三相异步电动机的结构与工作原理
三相异步电动机的结构,原理,以及启动和反转的方 法

三相异步电动机的结构、原理、启动和反转方法
一、结构
三相异步电动机主要由定子、转子和端盖等部分组成。
定子是电动机的固定部分,主要由铁心和线圈组成,铁心由相互绝缘的硅钢片叠成,以减少涡流损耗。
线圈由三相绕组组成,绕组的电流产生旋转磁场,使转子转动。
转子是电动机的旋转部分,主要由铁心和绕组组成,绕组电流产生电磁转矩使电动机旋转。
二、原理
三相异步电动机的工作原理是基于电磁感应定律。
当三相电流通过定子绕组时,会产生旋转磁场。
旋转磁场与转子绕组中的电流相互作用,产生电磁转矩,使电动机旋转。
电动机的旋转方向与旋转磁场的旋转方向相同。
三、启动方法
1.直接启动:直接启动是最简单的启动方法,适用于小容量电动机。
启动时,将电动机与电源直接连接,启动电流较大,但启动时间较短。
2.降压启动:对于大容量电动机,直接启动会导致过大的启动电流,因此需要采用降压启动方法。
降压启动是通过降低电动机端电压来减小启动电流的方法。
常用的降压启动方法有星形-三角形启动和自耦变压器启动等。
四、反转方法
1.倒顺开关反转:倒顺开关是一种可以改变电动机旋转方向的开
关。
使用倒顺开关反转时,需要先切断电源,然后将倒顺开关的转换手柄从正转位置切换到反转位置即可。
2.改变电源相序:改变电源相序可以改变电动机的旋转方向。
具体方法是,将电源的三相电压中的任意两相交换,即可实现电动机的反转。
3.改变电机接线:对于绕线式电动机,可以通过改变电机接线的方式来改变旋转方向。
具体方法是,将绕组接线方式从正转接线改为反转接线即可实现电动机的反转。
三相异步电动机的基本结构和工作原理

三相异步电动机的基本结构和工作原理三相异步电动机的基本结构包括定子和转子。
定子是固定不动的部分,由三个互相间隔120度的线圈组成。
这些线圈通过铜线绕制在定子的铁芯上,形成三个独立的相互连接的线圈,分别称为A相、B相和C相。
每个线圈都与电源的一相连接。
转子是旋转的部分,由导体棒组成。
导体棒通常是由铝或铜制成,固定在转子的铁芯上。
通过导体棒的旋转运动,产生相对于定子线圈的运动。
转子和定子之间通过空气隙分离,因此它们没有物理接触。
当转子在旋转磁场中运动时,磁场穿过转子导体棒,感应出在棒上出现电动势。
根据电磁感应定律,当导体棒相对于磁场运动时,会在导体上产生电流。
这个电流与定子线圈中的电流产生互相作用,产生电动力。
电动力会使导体棒受到力的作用,并且开始自动旋转。
导体棒受到的力是由定子线圈中的交变磁场产生的。
这个力始终试图使导体棒对齐磁场并旋转。
由于定子线圈中的电流随时间的变化而变化,所以导体棒会不断地受到不同方向的力的作用,这使得转子在一个方向上旋转。
为了控制和调整电动机的速度,一个附加的元件称为转子电阻器和变频器经常用于传统的三相异步电动机。
转子电阻器用于降低转子的起始电流,变频器用于调整电源频率,从而控制电动机的速度。
总之,三相异步电动机通过电磁感应和电动力实现转子的旋转运动。
它的基本结构包括定子和转子,其中定子是固定的,转子是旋转的。
通过定子线圈中的交变磁场和转子导体棒的电动力相互作用,使得电动机可以产生旋转运动。
转子电阻器和变频器可以用于控制和调整电动机的速度。
三相异步电动机的基本结构和工作原理

三相异步电动机的基本结构和工作原理基本结构:定子是由铁芯和绕组组成的。
铁芯通常采用硅钢片制造,以减小磁滞和涡流损耗。
定子绕组是用导电材料,如铜线等,绕制在铁芯上。
绕组中的线圈分为三组对称的绕组,分别连接在三个相位的电源上。
转子是由铁心和导体环组成的。
铁芯是由硅钢片制造,类似于定子的结构。
导体环由铝导线制成,通常是槽形。
导体环被放置在铁心内,可以转动。
工作原理:当电机接通电源时,三个相位的电流将分别通过定子的三组绕组。
这样,在定子内就会形成一个旋转磁场,它的速度与电源的频率有关。
当转子静止时,由于转子中的导体环在定子旋转磁场的作用下产生感应电动势,感应电动势会引起转子内的感应电流流动。
由于导体环是闭合的,感应电流会在转子上形成一个感应磁场。
由于定子旋转磁场的速度与感应磁场的速度不同,所以转子会因为磁力的作用而开始转动。
当转子开始转动时,感应磁场与定子旋转磁场的速度之差会产生一个力矩,使转子继续转动。
转子的转动速度与旋转磁场的速度不同,因此它们之间产生了一种称为滑差的差异。
滑差越大,转子的力矩越大,电动机的转速越快。
当转子的转速接近同步转速时,滑差逐渐减小,转子的转速也减小,最终与旋转磁场的速度同步。
这时,滑差变为零,电动机达到了额定转速。
总结:三相异步电动机的基本结构是由定子和转子组成的。
它的工作原理是通过定子和转子之间的相对运动产生的磁场效应来实现转子的转动。
在工作过程中,定子产生一个旋转磁场,而转子产生一个感应磁场,二者之间的差异产生一种力矩,使转子沿着旋转磁场的方向转动。
最终,当转速接近同步转速时,电动机将达到额定转速。
三相异步电动机的结构及工作原理

三相异步电动机的结构及工作原理三相异步电动机是一种常见的电动机类型,广泛应用于各个领域。
它的结构和工作原理是理解和研究该电动机的基础。
本文将从结构和工作原理两个方面详细介绍三相异步电动机。
一、结构三相异步电动机的结构主要由定子和转子两部分组成。
1. 定子定子是电动机的固定部分,通常由定子铁心和绕组构成。
定子铁心是由许多硅钢片叠压而成,以减小磁滞损耗和涡流损耗。
绕组则是由若干匝的导线绕制而成,通常采用Y型连接方式。
2. 转子转子是电动机的旋转部分,通常由转子铁心和导体构成。
转子铁心也是由许多硅钢片叠压而成,以减小磁滞损耗和涡流损耗。
导体则通常采用铝或铜制成,通过槽道安装在转子铁心上。
二、工作原理三相异步电动机的工作原理基于电磁感应和旋转磁场的相互作用。
1. 电磁感应当三相电源接通时,定子绕组中的电流会产生旋转磁场。
这个旋转磁场由三相电流在定子绕组中产生的磁场叠加而成。
定子绕组中的电流会根据电源频率的变化而改变方向和大小,从而使旋转磁场也随之变化。
2. 旋转磁场与转子转子中的导体受到旋转磁场的影响,会感应出电动势,并产生电流。
根据电磁感应的原理,电动势的方向与磁场的方向垂直。
因此,转子中的电流也会随着旋转磁场的变化而变化。
转子中的电流与旋转磁场之间的相互作用力使转子开始旋转。
3. 转子的运动转子开始旋转后,它的转速会逐渐接近旋转磁场的转速。
由于电动势的存在,转子中的电流会继续产生,并与旋转磁场之间的相互作用力保持平衡。
这样,转子会以接近旋转磁场的转速旋转,从而实现电动机的工作。
三、小结三相异步电动机的结构和工作原理是相互关联的。
定子产生旋转磁场,而转子通过电磁感应与旋转磁场相互作用,从而实现电动机的运转。
这种电动机具有结构简单、工作可靠、效率高等优点,广泛应用于各个领域。
通过本文的介绍,相信读者对三相异步电动机的结构和工作原理有了更深入的了解。
在实际应用中,我们可以根据具体需求选择合适的电动机,并合理运用其工作原理,以提高生产效率和降低能耗。
三相异步电动机的结构及工作原理

三相异步电动机的结构及工作原理一、结构1.定子:定子是三相异步电动机的固定部分,由一组三相绕组和铁心组成。
定子绕组是由若干个线圈组成的,线圈中通以三相交流电流。
定子线圈的排列方式有很多种,常见的是星形和三角形。
2.转子:转子是三相异步电动机的旋转部分,它位于定子内部,可以自由转动。
转子一般由铸铁、硅钢片等材料制成,其外部有凸起的鳍片,用于散热。
3.末端盖:末端盖是封闭定子和转子的部件,它使电机的内部结构不受外界的干扰,并起到保护电机的作用。
4.风机:风机是将冷却气流引入电机内部,冷却电机的部件。
通常位于转子的轴上。
5.轴承:轴承用于支撑转子的转动,并减小摩擦损失。
6.绝缘材料:为了防止电机出现电击、漏电或短路等安全问题,电机内使用绝缘材料,如绝缘胶带、绝缘漆等。
二、工作原理1.感应定律:当三相异步电动机的定子绕组中通以三相交流电流时,根据感应定律,定子的磁场会随电流产生变化,从而在定子和转子之间产生感应电磁场。
2.洛伦兹力定律:当有导电体在磁场中运动时,会受到洛伦兹力的作用。
在三相异步电动机中,转子在感应电磁场的作用下,会受到洛伦兹力的作用,使转子旋转起来。
1.启动:当三相异步电动机启动时,通过外部电源施加的电压使定子绕组通以三相交流电流。
由于定子通电,产生的磁场会引起转子中的感应电磁场,从而使转子受到洛伦兹力的作用,开始旋转。
2.运行:当转子开始旋转后,根据转子和定子之间的磁场耦合作用,磁场的变化会引起定子绕组中感应电流的变化。
这些感应电流会产生一个与定子的磁场相反的磁场,从而与转子的磁场相互作用。
3.差动效应:由于定子和转子的磁场相互作用,铁心中会有幅度不断变化的磁场,这种现象称为差动效应。
差动效应使得电动机的输出速度和负载之间能够保持相对稳定的差异。
4.调速:三相异步电动机的转速取决于输入的电压频率和负载的阻力。
通过改变输入的电压频率和负荷的阻力,可以实现对三相异步电动机的调速。
总结:三相异步电动机的结构复杂,但工作原理相对简单。
三相异步电动机的结构与工作原理

1. 异步电动机的结构部件
定子:定子铁心、定子绕组和机座等部分
转子:转子铁心、转子绕组、风扇和转轴等部分
2. 分类
笼型异步电动机(结构简单、制造方便、成本
按转子绕组的结构分类
低、运行可靠)
绕线型异步电动机(转子可通过外串电阻来
改善电机的性能)
3. 定子绕组的联结------星形和三角形
2020/10/16
问题四:如何理解异步电机中“异步”的含义? 如何理解异步电动机中“异步”的含义?
产生电磁力F,形成电磁转矩T ,当电磁力矩大于转子所受的阻力
矩的时候,转子就沿着电磁转矩方向旋转起来。电机把由定子输入 的电能转变成机械能从轴上输出。
四 几个问题
问题一: 三相异步电动机的旋转方向决定于什么因素?如何改变其转向? 问题二:如何理解异步电动机又称感应电动机? 问题三:什么是转差率?转差率如何表示? 问题四:如何根据转差率的大小区分异步电机的三种运构与工作原理
1
旋转磁场的形成、特点
假定:首进尾出的方向为电流的正方向
1.旋转磁场的转向决定于通入定子绕组 中三相电流的相序;
2.如何改变旋转磁场的转向? 3.旋转磁场的转速称为同步转速,
n1
60 f1 P
2020/10/16
一、三相异步电动机的结构
二、三相异步电动机的铭牌
1. 额定功率PN :电动机在额定运行时转轴上输出的机械功率,单位是kW 2. 额定电压UN :额定运行时电网加在定子绕组上的线电压,单位是V或kV 3. 额定电流IN :电动机在额定电压下,输出额定功率时,定子绕组中的线
电流,单位是A。 4. 接法: 用Y或D表示。表示在额定运行时,定子绕组应采用的联接方式
PN 3UN IN cosNN
三相交流异步电动机的结构及工作原理

三相交流异步电动机的结构及工作原理三相交流异步电动机是一种常用的电动机,它由两部分组成:定子、
转子两大部分。
定子绕组是由三路并联的绕组组成,极数分别为U,V,W,腔体是普通铁芯或非普通铁芯,转子绕组是由轴链或槽链绕组组成,极数
为P,两部分之间由空气绝缘而成。
1.三相交流电源经过定子绕组的三根线路供电,产生的磁感场与定子
绕组相互作用,从而产生电流,从而对转子进行励磁,使转子产生转动惯性。
2.根据电磁感应定律,转子的磁感场受定子的励磁磁场作用,产生的
供应电流分量和反作用力,使转子磁感场增大,重复循环,由此使转子不
断转动,实现转动功率输出。
3.随着转子转动,定子的磁感场和转子的磁感场同时产生的励磁电流
也不断在变化,由于转子的转速不同,励磁电流呈不同的波形,所以不同
的波形可以被电动机自动控制。
1.结构简单,维修方便,可靠性高,外形小巧,重量轻
2.性能好,制造成本低,磁饱和后的启动电流低,低转矩波动量小
3.三相电的利用率较高,定子绕组的电压损耗低。
4.供电可以采用直流电源给转子投切。
三相异步电动机的结构和工作原理

三相异步电动机的结构和工作原理三相异步电动机是一种常用的交流电动机,具有结构简单、可靠性高、维护方便等特点,广泛应用于工业生产和家用电器中。
它的主要结构包括定子、转子、端盖和轴承等部分。
其工作原理是利用交变电流在定子中产生旋转磁场,使转子在磁场作用下转动,从而实现电能转化为机械能。
三相异步电动机的结构包括定子部分和转子部分。
定子由电磁铁芯和绕组组成。
电磁铁芯一般由硅钢片叠装而成,以减小铁损和磁滞效应。
绕组由若干个三相对称分布的线圈组成,每个线圈绕在一个铁芯槽中。
而转子是由铁芯、导体棒和端环组成。
导体棒焊接在两个端环上,导体棒的数量等于定子线圈的数目。
三相异步电动机的工作原理是基于电磁感应和电磁力的相互作用。
当三相交流电通过定子线圈时,会在定子中形成旋转磁场。
这个旋转磁场的频率与输入电源的频率相同,但转速略低于同步转速,所以称为异步电机。
此时,若在转子上施加一个恒定的力矩,转子将开始绕定子旋转,将电能转化为机械能。
具体来说,当三相交流电的一个相位通过定子的其中一个线圈时,这个线圈中会形成一个旋转磁场。
由于定子中的线圈是对称分布的,所以整个定子中会形成一个旋转磁场。
这个旋转磁场将穿透转子,使得转子内部的导体棒感受到电磁力,因而受到电磁力的作用而开始转动。
在转子旋转的过程中,转子上的导体棒会不断与定子旋转磁场的不同极性区域相遇,导致感应电动势的产生。
这产生的感应电动势会引起转子上的感应电流,并根据感应电流和转矩方向之间的相对角度来决定转子的转向。
当感应电流通过转子的导体棒时,又会产生一个磁场,与定子磁场相互作用,产生一个转矩,这个转矩将推动转子继续转动。
需要注意的是,由于转子的旋转磁场相对于定子的旋转磁场略慢,所以差值产生了转矩。
这个转矩试图将转子的转速拉近到同步转速,这个转矩被称为载荷转矩。
异步电动机的转速是根据负载和输入电源的频率来决定的,当负载增加时,转速会下降,当负载减小时,转速会提高。
总结起来,三相异步电动机的结构由定子和转子组成,利用交变电流在定子中产生旋转磁场,使转子在磁场作用下转动,实现了电能到机械能的转换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三相异步电动机的结构与工作原理5.1 三相异步电动机实现电能与机械能相互转换的电工设备总称为电机。
电机是利用电磁感应原理实现电能与机械能的相互转换。
把机械能转换成电能的设备称为发电机,而把电能转换成机械能的设备叫做电动机。
在生产上主要用的是交流电动机,特别三相异步电动机,因为它具有结构简单、坚固耐用、运行可靠、价格低廉、维护方便等优点。
它被广泛地用来驱动各种金属切削机床、起重机、锻压机、传送带、铸造机械、功率不大的通风机及水泵等。
对于各种电动机我们应该了解下列几个方面的问题:(1)基本构造;(2)工作原理;(3)表示转速与转矩之间关系的机械特性;(4)起动、调速及制动的基本原理和基本方法;(5)应用场合和如何正确使用。
5.1.1 三相异步电动机的结构与工作原理1.三相异步电动机的构造三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。
此外还有端盖、风扇等附属部分,如图5-1所示。
图5-1 三相电动机的结构示意图1).定子三相异步电动机的定子由三部分组成:定子定子铁心由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片内圆上有均匀分布的槽,其作用是嵌放定子三相绕组AX 、BY、CZ。
定子绕组三组用漆包线绕制好的,对称地嵌入定子铁心槽内的相同的线圈。
这三相绕组可接成星形或三角形。
机座机座用铸铁或铸钢制成,其作用是固定铁心和绕组2).转子三相异步电动机的转子由三部分组成:转子转子铁心由厚度为0.5mm的,相互绝缘的硅钢片叠成,硅钢片外圆上有均匀分布的槽,其作用是嵌放转子三相绕组。
转子绕组转子绕组有两种形式:鼠笼式-- 鼠笼式异步电动机。
绕线式-- 绕线式异步电动机。
转轴转轴上加机械负载鼠笼式电动机由于构造简单,价格低廉,工作可靠,使用方便,成为了生产上应用得最广泛的一种电动机。
为了保证转子能够自由旋转,在定子与转子之间必须留有一定的空气隙,中小型电动机的空气隙约在0.2~1.0mm之间。
2.三相异步电动机的转动原理1).基本原理为了说明三相异步电动机的工作原理,我们做如下演示实验,如图5-2所示。
图5-2 三相异步电动机工作原理(1).演示实验:在装有手柄的蹄形磁铁的两极间放置一个闭合导体,当转动手柄带动蹄形磁铁旋转时,将发现导体也跟着旋;若改变磁铁的转向,则导体的转向也跟着改变。
(2).现象解释:当磁铁旋转时,磁铁与闭合的导体发生相对运动,鼠笼式导体切割磁力线而在其内部产生感应电动势和感应电流。
感应电流又使导体受到一个电磁力的作用,于是导体就沿磁铁的旋转方向转动起来,这就是异步电动机的基本原理。
转子转动的方向和磁极旋转的方向相同。
(3).结论:欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组。
2).旋转磁场 (1).产生图5-3表示最简单的三相定子绕组AX 、BY 、CZ ,它们在空间按互差1200的规律对称排列。
并接成星形与三相电源U 、V 、W 相联。
则三相定子绕组便通过三相对称电流:随着电流在定子绕组中通过,在三相定子绕组中就会产生旋转磁场(图5-4)。
00sin sin(120)sin(120)U m V mW m i I t i I t i I t ωωω=⎧⎪=-⎨⎪=+⎩图 5-3 三相异步电动机定子接线当ωt=00时,0A i =,AX 绕组中无电流;B i 为负,BY 绕组中的电流从Y 流入B 1流出;C i 为正,CZ 绕组中的电流从C 流入Z 流出;由右手螺旋定则可得合成磁场的方向如图5-4(a )所示。
当ωt=1200时,0B i =,BY 绕组中无电流;A i 为正,AX 绕组中的电流从A 流入X 流出;C i 为负,CZ 绕组中的电流从Z 流入C 流出;由右手螺旋定则可得合成磁场的方向如图5-4(b )所示。
当ωt=2400时,0C i =,CZ 绕组中无电流;A i 为负,AX 绕组中的电流从X 流入A流出;B i 为正,BY 绕组中的电流从B 流入Y 流出;由右手螺旋定则可得合成磁场的方向如图5-4(c )所示。
可见,当定子绕组中的电流变化一个周期时,合成磁场也按电流的相序方向在空间旋转一周。
随着定子绕组中的三相电流不断地作周期性变化,产生的合成磁场也不断地B旋,因此称为旋转磁场。
图 5-4 旋转磁场的形成(2).旋转磁场的方向旋转磁场的方向是由三相绕组中电流相序决定的,若想改变旋转磁场的方向,只要改变通入定子绕组的电流相序,即将三根电源线中的任意两根对调即可。
这时,转子的旋转方向也跟着改变。
3).三相异步电动机的极数与转速 (1).极数(磁极对数p )三相异步电动机的极数就是旋转磁场的极数。
旋转磁场的极数和三相绕组的安排有关。
当每相绕组只有一个线圈,绕组的始端之间相差1200空间角时,产生的旋转磁场具有一对极,即p=1;当每相绕组为两个线圈串联,绕组的始端之间相差600空间角时,产生的旋转磁场具有两对极,即p=2;同理,如果要产生三对极,即p=3的旋转磁场,则每相绕组必须有均匀安排在空间的串联的三个线圈,绕组的始端之间相差400(=1200/p )空间角。
极数p 与绕组的始端之间的空间角θ的关系为: 0120pθ=(a) ωt = 0° (b) ωt = 120° (c) ωt = 240°XX X(2).转速n三相异步电动机旋转磁场的转速n 0与电动机磁极对数p 有关,它们的关系是:1060f n p=(5-1) 由(5-1)可知,旋转磁场的转速n 0决定于电流频率f 1和磁场的极数p 。
对某一异步电动机而言,f 1和p 通常是一定的,所以磁场转速n 0是个常数。
在我国,工频f 1=50Hz ,因此对应于不同极对数p 的旋转磁场转速n 0,见表5-1表5-1(3).转差率s电动机转子转动方向与磁场旋转的方向相同,但转子的转速n 不可能达到与旋转磁场的转速n 0相等,否则转子与旋转磁场之间就没有相对运动,因而磁力线就不切割转子导体,转子电动势、转子电流以及转矩也就都不存在。
也就是说旋转磁场与转子之间存在转速差,因此我们把这种电动机称为异步电动机,又因为这种电动机的转动原理是建立在电磁感应基础上的,故又称为感应电动机。
旋转磁场的转速n 0常称为同步转速。
转差率s ——用来表示转子转速n 与磁场转速n 0相差的程度的物理量。
即:000n n ns n n -∆== (5-2)转差率是异步电动机的一个重要的物理量。
当旋转磁场以同步转速n 0开始旋转时,转子则因机械惯性尚未转动,转子的瞬间转速n =0,这时转差率S =1。
转子转动起来之后,n >0,(n 0-n )差值减小,电动机的转差率S <1。
如果转轴上的阻转矩加大,则转子转速n 降低,即异步程度加大,才能产生足够大的感受电动势和电流,产生足够大的电磁转矩,这时的转差率S 增大。
反之,S 减小。
异步电动机运行时,转速与同步转速一般很接近,转差率很小。
在额定工作状态下约为0.015~0.06之间。
根据式(4-2),可以得到电动机的转速常用公式()01n s n =- (5-3)例 有一台三相异步电动机,其额定转速 n =975r/min ,电源频率f =50Hz ,求电动机的极数和额定负载时的转差率S 。
解:由于电动机的额定转速接近而略小于同步转速,而同步转速对应于不同的极对数有一系列固定的数值。
显然,与975r/min 最相近的同步转速n 0=1000r/min ,与此相应的磁极对数p =3。
因此,额定负载时的转差率为:001000975100%100% 2.5%1000n n s n --=⨯=⨯=(4).三相异步电动机的定子电路与转子电路三相异步电动机中的电磁关系同变压器类似,定子绕组相当于变压器的原绕组,转子绕组(一般是短接的)相当于副绕组。
给定子绕组接上三相电源电压,则定子中就有三相电流通过,此三相电流产生旋转磁场,其磁力线通过定子和转子铁心而闭合,这个磁场在转子和定子的每相绕组中都要感应出电动势。
总结:1、三相异步电动机的两个基本组成部分为定子(固定部分)和转子(旋转部分)。
2、欲使异步电动机旋转,必须有旋转的磁场和闭合的转子绕组,并且旋转的磁场和闭合的转子绕组的转速不同,这也是“异步”二字的含义;3、三相电源流过在空间互差一定角度按一定规律排列的三相绕组时,便会产生旋转磁场;4、旋转磁场的方向是由三相绕组中电源相序决定的;5、三相异步电动机旋转磁场的转速n 0与电动机磁极对数p 有关,它们的关系是:1060f n p=6、转差率s ——用来表示转子转速n 与磁场转速n 0相差的程度的物理量。
即:000n n ns n n -∆== 转差率是异步电动机的一个重要的物理量,异步电动机运行时,转速与同步转速一般很接近,转差率很小。
在额定工作状态下约为0.015~0.06之间。
7、三相异步电动机中的电磁关系同变压器类似,定子绕组相当于变压器的原绕组,转子绕组(一般是短接的)相当于副绕组。
5.1.2 三相异步电机的转矩特性与机械特性1.电磁转矩(简称转矩)异步电动机的转矩T 是由旋转磁场的每极磁通Φ与转子电流I 2相互作用而产生的。
电磁转矩的大小与转子绕组中的电流I 及旋转磁场的强弱有关。
经理论证明,它们的关系是:22cos T T K I ϕ=Φ(5-4)其中 T 为电磁转矩 K T 为与电机结构有关的常数Φ为旋转磁场每个极的磁通量 I 2为转子绕组电流的有效值ϕ2为转子电流滞后于转子电势的相位角若考虑电源电压及电机的一些参数与电磁转矩的关系,(5-4)修正为:22122220()TsR U T K R sX '=+ (5-5)其中 TK '为常数 U 1为定子绕组的相电压 S 为转差率R 2为转子每相绕组的电阻X 20为转子静止时每相绕组的感抗由上式可知,转矩T 还与定子每相电压U 1的平方成比例,所以当电源电压有所变动时,对转矩的影响很大。
此外,转矩T 还受转子电阻R 2的影响。
图4-15为异步电动机的转矩特性曲线。
2.机械特性曲线图 5-5 三相异步电动机的机械特性曲线在一定的电源电压U 1和转子电阻R 2下,电动机的转矩T 与转差率n 之间的关系曲n n m(a) T =f (s )曲线线T=f(s)或转速与转矩的关系曲线n=f(T),称为电动机的机械特性曲线,它可根据式(5-4)得出,如图5-5所示。
在机械特性曲线上我们要讨论三个转矩: 1).额定转矩T N额定转矩T N 是异步电动机带额定负载时,转轴上的输出转矩。
29550N P T n = (5-6)式中P 2是电动机轴上输出的机械功率,其单位是瓦特,n 的单位是转/分,T N 的单位是牛·米。
当忽略电动机本身机械摩擦转矩T 0时,阻转矩近似为负载转矩T L ,电动机作等速旋转时,电磁转矩T 必与阻转矩T L 相等,即T = T L 。