(完整版)高中数学通用模型解题方法技巧总结

合集下载

高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法

高中数学解答题8个答题模板与做大题的方法高中数学解答题是每一位学生都要面对的考试难题,要想在考场上取得好成绩,就需要掌握一些答题模板和技巧。

本文将为大家分享一些高中数学解答题的8个答题模板以及做大题的方法。

一、直接套公式有些题目只需要把已知条件代入公式求解即可。

例如:已知正方形的一条对角线长度为10,求正方形面积。

解答:根据正方形对角线公式可知,正方形的边长等于对角线长度的平方除以2,即$a=\frac{\sqrt{2}}{2} \times 10=5\sqrt{2}$正方形面积为$a^2=50$。

二、代数相加减有些题目需要转换成代数式,通过相加减化简后求解。

例如:已知$\frac{x+2}{a}=\frac{4}{x-2}$,求$\frac{x^2+2x}{a^2}$的值。

解答:将已知条件转换为代数式,得到$x+2=\frac{4a}{x-2}$将$x^2+2x$用$x+2$和$x-2$表示出来,可得:$x^2+2x=(x+2)(x-2)+6$代入上式可得:$\frac{x^2+2x}{a^2}=\frac{(x+2)(x-2)+6}{a^2}=\frac{4a^2+6}{ a^2}=4+\frac{6}{a^2}$三、代数移项有些题目需要进行代数移项以消去未知量,例如:已知2x-3y=9,求y。

解答:将未知量y移至等式左侧,可得$2x-9=3y$将等式两侧同时除以3,即得y的值:$y=\frac{2x-9}{3}$。

四、因式分解有些题目需要通过因式分解来求解,例如:已知$x^2+3x-10=0$,求x。

解答:将$x^2+3x-10$进行因式分解,可得$(x+5)(x-2)=0$因此,$x=-5$或$x=2$。

五、有理化有些题目涉及分数,需要进行有理化操作,例如:已知$\frac{1}{\sqrt{3}-1}+\frac{2}{\sqrt{3}+1}=a+b\sqrt{3}$,求a和b的值。

解答:分别对两个分数进行有理化,可得:$\frac{1}{\sqrt{3}-1}=\frac{\sqrt{3}+1}{2}$,$\frac{2}{\sqrt{3}+1}=\sqrt{3}-1$将上式代入原式,可得:$a+b\sqrt{3}=\frac{\sqrt{3}+1}{2}+\sqrt{3}-1=2\sqrt{3}-\frac{ 1}{2}$因此,a= -1/2,b= 2。

高中数学解题方法总结

   高中数学解题方法总结

高中数学解题方法总结高中数学解题方法总结高中数学是一门重要的学科,它不仅考察学生的逻辑思维能力和数学素养,还培养学生的分析问题和解决问题的能力。

在高中数学学习过程中,我们常常遇到各种各样的数学题目,如何有效地解题成为我们必须面对的问题。

本文将总结一些常见的高中数学解题方法,帮助同学们提高解题的效率和准确性。

一、代数解题方法1. 代数方程式解题法:将问题转化成代数方程式,并通过方程求解的方法来得到问题的答案。

这种方法适用于一次方程、二次方程等各种代数方程的解题。

2. 论证法:通过推理论证,根据已知条件导出结论。

这种方法适用于不等式证明、函数性质证明等问题。

3. 反证法:假设结论不成立,通过推理推导出矛盾,从而证明原结论的真实性。

这种方法适用于矩阵、向量等代数题目的证明。

二、几何解题方法1. 直接证明法:通过已知条件直接推导出结论。

这种方法适用于几何定理的证明,如勾股定理、圆的性质等。

2. 反证法:假设结论不成立,通过推理推导出矛盾,从而证明原结论的真实性。

这种方法适用于几何题目的证明,如等腰三角形的性质证明等。

3. 分析法:通过分析几何图形的性质和已知条件,结合相关定理进行推理和解题。

这种方法适用于几何图形的判断和计算题目。

三、概率解题方法1. 列举法:通过枚举每种可能的情况,计算每种情况发生的概率,从而求得总体概率。

这种方法适用于有限样本空间的概率计算题目。

2. 计数法:通过计算事件的样本点个数和总的样本点个数,求得事件发生的概率。

这种方法适用于有规律的样本空间和复杂的概率计算题目。

3. 条件概率法:通过已知条件和条件概率的定义,计算事件在给定条件下的概率。

这种方法适用于条件概率和贝叶斯定理相关的题目。

四、函数解题方法1. 函数图像法:通过函数图像的性质和已知条件,确定函数的变化规律和相关参数。

这种方法适用于函数的性质和变化规律的题目。

2. 函数方程法:通过已知条件和函数方程的关系,求解函数方程的解,从而得到问题的答案。

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结(必备19篇)

高中数学解题技巧方法总结第1篇(1)利用y=sin x和y=cos x的值域直接求.(2)把所给的三角函数式变换成y=A sin(ωx+φ)+b(或y=A cos(ωx+φ)+b)的形式求值域.(3)把sin x或cos x看作一个整体,将原函数转换成二次函数求值域.(4)利用sin x±cos x和sin x cos x的关系将原函数转换成二次函数求值域.高中数学解题技巧方法总结第2篇(1)分组转化求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和后再相加减.(2)裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.(3)错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n项和即可用此法来求,如等比数列的前n项和公式就是用此法推导的.(4)倒序相加法如果一个数列{an}的前n项中首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n项和即可用倒序相加法,如等差数列的前n项和公式即是用此法推导的.(5)并项法一个数列的前n项和中,可两两结合求和,称为并项法求和,形如:(-1)nf(n)类型,可考虑利用并项法求和.高中数学解题技巧方法总结第3篇先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值.推断数列的通项公式解答此类问题的具体步骤:(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项的符号特征和绝对值特征;(5)化异为同,对于分式还可以考虑对分子、分母各个击破,或寻找分子、分母之间的关系;(6)对于符号交替出现的情况,可用(-1)k或(-1)k+1,k∈N*处理.高中数学解题技巧方法总结第4篇以退求进,立足特殊发散一般对于一个较一般的问题,若一时不能取得一般思路,可以采取化一般为特殊(如用特殊法解选择题),化抽象为具体,化整体为局部,化参量为常量,化较弱条件为较强条件,等等。

高中数学答题技巧全套

高中数学答题技巧全套

高中数学答题技巧全套
高中数学答题技巧全套如下:
1. 认真审题:在答题之前,要先仔细阅读题目,理解题目所问,弄清楚题目要求解什么、求什么,以及需要用什么方法求解。

2. 思维分区:将解答题按照知识点和难度分类,先易后难,先重
点后一般,先简单后复杂,分别归类讨论,有助于思路清晰,避免遗漏。

3. 建立模型:在解题过程中,根据题目条件建立数学模型,用数
学语言将题目条件转换成未知数、方程或函数,以便快速高效地求解。

4. 化简推导:在求解过程中,对题目中的复杂表达式进行化简、推导、整理,将冗长、复杂的表达式简化为简洁、清晰的表达式,提高解题效率。

5. 抓住关键步骤:在数学解题中,每个步骤都非常重要,要仔细
推敲、把握每个步骤的分寸,确保每个步骤都是正确的,能够完整地解决问题。

6. 规范书写:在解答题时,要严格按照题目要求书写,注意符号
的使用、单位的统一、方程式的书写、函数图像的绘制等,保证书写
规范、清晰、整齐、有条理。

7. 检查验证:在完成答题后,要仔细检查,特别是对答案进行反复核对,看是否出现漏掉、重复、错误等问题,确保答案准确无误。

8. 多练习、多总结:数学是一门需要不断练习和总结的学科,多做题目、多总结题目规律,可以提高解题能力,增强思维能力,提高答题技巧。

以上是高中数学答题技巧的一些基本要点,希望对你有所帮助。

高中数学模型解题法

高中数学模型解题法

高中数学模型解题法1.审题与解题的关系有的考生对审题重视不够,匆匆一看急于下笔,以致题目的条件与要求都没有吃透,至于如何从题目中挖掘隐含条件、启发解题思路就更无从谈起,这样解题出错自然多。

只有耐心仔细地审题,准确地把握题目中的关键词与量如“至少”,“a>0”,自变量的取值范围等,从中获取尽可能多的信息,才能迅速找准解题方向。

2.“会做”与“得分”的关系要将你的解题策略转化为得分点,主要靠准确完整的数学语言表述,这一点往往被一些考生所忽视,因此卷面上大量出现“会而不对”“对而不全”的情况,考生自己的估分与实际得分差之甚远。

如立体几何论证中的“跳步”,使很多人丢失1/3以上得分,代数论证中“以图代证”,尽管解题思路正确甚至很巧妙,但是由于不善于把“图形语言”准确地转译为“文字语言”,得分少得可怜;再如去年理17题三角函数图像变换,许多考生“心中有数”却说不清楚,扣分者也不在少数。

3.快与准的关系只有“准”才能得分,只有“准”你才可不必考虑再花时间检查,而“快”是平时训练的结果,不是考场上所能解决的问题,一味求快,只会落得错误百出。

如去年第21题应用题,此题列出分段函数解析式并不难,但是相当多的考生在匆忙中把二次函数甚至一次函数都算错,尽管后继部分解题思路正确又花时间去算,也几乎得不到分,这与考生的实际水平是不相符的。

适当地慢一点、准一点,可得多一点分;相反,快一点,错一片,花了时间还得不到分。

4.难题与容易题的关系拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。

近年来考题的顺序并不完全是难易的顺序,因此在答题时要合理安排时间,不要在某个卡住的题上打“持久战”,那样既耗费时间又拿不到分,会做的题又被耽误了。

这几年,数学试题已从“一题把关”转为“多题把关”,因此解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难,因此看似容易的题也会有“咬手”的关卡,看似难做的题也有可得分之处。

高中数学通用模型解题方法及技巧

高中数学通用模型解题方法及技巧

高中数学通用模型解题方法及技巧一、选择题解答模型策略近几年来,陕西高考数学试题中选择题为10道,分值50分,占总分的33.3%。

注重多个知识点的小型综合,渗逶各种数学思想和方法,体现基础知识求深度的考基础考能力的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。

准确是解答选择题的先决条件。

选择题不设中间分,一步失误,造成错选,全题无分。

所以应仔细审题、深入分析、正确推演、谨防疏漏;初选后认真检验,确保准确。

迅速是赢得时间,获取高分的秘诀。

高考中考生“超时失分”是造成低分的一大因素。

对于选择题的答题时间,应该控制在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。

一般地,选择题解答的策略是:①熟练掌握各种基本题型的一般解法。

②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,灵活运用特例法、筛选法、图解法等选择题的常用解法与技巧。

③挖掘题目“个性”,寻求简便解法,充分利用选择支的暗示作用,迅速地作出正确的选择。

二、填空题解答模型策略填空题是一种传统的题型,也是高考试卷中又一常见题型。

陕西高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。

根据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求学生填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。

由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题出现。

二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。

在解答填空题时,基本要求就是:正确、迅速、合理、简捷。

一般来讲,每道题都应力争在1~3分钟内完成。

填空题只要求填写结果,每道题填对了得满分,填错了得零分,所以,考生在填空题上失分一般比选择题和解答题严重。

高中数学解题技巧与方法

高中数学解题技巧与方法

高中数学解题技巧与方法高中数学是一门重要的学科,对于学生来说也是相对较难的一门课程。

许多学生在面对数学题目时感到困扰,不知道如何下手。

本文将介绍一些高中数学解题的技巧和方法,帮助学生提高解题能力。

一、理清思路在解题之前,首先要理清思路。

仔细阅读题目,分析题目的要求和条件。

可以在纸上做标记或者画图来帮助理解题目。

同时,还需要在脑海中构建一个解题方案,明确解题的步骤和方法。

二、多角度思考在解题过程中,不要被固定的思维方式所限制。

尝试从不同的角度思考问题,寻找不同的解题思路。

这样可以帮助我们发现更多的解题路径,并提高解题的灵活性。

三、建立逻辑思维数学问题大多需要通过逻辑推理来解决。

因此,培养逻辑思维是解题的关键。

可以通过做逻辑思维训练题或者进行推理游戏来提高自己的逻辑思维能力。

合理运用推理能力,可以更快地找到解题的方法。

四、归纳总结解题过程中,要善于归纳总结。

将解题的方法和思路记录下来,形成笔记或者思维导图。

这样有助于巩固所学知识,也方便在以后的学习中查阅。

通过总结,我们可以更好地掌握解题的技巧和方法。

五、练习巩固只有通过大量的练习,才能真正掌握解题的技巧和方法。

可以选择一些专门的习题集或者题库进行练习。

在解题过程中,可以注意查漏补缺,弄清楚自己的知识盲点,并通过练习加以强化。

六、寻求帮助如果在解题过程中遇到困难,不要害怕寻求帮助。

可以向老师请教,或者与同学进行讨论。

他们可能提供一种不同的解题思路,帮助我们更好地理解和解决问题。

总结起来,高中数学解题需要理清思路,多角度思考,建立逻辑思维,归纳总结,通过练习巩固,并勇于寻求帮助。

掌握好这些技巧和方法,相信大家在解题过程中能够事半功倍,取得更好的成绩。

加油吧!。

高中数学解题方法与技巧 必背公式总结

高中数学解题方法与技巧 必背公式总结

高中数学解题方法与技巧必背公式总结高中数学解题方法与技巧1、不等式、方程或函数的题型,先直接思考后建立三者的联系。

首先考虑定义域,其次使用“三合一定理”。

2、在研究含有参数的初等函数的时候应该抓住无论参数怎么变化一些性质都不变的特点。

如函数过的定点、二次函数的对称轴等。

3.超越性出现在寻零函数中,首选数形结合的思维方法。

4、恒成立问题中,可以转化成最值问题或者二次函数的恒成立可以利用二次函数的图像性质来解决,灵活使用函数闭区间上的最值,分类讨论的思想(在分类讨论中应注意不重复不遗漏)。

5.选择填空时,应优先选择特殊值法。

6.在利用距离的几何意义求最大值的问题中,首先要考虑两点间最短的线段,经常利用二次结论求距离之和的最小值;三角形的两条边之差小于第三条边,这一结论常用于求最大距离差。

7、求参数的取值范围,应该建立关于参数的不等式或者是等式,用函数的值域或定义域或者是解不等式来完成,在对式子变形的过程中,应优先选择分离参数的方法。

8、在解三角形的题目中,已知三个条件一定能求出其他未知的条件,简称“知三求一“。

9、求双曲线或者椭圆的离心率时,建立关于a、b、c之间的关系等式即可。

10.解三角形时,先确认角点所在的三角形和角点已知的三角形,以便选择合适的三角形和定理。

11、在数列的五个量中:中,只要知道三个量就可以求出另外两个量,简称“知三求二”。

12、圆锥曲线的题目应优先选择他们的定义完成,而直线与圆锥曲线相交的问题,若与弦的中点有关,选择设而不求点差法,与弦的中点无关,选择韦达定理公式法(使用韦达定理首先要考虑二次函数方程是否有根即:二次函数的判别式)。

13、求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简。

14、在求离心率时关键是从题目条件中找到关于a、b、c的两个方程或由题目得到的图形中找到a、b、c的关系式,从而求离心率或离心率的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学通用模型解题方法1.对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”中元素各表示什么?A 表示函数y=lgx 的定义域,B 表示的是值域,而C 表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。

空集是一切集合的子集,是一切非空集合的真子集。

显然,这里很容易解出A={-1,3}. 而B 最多只有一个元素。

故B 只能是-1 或者3。

根据条件,可以得到a=-1,a=1/3. 但是,这里千万小心,还有一个B 为空集的情况,也就是a=0, 不要把它搞忘记了。

3.注意下列性质:要知道它的来历:若B 为A 的子集,则对于元素a1来说,有2种选择 (在或者不在) 同样,对于元素a2, a3,⋯⋯a n,都有2种选择,所以,总共有种选择,即集合A有个子集。

当然,我们也要注意到,这种情况之中,包含了这n 个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为(3)德摩根定律:有些版本可能是这种写法,遇到后要能够看懂4.你会用补集思想解决问题吗?(排除法、间接法)的取值范围。

注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax 2+bx+c(a>0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1. 或者,我说在上,也应该马上可以想到m,n实际上就是方程的2个根5、熟悉命题的几种形式、可以判断真假的语句叫做命题,逻辑连接词有“或”( ),“且” ( )和“非”( ).命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。

)原命题与逆否命题同真、同假;逆命题与否命题同真同假。

6、熟悉充要条件的性质(高考经常考)满足条件,满足条件,7. 对映射的概念了解吗?映射 f :A → B ,是否注意到 A 中元素的任意性和 B 中与之对应元 素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许 B 中有元素无原象。

) 注意映射个数的求法。

如集合 A 中有 m 个元素,集合B 中有 n 个元素,则从 A 到 B 的映射个数有 n m 个。

如:若,;问:到的映射有 个,到的映射有 个;到的函数有 个,若,则到的一一映射有 个。

函数的图象与直线交点的个数为 个。

8. 函数的三要素是什么?如何比较两个函数是否相同?(定义域、对应法则、值域)相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同时具备 )9. 求函数的定义域有哪些常见类型?函数定义域求法:分式中的分母不为零; 偶次方根下的数(或式)大于或等于零; 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。

正切函数余切函数 反三角函数的定义域 函数 y = arcsinx 的定义域是 [-1, 1] ,值域是, 函数 y =arccosx 的定义域是 [- 1, 1] ,值域是 [0, π,] 函数 y =arctgx 的定义域是 R ,值域是 .,函数 y = arcctgx 的定义域是 R ,值域是 (0, π ) .当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个条件的自变量 的范围,再取他们的交集,就得到函数的定义域。

则是的充分非必要条件; 则是的必要非充分条件; 则是的充要条件; 则是的既非充分又非必要条件;10. 如何求复合函数的定义域?义域是 _________________ 。

复合函数定义域的求法: 已知的定义域为,求的定义域, 可由解出 x 的范围,即为的定 义域。

例 若函数的定义域为,则的定义域为 。

分析: 由函数的定义域为可知: ;所以中有。

解: 依题意知:解之,得∴ 的定义域为11、函数值域的求法1、直接观察法 对于一些比较简单的函数,其值域可通过观察得到。

例 求函数 y=的值域2、配方法 配方法是求二次函数值域最基本的方法之一。

例、求函数 y=-2x+5 ,x[-1 ,2] 的值域。

3、判别式法 对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行 化简,不必拘泥在判别式上面下面,我把这一类型的详细写出来,希望大家能够看懂4、反函数法 直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。

例 求函数 y=值域。

5、函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。

我们所说的单调性,最常用的就 是三角函数的单调性。

例求函数 y=,,的值域。

6、函数单调性法 通常和导数结合,是最近高考考的较多的一个内容 例求函数 y=(2≤x ≤10)的值域7、换元法 通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角 函数公式模型。

换元法a. y k+b x 2型:直接用不等式性质b. y例:c.. y2x mx nx y 1+x 2x x 2 mx n , 先化简,再用均值不等式 d. y 2 型 通常用判别式 x mx n2 x mx n型xn法一:用判别式法二:用换元法,把分母替换掉2xx1例: yx 1 ( x+1)2 (x+1)+1 (x+1) 1 1 2 1x 1 x 11112 xbx是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作用。

例求函数y=x+的值域。

8 数形结合法其题型是函数解析式具有明显的某种几何意义,如两点的距离公式直线斜率等等,这类题目若运用数形结合法,往往会更加简单,一目了然,赏心悦目。

22例:已知点P(x.y )在圆x2+y 2=1上,例求函数y=+的值域。

解:原函数可化简得:y=∣ x-2 ∣+∣x+8∣ 上式可以看成数轴上点P(x)到定点A(2),B(-8)间的距离之和。

由上图可知:当点P在线段AB上时,y=∣x-2∣+∣x+8∣=∣AB∣=10当点P在线段AB的延长线或反向延长线上时,y=∣x-2∣+∣x+8∣>∣ AB∣=10 故所求函数的值域为:[10 ,+∞)例求函数y=+ 的值域解:原函数可变形为:y=+上式可看成x 轴上的点P(x,0)到两定点A(3,2),B(-2 ,-1 )的距离之和,由图可知当点P为线段与x 轴的交点时,y= ∣AB∣= =,故所求函数的值域为[,+∞)。

例求函数y= - 的值域解:将函数变形为:y= -上式可看成定点A(3,2)到点P(x,0 )的距离与定点B(-2 ,1)到点P(x,0)的距离之差。

即:y=∣ AP∣ - ∣ BP∣ 由图可知:(1)当点P在x轴上且不是直线AB与x轴的交点时,如点P1,则构成△ABP1,根据三角形两边之差小于第三边,有∣∣AP1∣-∣BP1∣∣<∣ AB∣= =即:-<y<(2)当点P恰好为直线AB与x轴的交点时,有∣∣ AP∣- ∣ BP∣∣ = ∣AB∣= 。

综上所述,可知函数的值域为:(-,-)。

注:求两距离之和时,要将函数式变形,使A,B两点在x 轴的两侧,而求两距离之差时,则要使两点A,B在x轴的同侧。

9 、不等式法利用基本不等式 a+b ≥2,a+b+c ≥3(a ,b , c ∈),求函数的最值,其题型特征解析式是和式时要求积 为定值,解析式是积时要求和为定值,不过有时须要用到拆项、添项和两边平方等技巧。

例: 2x(xx倒数法 有时,直接看不出函数的值域时, 例 求函数 y= 的值域 多种方法综合运用总之,在具体求某个函数的值域时,首先要仔细、认真观察其题型特征,然后再选择恰当的方法, 一般优先考虑直接法,函数单调性法和基本不等式法,然后才考虑用其他各种特殊方法。

12. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗? 切记:做题,特别是做大题时, 一定要注意附加条件,如定义域、单位等东西要记得协商,不 要犯我当年的错误,与到手的满分失之交臂13. 反函数存在的条件是什么?(一一对应函数) 求反函数的步骤掌握了吗? (①反解 x ;②互换 x 、y ;③注明定义域)在更多时候, 反函数的求法只是在选择题中出现, 这就为我们这些喜欢偷懒的人提供了 大方便。

请看这个例题:A .y=x 2-2x+2(x<1)B .y=x 2-2x+2(x ≥1)C .y=x 2-2x (x<1)D .y=x 2- 2x (x ≥1)当然,心情好的同学,可以自己慢慢的计算,我想, 一番心血之后,如果不出现计算 问题的话,答案还是可以做出来的。

可惜,这个不合我胃口,因为我一向懒散惯了,不习惯 计算。

下面请看一下我的思路:原函数定义域为 x 〉 =1,那反函数值域也为 y>=1. 排除选项 C,D. 现在看值域。

原函数 至于为y>=1, 则反函数定义域为 x>=1, 答案为 B.我题目已经做完了, 好像没有动笔(除非你拿来写 * 书)。

思路能不能明白呢?0)=x1x33 x2x应用公式 a+b+c 113xx33 abc 时,注意使 3者的乘积变成常x 2=x (3-2x)(0<x<1.5)x x+3-2x 3( )3 1x (3-2x) 应用公式3abc (a b c ) 3时,应注意使 3者之和变成常数) 3把它倒过来之后,你会发现另一番境况(2004. 全国理)函数的反函数是( B )14.反函数的性质有哪些?反函数性质:1、反函数的定义域是原函数的值域 (可扩展为反函数中的x 对应原函数中的y )2、反函数的值域是原函数的定义域(可扩展为反函数中的y 对应原函数中的x )3、反函数的图像和原函数关于直线=x 对称(难怪点( x,y)和点( y,x )关于直线y=x 对称①互为反函数的图象关于直线y=x 对称;②保存了原来函数的单调性、奇函数性;由反函数的性质,可以快速的解出很多比较麻烦的题目,如( 04. 上海春季高考)已知函数,则方程的解 __________________ .1对于这一类题目,其实方法特别简单,呵呵。

已知反函数的y,不就是原函数的x 吗?那代进去阿,答案是不是已经出来了呢? (也可能是告诉你反函数的x 值,那方法也一样,呵呵。

自己想想,不懂再问我15 . 如何用定义证明函数的单调性?(取值、作差、判正负)判断函数单调性的方法有三种:(1)定义法:根据定义,设任意得 x1,x 2,找出 f(x 1),f(x 2) 之间的大小关系可以变形为求的正负号或者与 1 的关系(2)参照图象:①若函数 f(x) 的图象关于点 (a ,b)对称,函数 f(x) 在关于点 (a ,0)的对称区间具有相同的单调性; (特例:奇函数)②若函数 f(x) 的图象关于直线 x= a对称,则函数 f(x) 在关于点 (a ,0)的对称区间里具有相反的单调性。

相关文档
最新文档