第二章纳米微粒的基本理论
纳米微粒的基础理论课件

沉淀法是通过化学反应使溶液中的离子形成沉淀,再 经过洗涤、干燥得到纳米微粒的方法。
化学法是通过化学反应制备纳米微粒的方法, 主要包括化学气相沉积法、溶胶-凝胶法、沉淀 法等。
溶胶-凝胶法是利用溶胶中的胶体粒子相互聚结 形成凝胶,再通过干燥和热处理得到纳米微粒的 方法。
生物法
1
生物法是利用生物体系中的酶、微生物等生物分 子进行催化或合成纳米微粒的方法,主要包括生 物合成法和生物提取法。
根据应用需求选择合适的制备方法, 如根据所需纳米微粒的尺寸、形貌、 化学成分等特性选择合适的制备方法 。
03
纳米微粒的性质与应用
纳米微粒的物理性质
小尺寸效应
由于纳米微粒的尺寸在纳米级别,其电子能级发 生分裂,导致新的光学、电学和磁学等性质。
表面效应
纳米微粒的巨大表面积与体积比使其表面原子活 性增加,影响其化学反应活性。
量子效应
在纳米尺度上,电子的运动受到限制,表现出显 著的量子效应,影响材料的导电性和磁性。
纳米微粒的化学性质
01
02
03
高反应活性
纳米微粒具有高表面能, 使其在化学反应中表现出 高反应活性。
催化性能
纳米微粒可作为高效的催 化剂,应用于许多化学反 应中。
稳定性与相容性
通过表面修饰,纳米微粒 可以改善其在不同介质中 的稳定性和相容性。
研究和评估。
跨学科合作
纳米微粒的研究和应用涉及多 个学科领域,需要加强跨学科 的合作和交流,促进创新发展 。
技术瓶颈
目前纳米微粒的制备、表征和 应用技术还存在一些瓶颈,需 要加强技术研发和创新。
法规和伦理问题
随着纳米微粒的广泛应用,相 关的法规和伦理问题也逐渐凸 显,需要建立相应的规范和标
第二章 纳米颗粒的基本理论

(2-7)
(2-8)
∆和∆′为能级间隔,在N1=2时只有一个能级间隔∆; N1=3时,有两个能级间隔∆和∆′。
单超微 粒子的比热公式,但实际上无法用实验证明, 这是因为我们只能对超微颗粒的集合体进行 实验。如何从一个超微颗粒的新理论解决理 论和实验相脱离的因难,这方面久保做出了 杰出的贡献。
6
电子能级的不连续性
久保对小颗粒的大集合体的电子能态做了两点主 要假设: (1)简并费米液体假设 简并费米液体假设 把超微粒子靠近费米面附近的电子状态看作是受 尺寸限制的简并电子气,假设它们的能级为准粒子 态的不连续能级,而准粒子之间交互作用可忽略不 计。当kBT<<δ(相邻二能级间平均能级间隔)时,这种 体系靠近费米面的电子能级分布服从Poisson分布: (2-2) ) 1
第二章 纳米微粒的 基本理论
1
电子能级的不连续性 久保(kubo)理论 电子能级的统计学和热力学 量子尺寸效应 小尺寸效应 表面效应 宏观量子隧道效应 库仑堵塞与量子隧穿 介电限域效应
2
一、电子能级的不连续性
久保(kubo)理论 理论 久保 久保理论是关于金属粒子电子性质的理论。 它是由久保及其合作者提出的,以后久保和其 他 研 究 者 进 一 步 发 展 了 这 个 理 论 。 1986 年 Halperin对这一理论进行了较全面归纳,并用这 一理论对金属超微粒子的量子尺寸效应进行了 深入的分析。
17
纳米微粒的基本性质

纳米微粒的基本性质
一、 电子能级的不连续性 二、 量子尺寸效应 三、 小尺寸效应(体积效应) 四、 表面效应 五、 宏观量子隧道效应 六、 库仑堵塞与量子遂穿 七、 介电限域效应
一、 电子能级的不连续性
Kubo理论
1 .简介: Kubo 理论是关于金属粒子电子性质 的理论。 提出:该理论最初 (1962 年 ) 由 Kubo 及其合 作者提出,后经他们发展。 发展:1986年,Halperin对这一理论又进行 了比较全面的归纳,并对金属超微颗粒的量子 尺寸效应进行了深入的分析。
波数K只能取分立值→动量空间中,电子的状态 只能取一系列分立的点→ N个电子将按能量 的大小依次从K小的状态向K大的状态逐一填 充(如此分布的状态,其整体能量最低,称为 体系的基态。) → N个电子填完后最大动量 是PF,其对应的最大波数为KF; 费米动量: N个电子填完后最大动量PF; 费米能EF:根据PF可以求出电子的最大能量 对二维体系和三维体系作类似的处理也可以得 到类似的结果。
(2)纳米材料 对于只有有限个导电电子的超微粒子来说能 级是离散的(低温下) 纳米微粒,所包含原子数有限,N值很小,这 就导致δ有一定的值,即能级间距发生分裂。 (3)产生量子尺寸效应的条件 当能级间距大于热能、磁能、静磁能、静电 能、光子能量或超导态的凝聚能时,这时必须 要考虑量子尺寸效应。
(4)产生影响: 会导致纳米微粒磁、光、热、电以及超导电 性与宏观特性有着显著的不同。 量子尺寸效应产生的最直接影响:纳米材料吸 收光谱的边界蓝移 原因:在半导体纳米晶粒中,光照产生的电 子与空穴不再自由,而是存在库仑作用,此电 子—空穴对类似于宏观材料中的激子。由于空 间的强烈束缚导致激子吸收峰蓝移,边带以及 导带中更高激发态均相应蓝移。
第二章__纳米材料的基本效应

第二章 纳米材料的基本效应 2.4 量子尺寸效应
当粒子尺寸下降到某一值时,金属费米能级附近的
电子能级由准连续变为离散能级的现象,以及半导
体微粒存在不连续的最高被占据分子轨道和最低未
被占据分子轨道,能隙变宽的现象,均称为量子尺
寸效应。
第二章 纳米材料的基本效应 2.4 量子尺寸效应
能带理论表明,金属费米能级附近电子能级一般是 连续的,但只有在高温或宏观尺寸情况下才成立。
第二章 纳米材料的基本效应 2.2 表面效应(界面效应)
表面效应
这种表面原子的活性不但引起纳米粒子表面原子 输运和构型变化,同时也引起表面电子自旋构象和电
子能谱的变化。下面举例说明纳米粒子表面活性高的
原因。
第二章 纳米材料的基本效应 2.2 表面效应(界面效应)
图2-4 将采取单一立方晶格结构的原子尽可能以接近圆(或球)形进行配置的超微粒模式图
金纳米颗粒的熔点与粒径之间的关系曲线。
⑸特殊的力学性质
由纳米超微粒压制成的纳米陶瓷材料却具有良
好的韧性,这是因为纳米超微粒制成的固体材料具有
大的界面,界面原子的排列相当混乱。原子在外力变
形条件下容易迁移,因此表现出很好的韧性与一定的
延展性,使陶瓷材料具有新奇的力学性能。这就是目
前的一些展销会上推出的所谓“摔不碎的陶瓷碗”。
表面效应是指纳米粒子表面原子数与总原子数之比随粒径
的变小而急剧增大后所引起的性质上的变化。如下图。
从图中可以看出,粒径在10nm 以下,将迅速增加表面原子的比 例。当粒径降到1nm时,表面原子 数比例达到约90%以上,原子几 乎全部集中到纳米粒子的表面。
Relationship between the ratio of the surface atoms to whole atoms and particle size
纳米 材料第二章 纳米材料与技术

4.3 纳米材料的表面效应
➢表面效应是指纳米粒子的表面原子数与总原子数之比
随着粒子尺寸的减小而大幅度的增加,粒子的表面能 及表面张力也随着增加,从而引起纳米粒子物理、化 学性质的变化。
1.比表面积的增加
➢ 比表面积常用总表面积与质量或总体积的比值表示。质量比表面积、 体积比表面积
➢ 当颗粒细化时,粒子逐渐减小时,总表面积急剧增大,比表面积相 应的也急剧加大。
2、纳米材料的发展趋势
➢ 探索和发现纳米材料的新现象、新性质
➢ 根据需要设计纳米材料,研究新的合成和制备方法
以及可行的工业化生产技术
➢ 深入研究有关纳米材料的基本理论
第四节 纳米材料的基本效应
4.1 纳米材料的量子尺寸效应 一、原子分立尺寸能效级应
如:各种元素都具有自己特定的光谱线,如氢原子和钠 原子分立的光谱线。 ——作用: 原子光谱,可鉴别外来天体中的元素。 ——对于分子:分子轨道理论 共价键理论
拆开它们是需要能量的,高强度的电场和磁场都能使
之拆开而由超导态进入正常态。
二、磁通量子——磁力线的分布,用磁场作用于铁屑
可直接观察,即磁通量也是量子化的。
三、宏观量子现象
为了区别单个电子、质子、中子等微观粒子的微 观量子现象,把宏观领域出现的量子效应称为宏观量 子效应。
四、宏观量子隧道效应
➢微观粒子具有隧穿势垒的能力称为隧道效应。
3、表面能
铜微粒与表面能
粒径 1mol铜原子的 一个粒子的
/nm
微粒数
质量/g
表面积 /cm2
10
7.1×1018
9.07×10-18 4.2×107
表面能/J 5.8×106
100
7.1×1015
纳米材料与技术-纳米微粒的基本理论

纳⽶材料与技术-纳⽶微粒的基本理论第⼆章纳⽶微粒的基本理论⼀、⼩尺⼨效应⼆、表⾯效应三、量⼦尺⼨效应四、宏观量⼦隧道效应五、库仑堵塞效应六、介电限域效应⼀、⼩尺⼨效应随着颗粒尺⼨的量变,在⼀定条件下会引起颗粒性质的质变。
由于颗粒尺⼨变⼩所引起的宏观物理性质的变化称为⼩尺⼨效应(体积效应)。
对超微颗粒⽽⾔,尺⼨变⼩,就会产⽣如下⼀系列新奇的性质:当微粒的尺⼨与光波波长、电⼦德布罗意波长以及超导态的相⼲长度或透射深度等物理特征尺⼨相当或更⼩时,晶体周期性的边界条件将被破坏,微粒表⾯层附近的原⼦密度减⼩,导致材料的磁性、光吸收、化学活性、催化特性以及熔点等与普通粒⼦相⽐有很⼤变化,这就是纳⽶粒⼦的⼩尺⼨效应。
1. 尺⼨与光波波长(⼏百nm )相当颗粒光吸收极⼤增强、光反射显著下降(低于1%);⼏个nm 厚即可消光,⾼效光热、光电转换 ? 红外敏感、红外隐⾝固体在宽谱范围内对光均匀吸收光谱蓝移(晶体场)、新吸收带等。
2. 与电⼦德布罗意波长相当铁电体 ? 顺电体;多畴变单畴,显出极强的顺磁性。
20nm 的Fe 粒⼦(单磁畴临界尺⼨),矫顽⼒为铁块的1000倍,可⽤于⾼存储密度的磁记录粉;但⼩到6nm 的Fe 粒,其矫顽⼒降为0,表现出超顺磁性,可⽤于磁性液体(润滑、密封)等离⼦体共振频移(随颗粒尺⼨⽽变化):改变颗粒尺⼨,控制吸收边的位移,制造具有⼀定频宽的微波吸收纳⽶材料(电磁波屏蔽、隐型飞机等)纳⽶磁性⾦属磁化率提⾼20倍(记录可靠);饱和磁矩仅为1/2(更易擦除)。
3. 晶体周期性丧失,晶界增多熔点降低(2nm 的⾦颗粒熔点为600K ,随粒径增加,熔点迅速上升,块状⾦为1337K ;纳⽶银粉熔点可降低到373K )? 粉末冶⾦新⼯艺界⾯原⼦排列混乱→易变形、迁移表现出甚佳的韧性及延展性纳⽶磷酸钙构成⽛釉,⾼强度、⾼硬度纳⽶Fe 晶体断裂强度提⾼12倍;纳⽶Cu 晶体⾃扩散是传统的1016-19倍;纳⽶Cu 的⽐热是传统Cu 的2倍;纳⽶Pd 的热膨胀系数提⾼⼀倍;纳⽶Ag ⽤于稀释致冷的热交换效率提⾼30%,等等。
纳米材料导论 第二章 纳米粒子的制备方法

2.2.1机械粉碎法
6.纳米气流粉碎气流磨
原 理 : 利 用 高 速 气 流 (300—500m/s) 或 热蒸气(300—450℃)的能量使粒子相互 产生冲击、碰撞、摩擦而被较快粉碎。 在粉碎室中,粒子之间碰撞频率远高 于粒子与器壁之间的碰撞。 特点:产品的粒径下限可达到0.1μm以 下。除了产品粒度微细以外,气流粉 碎的产品还具有粒度分布窄、粒子表 面光滑、形状规则、纯度高、活性大、 分散性好等优点。
基本粉碎方式:压碎、剪碎、冲击粉碎 和磨碎。
种类:湿法粉碎
干法粉碎
一般的粉碎作用力都是几种力的组合,如球磨机和振动
磨是磨碎与冲击粉碎的组合;雷蒙磨是压碎、剪碎、磨
碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。
7
球磨过程中引起粉末粒度发生变化的机理有两种: 一种:颗粒之间或颗粒与磨球之间互相摩擦,使得一定粒度范 围内的颗粒造成表面粉碎,结果形成大和小两种粒度的新颗粒, 称为摩擦粉碎或表面粉碎。 另一种:由于球对颗粒或颗粒对颗粒的冲击、碰撞和剪切等 作用,从颗粒中近似等体积地分割出两个小颗粒,称为冲击压缩 粉碎或体积粉碎。
4)材质可选择玛瑙, 氮化硅,氧化铝,氧化 锆,不锈钢,普通钢, 碳化钨,包裹塑料的不 锈钢。
12
滚筒式球磨
13
行星球磨
14
参考文献:
2.2.1机械粉碎法
1)高能球磨制备ZnSe纳米晶粉体
车俊 姚熹 姜海青 汪敏强,西安交通大学,
《稀有金属材料与工程》-2006
将相同摩尔比的Zn粉和Se粉放在球磨罐(WC)中,选用球石 直径为10mm,原料:球石=1:20,干磨,在氮气保护下, 球磨60min即可获得纯立方闪锌矿结构,避免了ZnO相的出 现。晶粒的尺寸用Scherrer公式计算为5nm,用TEM直接观察 的尺寸为10nm左右。
第二章 纳米粒子的制备方法

5、金属烟粒子结晶法
(1)原理 将金属原料置于真空室电极处→真空室抽空 (真空度1 Pa) →导入102~103Pa压力的氢气 或不活泼性气体→用钨丝篮蒸发金属(类似通 常的真空蒸发) →在气体中形成金属烟粒子→ 像煤烟粒子一样沉积于真空室内壁上。 在钨丝篮上方或下方位置可以预先放置格网收 集金属烟粒子样品,以备各类测试所用。 金属烟粒子的实验原理如图2.2所示。
气流粉碎机
三、蒸发凝聚法
1、定义:将纳米粒子的原料加热蒸发,使之成为原 子或分子;这些微粒子与惰性气体碰撞失去能量而凝 聚,生成极微细的纳米粒子。 加热源:电阻、等离子电弧、激光、电子束、高频感应 等。 2、特点 (1)应用范围广(金属、合金、部分化合物;加热方式 多)。 (2)工艺简单。 (3)纳米粒子纯度较高。 (4)设备要求高,产率低。 (5)粒子收集困难。
6、几种典型的纳米粉碎技术
(1)球磨 原理:利用介质和物料之间的相互研磨和冲击使 物料粒子粉碎。 介质:各种磨球。 转速:可调。 类型:多样。行星式、滚筒式等。 效果:经几百小时的球磨,可使小于1μ m的粒 子达到20%。采用涡轮式粉碎的高速旋转磨 机,也可以比较方便地进行连续生产,其临界 粒径为3μ m。
4、纳米粉体生产的安全性
对于易燃、易爆物料,其粉碎生产过程中还会 伴随有燃烧、爆炸的可能性,这是纳米机械粉 碎技术应予以考虑的安全性问题。 5、纳米机械粉碎的极限问题 (1)定义:粉碎到一定程度后,尽管继续施加 机械应力,粉体物料的粒度不再继续减小或减 小的速率相当缓慢,这就是物料的粉碎极限。 在纳米粉碎中,随着d↓,被粉碎物料的结晶均 匀性↑,粒子强度(σ )↑,断裂能(σ s)↑,粉 碎所需的机械应力也大大增加↑。因而粒子度 越细,粉碎的难度就越大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
对材料光学现象的影响
介电限域对光吸收带边移动(蓝移、红移)的影响:
布拉斯(Brus)公式:
式中E(r)为纳米微粒的吸收带隙,Eg(r = ∞)为体相的带隙,r为粒子 半径,μ=[1/me-1+1/mh+]为粒子的折合质量,其中me-1和 mh+分别为电子和 空穴的有效质量.第二项为量子限域能(蓝移),第三项表明,介电限域 效应导致介电常数增加,同样引起红移。第四项为有效里德伯能。
• 隧道效应:微观粒子具有贯穿势垒的能力。 • 宏观的量子隧道效应 :近年来人们发现一些宏观物理量,如微 颗粒的磁化强度、量子相干器件中的磁通量等亦显示出隧道效 应,通常称为宏观量子隧道效应。量子尺寸效应、宏观量子隧道 效应将是未来微电子、光电子器件的基础,或者可以说它指出了 现有微电子器件进一步小型化的物理极限,当微电子器件进一步 微型化时必须考虑上述的量子效应。 • 由于电子具有波粒二象性因此存在隧道效应,而纳米材料的一 些宏观物理量也表现出隧道效应故称为宏观量子隧道效应。
(2)超微粒子电中性假设:对于一个超微粒子取走或放入一个 电子都是十分困难的。他提出一个著名公式:
W为从一个超微粒子取走或放入一个电子克服库仑力所做的功;d为超微粒直 径;e为电子电荷。
当颗粒尺寸为1nm时,W<δ两个数量级, kBT «δ,量子尺寸效 应明显。
久保及其合作者提出相邻电 子能级间距和粒径的关系:
上述效应使纳米微粒具有“反常现象”
1、纳米金属微粒在低温时由于量子尺寸效应会呈现电绝缘性 2、一般PbTiO3,BaTiO3和SrTiO3等是典型铁电体,但当其尺寸进入纳米数量级 就会变成顺电体 3、铁磁性的物质进入纳米级(~5mn),由于由多畴变成单畴,于是显示极强顺 磁效应 4、粒径为十几纳米的氮化硅微粒组成了纳米陶瓷时,已不具有典型共价键特 征,界面键结构出现部分极性,在交流电下电阻很小 5、化学惰性的金属铂制成纳米微粒(铂黑)后却成为活性极好的催化剂 6、金属由于光反射显现各种美丽的特征颜色,金属的纳米微粒光反射能力显 著下降,通常可低于1%,由于小尺寸和表面效应使纳米微粒对光吸收表现极 强能力 ,通常程黑色
2.7 介电限域效应
• 介电限域: 纳米微粒分散在异质介质中由于界面引起的体系介电增强 的现象,这种介电增强通常称为介电限局,主要来源于微粒 表面和内部局域强的增强。
当介质的折射率比微粒的折射率相差很大时,产生了折射率 边界,这就导致微粒表面和内部的场强比入射场强明显增加, 这种局域强的增强称为介电限域。 一般来说,过渡族金属氧化物和半导体微粒都可能产生介电 限域效应。纳米微粒的介电限域对光吸收、光化学、光学非 线性等会有重要的影响。
2.3 小尺寸效应
• 概念:当超细微粒的尺寸与光波波长、德布罗意波长 以及超导态的相干长度或透射深度等物理特征尺寸相 当或更小时,晶体周期性的边界条件将被破坏;非晶 态纳米微粒的颗粒表面层附近原子密度减小,导致声、 光、电、磁、热、力学等特性呈现新的小尺寸效应。 • 小尺寸效应:
– 光吸收显著增加,并产生吸收峰的等离子共振频移 – 磁有序态向磁无序态、超导相向正常相的转变 – 声子谱发生改变
纳米Cu微粒的粒径与比表面积,表面原子数比例,表面 能和一个粒子中的原子数的关系 粒径 d(nm) 100 20 10 5 66 Cu的比表 表面原子/ 一个粒子中 面积/m2· -1 全部原子 的原子数 g 6.6 10 20 40 8.46×104 1.06×104 5.9×104 5.9×103 8.46×107 比表面能 /J· -1 mol 5.9×102
第二章 纳米微粒的基本理论
2.1 电子能级的不连续性
2.1.1 久保理论
关于金属粒子电子性质的理论,当颗粒尺寸进入到纳米级时 ,由于量子尺寸效应,金属超微颗粒费米面附近电子能级状态分 布发生变化,原大块金属的准连续能级产生离散现象。 低温下单个小粒子的费米面附近电子能级看成等间隔的 能级。单个超微粒子的比热可表示为:
• 宏观物体包含无限个原子(即导电电子数N→ ∞))可得能 级间距δ→ 0,即对大粒子或宏观物体能级间距几乎为零; 对纳米微粒,所包含原子数有限,N值很小,这就导致δ有 一定的值,即能级间距发生分裂。
• 当能级间距大于热能、磁能、静磁能、静电能、光子能量 或超导态的凝聚能时,这时必须要考虑量子尺寸效应,这 会导致纳米微粒磁、光、声、热、电以及超导电性与宏观 特性有着显著的不同。
CdS团簇的光学非线性增强
Lap-Tak Cheng 组研究发现,包覆苯硫酚的CdS团簇具有很大 的光学三阶非线性极化率χ,且χ随着团簇尺寸的增大而增大。
APL,66(1989)3417
• 画图说明手性矢量、手性角和碳纳米管结构类 型之间的关系。根据纳米碳管的一单胞画图说 明n = 3, m = 6时的手性矢量和手性角,并判断 其导电性能。
应用
准熔化相概念的提出 纳米尺度的强磁性颗粒(Fe-Co合金,氧化铁等)。当颗 粒尺寸为单磁畴临界尺寸时,具有甚高的矫顽力,可制成 磁性信用卡、磁性钥匙、磁性车票等,还可以制成磁性液 体,广泛地用于电声器件、阻尼器件、旋转密封、润滑、 选矿等领域. 纳米微粒的熔点可远低于块状金属。2nm的金颗粒熔点为 600K,随粒径增加,熔点迅速上升,块状金为1337K;纳 米银粉熔点可降低到373K,此特性为粉末冶金工业提供了 新工艺。 利用等离子共振频率随颗粒尺寸变化的性质,可以改变颗 粒尺寸,控制吸收边的位移,制造具有一定频宽的微波吸 收纳米材料,可用于电磁波屏蔽、隐形飞机等.
δ为能级间隔, kB为玻尔兹曼常量,T为绝对温度.
• 高温下:kBT» δ,温度与比热呈线性关系,这与大块金属的比 热关系基本一致;
• 低温下(T → 0),kBT «δ,则与大块金属完全不同,温度与比 热呈指数关系。
久保提出两点假设: (1)靠近费米面附近的电子状态是受尺寸限制的简并电子气, 能级为准粒子态的不连续能级,准粒子间交互作用忽略不计。 电子能级分布服从泊松(Poisson)分布
2.4 表面效应
表2.3 纳米微粒尺寸与表面原子数的关系
纳米微粒尺寸 包含总原 d(nm) 子数 10 4 3×104 4×103 表面原子所 占比例(%) 20 40
2
1
2.5×102
30
80ቤተ መጻሕፍቲ ባይዱ
99
图2.3 表面原子数占全部原子数的 比例和粒径之间的关系
纳米微粒尺寸小,表面能高,位于表面的原子占相 当大的比例。
• 计算Ag颗粒在20nm时, 1K温度下的能级间隔 是多少?并判断此时Ag颗粒是否具有量子尺寸 效应?
样品在室温下有较强的光致发光现象。 •由于体相时SnO2半导体激子束缚能很小, 在室温下不能观察到任何光致发光现象。 •当在SnO2纳米微粒表面包覆一层介电常 数较小的有机分子后,介电限域效应导 致SnO2表面结构变化,使原来禁戒跃迁 变得允许,因而在室温下可观测到较强 的光致发光现象。 相同粒径,不同包覆SnO2纳米微 粒的荧光光谱
和体相材料相比,被有机分子 包覆的SnO2纳米微粒吸收带边 明显红移;相同粒径时,包覆 物与SnO2的介电常数相差越大, 吸收边红移程度越大。
相同粒径,不同包覆SnO2纳米微 粒的吸收光谱
介电限域效应对SnO2纳米微粒光学特性的影响
1—硬脂酸(ST) 2—琥珀酸-2-己脂磺酸钠(AOT) 3—十二烷基苯磺酸钠(DBS)
2
1 660
80
99
由于表面原子数增多,原子配位不足及高的表面能,使 这些表面原子具有高的活性。
表面原子的活性不但引起纳米粒子表面原子输运和构型的变化, 同时也引起表面电子自旋构像和电子能谱的变化。
图2.4 将采取单一立方晶格结构的原子尽可能以 接近圆(或球)形进行配置的超微粒模式图。
2.5 宏观量子隧道效应 macro quantum tunneling effect
7、颗粒为6nm的纳米Fe晶体的断裂强度较之多晶Fe提高12倍
8、纳米Cu晶体自扩散是传统晶体的1016至1019倍,是晶界扩散的103倍 9、纳米金属Cu比热是传统纯Cu的两倍;纳米固体Pd热膨胀提高一倍;纳米Ag 晶体做为稀释致冷机的热交换器效率较传统材料高30%;纳米磁性金属的磁化 率是普通金属的20倍而饱和磁矩是普通金属的1/2
过渡族金属氧化物,如 Fe2O3,Co2O3,Cr2O3和 Mn2O3等纳 米粒子分散在十二烷基苯磺酸钠(DBS)中出现了光学三阶 非线性增强效应.
介电限域效应对SnO2纳米微粒光学特性的影响
1—硬脂酸(ST) 2—琥珀酸-2-己脂磺酸钠(AOT) 3—十二烷基苯磺酸钠(DBS) 介电常数: ɛ1< ɛ2< ɛ3
估计Ag微粒在1K时出现量子效应(导体变成绝缘体)的 临界粒径da:(Ag的电子数密度n1=6 ×1022 cm-3)
由公式 和
得到
当T = 1K时,能级最小间距δ/kB =1, 求得 d = 20nm
根据久保理论,只有当δ>kBT时才会产生能级分裂,即
由此得出:当粒径d<20nm,Ag纳米微粒变为非金属绝缘体, 如果温度高于1K,则要求d0« 20nm才有可能变为绝缘体。 实际情况下金属变为绝缘体除了满足δ>kBT外,还需满足电子 寿命,τ>ħ/δ的条件。
N ,一个超微粒的总导电电子数 V,超微粒体积, EF为费米能级 ,可表示为 图2.1 粒径与能级间隔的关系
随着粒径的减小,能级间隔增大
n1为电子密度,m为电子质量
2.1.2 电子能级的统计学和热力学
• 子系综(subensemble):平均能级间隔处于δ~ δ + dδ范围内的 小粒子的集合体。 • 电子能级分布取决于粒子的表面势、电子哈密顿量的基本对 称性;当粒子表面势不同使得简并态消失时,就取决于哈密 顿量的变换性质:自旋-轨道交互作用<Hso>、外界磁场μBH 与δ相比较的强弱程度 • 概率密度PaN1有四种分布:a= 0, 1, 2, 4 (泊松分布、正交分布、 么正分布、耦对分布) 设电子的整个能谱用能态间隔为: 当H = 0时,找到N1个电子能级的概率表示为: