《图形的全等》图形的全等(二)
图形的全等-【题型·技巧培优系列】七年级数学下册精讲精练(北师大版)2

【解答】解: 、两个图形不全等,故此选项不合题意;
、两个图形全等,故此选项符合题意;
、两个图形不全等,故此选项不合题意;
、两个图形不全等,故此选项不合题意.
故选: .
题型二全等图形的性质
【例题2】(2022秋?琼山区校级期中)下列选项中表示两个全等的图形的是
【分析】根据图形即可得到结论.
【解答】解:由图知, ,
故选: .
【变式3-2】(2021秋?台江区期末)如图,已知方格纸中是4个相同的正方形,则 的度数为
A. B. C. D.
【分析】根据对称性可得 , .
【解答】解:观察图形可知, 所在的三角形与 所在的三角形全等,
,
又 ,
,
故选: .
【变式3-3】(2022秋?鄞州区期中)如图是单位长度为1的正方形网格,则 .
故选: .
【变式2-2】(2022秋?浦口区校级月考)如图,在四边形 与 中, , , .下列条件中:① , ;② , ;③ , ;④ , .添加上述条件中的其中一个,可使四边形 四边形 ,上述条件中符合要求的有
A.①②③B.①③④C.①④D.①②③④
【分析】连接 、 ,通过证明 △ , △ ,即可得到结论.
、能够完全重合的两个图形是全等图形,故此选项正确,符合题意;
故选: .
解题技巧提炼
此题主要考查了全等图形,正确把握全等图形的定义是解题关键.
【变式2-1】(2022秋?金湖县期中)下列说法正确的是
A.两个形状相同的图形称为全等图形
B.两个圆是全等图形
C.全等图形的形状、大小都相同
D.面积相等的两个三角形是全等图形
2022年教学教材《《图形的全等》》优秀教案

图形的全等一、说教材1教材的地位与作用:本节课是在学生已学习了图形的平移、旋转、翻折等知识的根底上,引入图形的全等通过本节课的学习可让学生学会观察全等的图形,动手操作并认识全等图形〔多边形、三角形〕的特征,使学生养成动手动脑的习惯本节课的知识内容是第15章的结尾局部,是图形变换的延伸,也是将来进一步研究全等知识的根底,对三角形全等知识的学习起着导航的作用2教学目标:根据新课标和本节课教材特点,结合学生实际情况,我确定的三维教学目标如下:〔1〕知识目标:通过实例,使学生了解图形全等的概念,能识别全等多边形〔三角形〕中的对应元素,知道全等多边形〔三角形〕的对应边、对应角分别相等〔2〕能力目标:经历探究图形全等的过程,体会图形的三种变换与图形全等的关系,培养学生观察能力、动手操作能力以及合作交流能力〔3〕情感目标:通过对图形的欣赏与分析,体会数学与生活的联系,培养学生细心观察的习惯和创新的意识3教学的重点、难点:根据本节课教材特点和以上所定的教学目标,我确定本节课的教学重点和难点如下〔1〕教学重点:能识别全等的图形,掌握全等图形的特征〔2〕教学难点:全等图形的特征及其识别4课程资源的开发及有机整合:结合教材内容查找多种全等图形的图片,利用多媒体展示,引导学生观察图形,留心图形的形状与大小要求学生能通过图片的观察,能用自己的语言表达看法,能通过操作得到结论,并能简单地运用二、说学法指导为了讲清本节课的重难点,使学生能到达本节课设定的教学目标,我主要对学生进行以下学法指导:1学情分析:八年级学生具有一定的自学和探究能力,求知欲强,但还是好动,注意力易分散,爱发表见解抓住这些学生特点,采用生动多样的教学方法和学生积极主动参与的学习方式,能激发学生兴趣,有效地培养学生能力,促进学生个性开展在教学中教师要创造条件和时机,让学生动手操作,引发学生的兴趣,使他们的注意力集中到课堂上,同时引导学生自主探索、合作交流,发挥学生学习的主动性2心理调节的方法指导:八年级学生处于智力开展的重要阶段,学生思维正在迅速开展课堂上教师指导学生要善于观察发现、勇于探索、动手实验,主动获取知识,借此培养学生动手、动脑、动口的能力,使学生真正成为学习的主体教师应充分调动学生学习的积极性,激发学生的学习动力3知识建构的方法指导:在知识掌握上,学生原有的知识是图形的翻折、平移和旋转,大多数学生还是记忆犹新,所以结合学生的阅读,进行新课的探究对于新的知识,局部学生不易理解,教学中教师应加强分析,让学生形成自己的知识体系三、说教学方法及教学手段针对学生已有的认知结构及本节课的教材特点,根据教学根本原那么和规律,为实现以上教学目标,突出重点,突破难点,我准备采用以下的教学方法和教学手段进行教学1教学方法:坚持“以学生为主体,以教师为主导〞的原那么,在教师启发引导下,根据本节的教学内容和教学目标,以及学生的认识规律,我采用引导法,探究法,演示法,类比法,讨论交流法相结合的教学方法启发、引导学生积极思考,共同探讨,从而产生浓厚的学习兴趣,发挥学生的主观能动性,表达学生的主体作用2灵活教法及促进学生开展的实效性:运用问题解决式教学法,采用师生交谈,引导探索、自主学习法,演示法,类比法,讨论交流法等,有效地开发各层次学生的潜能,力求使每个学生都有所收获同时通过课堂练习和课后作业,让发学生学以致用,落实教学目标3教学手段:根据本节内容的特点,为了更有效地完本钱节课的教学目标,利用多媒体辅助教学及教具演示,增强教学的直观性,可以激发学生的学习兴趣,也有利于突出重点、突破难点,更好地提高课堂效率4教具、学具:全等图形的图片、三角板、方格纸、剪刀等四、说教学程序设计为到达本节课的教学目标,充分发挥学生的主体作用,最大限度地激发学生学习的主动性、自觉性,本节课教学程序设计如下:生活中处处有数学,数学处处可以表现生活,从而使学生感到学习数学的乐趣,并积极主动的参与通过学生阅读,屡次的操作与讨论,意在培养学生的探究意识、合作能力及概括归纳问题的能力这样的课堂教学设计表达了活动性、开放性、探究性、合作性,较好地表达了“数学教学主要是数学活动的教学〞的教育理念,符合教师的主导作用与学生的主体作用相结合的原那么附:板书设计。
《图形的全等》word教案 (公开课获奖)2022北师版 (6)

4.2 图形的全等一、教材的本质、地位和作用:《图形的全等》是北师大版数学七年级下册第四章第二节的内容。
这节课是在学生学习了线段、角、相交线和平行线及三角形的根本概念后引入的,主要探究全等图形的概念和特征以及全等三角形的概念、性质、对应关系和符号表示。
重点渗透了由一般到特殊、由具体到抽象和对应的数学思想。
内容虽不多,也不难,但却是进一步学习三角形全等的根底,特别是全等三角形的对应关系更是学习三角形全等的核心内容。
二、教学目标分析:知识技能:⒈通过实例理解图形全等的概念及特征,并能识别图形的全等。
⒉理解全等三角形的概念,掌握全等三角形的性质。
数学思考:通过观察、操作等活动,进一步开展学生的空间观念、几何直观,积累数学活动经验,培养学生由一般到特殊,由具体到抽象以及对应的数学思想。
问题解决:通过“看〞、“说〞、“做〞、“议〞、“练〞等活动,培养学生观察操作、合作交流以及解决问题的能力。
情感态度:通过让学生积极参与图形全等的探究过程,从中体味合作与成功的快乐,建立学好数学的自信心,体会数学与现实生活的密切联系。
本节课的教学重难点是:重点:全等图形及全等三角形的性质。
难点:全等三角形对应元素确实定。
三、教学问题诊断在学习本节课之前,学生已经学过了线段、角、相交线、平行线、三角形的有关知识及一些简单的说理内容。
在相关知识的学习过程中,学生已经经历了一些认识图形的活动,解决了一些简单的现实问题,具有了一定的图形分析能力,具备了一定的合作与交流的能力,获得了一些数学活动经验的根底。
因此学生在学习全等图形、全等三角形的定义及性质时困难并不大,但是一下子要学生从直观的图形去概括出抽象的图形全等的概念这是比拟困难的。
因此在设计时我用学生创作的以“中国梦·我的梦〞为主题的艺术作品引出课题,这样做既能让学生对图形全等有一个感性的认识,又能激发起学生的学习兴趣,同时也能让学生感受到数学来源于生活。
然后让学生经历“看、说、做、议、练〞等教学活动,使学生通过“动眼〞、“动手〞、“动口〞、“动脑〞感悟图形的全等——应用图形的全等——创造图形的全等,带动知识发生、开展到应用的全过程。
3.2《图形的全等》 课件(北师大版) (2)

五环
奥运
同一张底片洗 出的相同尺寸 的照片
你发现了什么?
一模一样
几何中,我们把上面所列 举的“一模一样”的图形叫做 “全等图形”。
思考:
那么我们怎么给“全等图形” 下一个几何定义呢?
请您欣赏
可爱
的兔
子
好 好 学 习 报 效 祖 国
国旗
同一张底片 洗出的相同 尺寸的照片
国画
看了刚才的图片,你有什么发现?
第2个三角形是由第1个三角形怎样变换得到的? 要画出第3个三角形,你应该先确定哪几个点?怎样确定? 你有什么办法验证画出的三角形与原来的三角形是全等的吗? 你能画出各组的第5、6个三角形吗?有什么发现?
请你用不同的方法沿着网格线把正方 形分割成两个全等的图形
练一练
我们看看下面的几种划分方法,与你的 划分方法对比一下,看看自己是如何划 分的。
艺术家 M.C.埃舍尔
把自己称为一个 “图形艺术家”他 专门从事于木板画。 在1956年举办的艺 次画展得到了许多 数学家的称赏,在 他的作品中数学的 原则和思想得到了 非同寻常的形象化。
定义
全等图形 两个能够重合的图 形称为全等图形
议一议:
1、说说你生活中见过的全等图形的例子。
下列同一类的两个图形是怎样由一个图形得到另一个图 形的?它们一定全等吗?
一个图形经过平移、旋转、翻折后得到的图形一 定与原图形全等
议一议
2、观察下面两组图形,它们是不是全等图形?为什么?
大小 不同
形状 相同 形状 不同
(正确) 半径相等的两个圆是全等图形
观察下图3组全等三角形,在各组图中,第2个三角形是怎 样由第1个三角形改变位置得到的?按照相同的方法,在图 (1)、(2)、(3)中分别画出第3、4个三角形
七年级下册数学《图形的全等》知识点整理

一、本节学习指导
证明三角形的全等是一个重点,同时也是一个难点,同学们要多思考,并且多做练 习题。我们要记住判断普通三角形和 RT 三角形全等的条件,认清 SSA 为什么不能作为 判断条件。
二、知识要点
1、图形的全等: 能完全重合的图像叫做全等图形。两个图形全等,它们的形状和 大小都相同。两个能重合的三角形叫全等三角形。
三、经验之谈:
证明题是知道结论求过程类型的题目,所以我们要会顺藤摸瓜,根据已知条件来凑 条件。比如知道两条边,我们根据判定条件找出中间的夹角,如果夹角不相等,那么我 们寻找第三条边,直到找出符合判定条件的时候才开始动手写步骤。在考试中,如果实 在想不到条件,也不要空着,写出部分步骤也是有分的。
本文由 索罗学院 整理
注: 全等三角形的对应边相等,对应角相等。
2、三角形全等的判定:
1)三组对应边分别相等的两个三角形全等 (简称 SSS 或 “边边边 ”。)
2)有两边及其夹角对应相等的两个三角形全等 (SAS 或 “边角边 ”。)
3)有两角及其夹边对应相等的两个三角形全等 (ASA 或 “角边角 ”。)
4)有两角及其一角的对边对应相等的两个三角形全等 (AAS 或“角别对应相等的两个三角形全等。
6)在全等的判定中,没有 AAA 角角角和 SSA(特例:直角三角形为 HL,属于 SSA) 边边角,这两种情况都不能唯一确定三角形的形状。
3、直角三角形全等的判定:
1)斜边和一条直角边对应相等的两个直角三角形全等
( 简称 HL 或“斜边直角边 ”。)
图形的全等(课件ppt)

新知讲解
全等的表示方法
A
F
B
CD
E
△ABC 与△DEF 全等 记作“△ABC ≌△DEF ” 读作: △ABC 全等于△DEF 注意:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.
新知讲解
【议一议】 全等三角形对应边的高、中线相等吗?还有哪些相等的线段,举例 说明.
相等 全等三角形对应角的角平分线也相等
=2∠CAB+10°=120°, ∴∠CAB=55°.∵∠B=∠D=25°, ∴∠ACB=180°-∠CAB-∠B=180°-55°-25°=100°.
课堂总结
全等形:能够完全重合的 两个图形叫作全等形.
全等三角 形
全等三角形:能够完全重合的两个 三角形叫作全等三角形.
全等三角 形的性质
全等三角形的 对应边相等
新知讲解
【议一议】
如图 ,已知△ABC ≌ △A′ B′ C′ ,你如何在△A′ B′ C′ 中画出与线
段DE 相对应的线段?
A
A′
E
B
D
C B′
C′
新知讲解
【议一议】 如图 ,已知△ABC ≌ △A′ B′ C′ ,你如何在△A′ B′ C′ 中画出与线 段DE 相对应的线段?
①在A'B'上截取B'E'=BE,在B'C'上截取B'D'=BD
(1)你能说出生活中全等图形的例子吗?
(2)观察下面三组图形,它们是不是全等图形?为什么?与同伴交 流.
形状相同 大小不同
形状不同 大小相同
√
新知讲解
(3)如果两个图形全等,它们的形状和大小一定都相同吗?
全等图形的形状和大小都相同.
北师大版七年级下册数学4.2图形的全等(教案)

(五)总结回顾(用时5分钟)
今天的学习,我们了解了全等图形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对全等图形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解全等图形的基本概念。全等图形是指能够完全重合的两个图形。它是几何学中的一个重要概念,因为它可以帮助我们理解和解决许多实际问题。
2.案例分析:接下来,我们来看一个具体的案例。这个案例展示了全等三角形在建筑图纸中的应用,以及它如何帮助我们计算面积和长度。
3.重点难点解析:在讲授过程中,我会特别强调全等图形的定义和判定方法这两个重点。对于难点部分,比如SAS判定方法,我会通过举例和比较来帮助大家理解。
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与全等图形相关的实际问题,如如何确定两个三角形是否全等。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,比如使用纸片制作全等三角形,并尝试将它们重合。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《图形的全等》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过两个物体看起来完全一样的情况?”比如,你们的文具盒里可能有两支完全相同的铅笔。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索全等图形的奥秘。
-掌握全等图形的表示方法:学生应学会使用“≌”符号来表示两个全等图形。
北师大版七年级数学下册 4.2《图形的全等》教学课件%28共32张PPT%29

EF=7,求∠DEF的度数和CF的长.
E
D
解:∵△ABC≌△DEF,∠A=70°, ∠B=50°,BF=4,EF=7, ∴∠DEF=∠B=50°,BC=EF=7, ∴CF=BC-BF=7-4=3.
C A
F B
典型例题
例4.如图,△ABC≌△ADE,∠CAD=10°,∠B=∠D= 25°,∠EAB=120°,求∠ACB的度数.
探究新知
②如图,已知△ABC≌△A′B′C′,在△A′B′C′中画出与线段DE相 等的对应线段.
典型例题
例1.下列四个图形是全等图形的是( C)
A .(1)和(3) C .(2)和(4)
B .(2)和(3) D .(3)和(4)
典型例题
例2.如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三
探究新知
下面这些图形中有些是完全一样的,如果把它们叠在一起,它们 就能重合.你能分别从图中找出这样的图形吗?
定义:能够完全重合的两个图形称为全等图形.
探究新知
观察下面三组图形,它们是不是全等图形?为什么?
全等图形的性质:如果两个图形全等,它们的形状和大小一定都相同.
探究新知
A
D
B
C
E
F
能够完全重合的两个三角形叫做全等三角形.
(2)如图,△ACB≌△A′C′B′,∠BCB′=30°,则∠ACA′的度数 为___3_0_°_____ .
随堂练习
(3)如图,C为直线BE上一点,△ABC≌△ADC,∠DCF= ∠ECF,则AC和CF的位置关系是 A_C__⊥__C_F.
随堂练习
4.找出下列图形中的全等图形.
(1) (2) (3) (4) (5) (6)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第 1 页 共 3 页
A E 2
1C
B
D
第1题
第2题
第3题
E D C B A
F A F B C D M
E N
1
2 B
A C 《图形的全等》单元练习(5.12)
1、如图,AB=DB ,∠1=∠2,添加下面哪个条件不能判断△ABC ≌△DBE ( )
A 、BC=BE
B 、AC=DE
C 、∠A=∠D
D 、∠ACB=∠DEB
2、如图,工人师傅砌门常用木条EF 固定长方形门框ABCD ,使其不变形,他做法的根据 ( )
A 、两点之间线段最短
B 、长方形的对称性
C 、长方形的四个角都是直角
D 、三角形的稳定性
3、如图,在△ABC 中,P 、Q 分别是BC 、AC 上的点,作PR ⊥AB ,PS ⊥AC ,垂足分别为R 、S ,若AQ =PQ ,PR =PS ,则这四个结论中正确的有
( )
①PA 平分∠BAC ; ②AS =AR ; ③QP ∥AR ; ④△BRP ≌△CSP. A 、4个 B 、3个 C 、2个 D 、1个
4、如图所示,要测量河两岸上对岸两点A 、B 的距离,先在AB 的垂线BF 上取两点C 、D ,使CD=BC ,再在BF 的垂线DE 上取点E ,使A 、C 、E 在同一条直线上,可以得到ΔABC ≌ΔEDC ,得DE=AB ,因此测得ED 的长就是AB 的长,判定ΔABC ≌ΔEDC 的理由是 ( )
A .SSS
B .ASA
C .SAS
D .HL
第4题 第6题 第7题 5、如图,点P 是∠BAC 的平分线AD 上一点,PE ⊥AC 于点E .已知PE=3,则点P 到AB 的距离是
( )
A .3
B .4
C .5
D .6
6、如图,∠E=∠F=90°,∠B=∠C ,AE=AF ,给出下列结论:①∠1=∠2;②BE=CF ;③△ACN ≌△ABM ;④CD=DN ,其中正确的结论有
( )
A 、1个
B 、2个
C 、3个
D 、4个
7、△ABC是格点三角形(顶点在网格线的交点),则在图中能够作出△ABC全等且有一条公共边的格点三角形(不含△ABC)的个数是 ( ) A 、1个 B 、2个 C 、3个 D 、4个
8、如图,给出下列四组条件: ①AB DE BC EF AC DF ===,,; ②AB DE B E BC EF =∠=∠=,,; ③B E BC EF C F ∠=∠=∠=∠,,;
④AB DE AC DF B E ==∠=∠,,.其中,能使ABC DEF △≌△的条件共有 ( )
A .1组
B .2组
C .3组
D .4组
9、如(1)图,由已知AB ⊥BD ,ED ⊥BD ,AB=CD ,BC=DE 可证得AC ⊥CE ,若将CD 沿CB 方向平移到图(2)(3)(4)(5)的情形,其余条件不变,则这四种情况下,结论AC 1⊥C 2E 仍然成立的有
( )
B
R
P
S Q A
C
第5题
A C
B
D F
E
第 2 页 共 3 页
O
C E
A
D
B O
D
C
A
B
E
F
A B C D E
(1) A
B C 1 D E
(2) A
B C 1 D E
(3)
(C 2) A B D (4) E
(C 2) C 1 A B D (5) E
(C 2) C 1 C 2 A 、1个 B 、2个 C 、3个 D 、4个
10、如图,有两个长度相同的滑梯(即BC=EF ),左边滑梯的高度AC 与右边滑梯水平方向的长度DF 相等,则∠ABC+∠DFE= 度..
第11题 第12题 第13题
11、如图,点D E ,分别在线段AB AC ,上,BE CD ,相交于点O AE AD =,,要使ABE ACD △≌△,需添加一个条件是 (只要写一个条件).
12、如图,△ABC 中,AB =AC =6,AC 的垂直平分线交AB 于D ,交AC 于E ,△BCD 的周长为11,则△ABC 的周长为____ ____.
13、如图,已知正方形的边长为4cm ,则图中阴影部分的面积为 cm 2。
14、已知线段AC 与BD 相交于点O ,联结AB DC 、,E 为OB 的中点,F 为OC 的中点,连接EF .(1)添加条件A D ∠=∠,OE=OF ,试说明:AB DC =.
(2)分别将“A D ∠=∠”记为①,“OE=OF ”记为②,“AB DC =”记为③.若以①、③为条件,以②为结论构成命题1;若以②、③为条件,以①为结论构成命题2.则命题1是 命题,命题2是 命题(填入“真”或“假”).
15、已知:AB=DE ,AF=CD ,∠A=∠D , EF=BC ,试说明:BF ∥CE
16、如图,AD 平分∠BAC ,∠BAC +∠ACD =180°,E 在AD 上,BE 的延长线交CD 于F ,连CE ,且∠1=∠2,试说明AB =AC.
第10题 E
B A F C
D E
D
A
C A
C D
B
E F
1
2
A
F E B
C
D
第 3 页 共 3 页
A
B
C
D
E F
图甲
图乙 F
E
D
C
B
A
F E
D
C
B A
图丙
18、已知:正方形ABCD 和正方形AEFG 有一个公共点A, 点G 、E 分别在线段AD 、AB 上.
若将正方形AEFG 绕点A 按顺时针方向旋转, 连结DG ,在旋转的过程中,你能否找到一条线段的长与线段DG 的长始终相等.并以图2为例说明理由.
19、如图:AB ⊥BC ,DC ⊥BC ,E 在BC 上,AB =EC ,BE =CD ,EF ⊥AD 于F ,
(1)试说明F 是AD 中点; (2)求∠AEF 的度数.
20、如图甲,在△ABC 中,∠ACB 为锐角.点D 为射线BC 上一动点,连接AD ,以AD 为一边且在AD 的右侧作正方形ADEF .
解答下列问题:(1)如果AB=AC ,∠BAC=90º.
①当点D 在线段BC 上时(与点B 不重合),如图乙,线段CF 、BD 之间的位置关系为 ,数量关系为 . ②当点D 在线段BC 的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
21、将一张矩形纸片沿对角线剪开,得到两张三角形纸片,再将这两张三角形纸片摆放成如图的形式,使点B、F、C、D在同一条直线上。
(1)求证:AB⊥ED;
(2)若PB=BC,请找出图中与此条件有关的一对全等三角形,并给予证明。
图2
图1
A
C
D
B F
E A
B C
D
E F
M
N
P
A
C F
D B。