面不平度系数(m2/m-1)
w—频率指数,一般取为2
第二节 路面不平度的统计特征
第二节 路面不平度的统计特征
第二节 路面不平度的统计特征
路面空间频率谱密度化为时间谱密度 1.空间频率与时间频率的关系 f=un 这里n是空间频率(每米波长数)。u是车速(m/s),f是时间频率(Hz,每 秒波长数)。 2.路面时间谱密度与空间频率谱密度的关系
第三节 汽车振动系统的简化、单质量系统振动
车身质量有垂直、俯
仰、侧倾3个自由度,4个
车轮质量有4个垂直自由度, 整车共7个自由度。
当 xI yI ,并忽略 轮胎阻尼后,汽车立体模 型可简化为平面模型。
简化前后应满足以下三个条件 1)总质量保持不变
m2f m2r m2c m2
Kq Cz Kz Cq m2 z
C K C K z z z q q m2 m2 m2 m2
令 2n=C/m2,20=K/ m2, 齐次方程变为
2 2nz 0 z z0
第三节 汽车振动系统的简化、单质量系统振动
汽车单自由度振动模型
2)质心位置不变
m2f a m2r b 0