带电质点在电场、磁场和重力场中的运动

合集下载

带电粒子在交变电场或磁场中运动规律

带电粒子在交变电场或磁场中运动规律

带电粒子在交变电场或磁场中运动规律带电粒子在交变电场或磁场中运动的情况较复杂,运动情况不仅取决于场的变化规律,还与粒子进入场的的时候的时刻有关,一定要从粒子的受力情况着手,分析出粒子在不同时间间隔内的运动情况,若交变电压的变化周期远大于粒子穿越电场的时间,那么粒子在穿越电场的过程中,可看做匀强电场。

注意:空间存在的电场或磁场是随时间周期性变化的,一般呈现“矩形波”的特点。

交替变化的电场及磁场会使带电粒子顺次经过不同特点的电场,磁场或叠加的场,从而表现出多过程现象,其特点较为隐蔽。

(1) 仔细确定各场的变化特点及相应时间,其变化周期一般与粒子在磁场中的运动周期关联。

(2) 把粒子的运动过程用直观的草图进行分析。

如图甲所示,相隔一定距离的竖直边界两侧为相同的匀 强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L 的平行金属极板MN 和PQ ,两极板中心各有一小孔1S 、2S ,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U ,周期为0T 。

在0t =时刻将一个质量为m 、电量为q -(0q >)的粒子由1S 静止释放,粒子在电场力的作用下向右运动,在02T t =时刻通过2S 垂直于边界进入右侧磁场区。

(不计粒子重力,不考虑极板外的电场) (1)求粒子到达2S 时德 速度大小v 和极板距离d 。

(2)为使粒子不与极板相撞,求磁感应强度的大小应满足的条件。

(3)若已保证了粒子未与极板相撞,为使粒子在03t T =时刻再次到达2S ,且速度恰好为零,求该过程中粒子在磁场内运动的时间和磁感强度的大小如图甲所示,一对平行放置的金属板M、N的中心各有一小孔P、Q,PQ的连线垂直于金属板,两板间距为d。

(1)如果在板M、N之间加上垂直于纸面方向的磁场,磁感应强度随时间变化如图乙所示。

T=0时刻,质量为m、电量为-q的粒子沿PQ方向以速度0υ射入磁场,正好垂直于N板从Q孔射出磁场。

已知粒子在磁场中做匀速圆周运动的时间恰为一个周期,且与磁感应强度变化的周期相同,求0υ的大小。

带电粒子在电场、磁场中运动

带电粒子在电场、磁场中运动

带电粒子在电场、磁场中运动电学是高中物理的重点,约占高中物理40%。

在这个阶段电学应该重点关注的板块是带电粒子在电场和磁场中的运动、电磁感应综合运用和电学实验。

下面我们复习带电粒子在电磁场中运动。

电荷在电场和磁场中的运动,涉及到电场磁场的基本概念和基本规律,能与力学中的牛顿定律、能量和动量联系,综合性大,能充分考察学生综合分析能力,历来是高考的热点。

知识结构:这部分内容包括:电荷在电场中运动,电荷在磁场中运动,电荷在混合场与组合场中的运动。

知识结构如下:重点提示1.处理带电粒子在电场和磁场中运动的问题主要有两个基本途径:(1)力和运动的观点:对于带电粒子在电场磁场中的运动问题,和处理力学中力和运动问题方法基本相同。

也是先分析研究对象的受力情况,再结合研究对象的运动情况运用牛顿定律求解。

要处理好这部分内容应该对电场和磁场对电荷的作用规律熟练掌握。

①电场力F=qE。

要对E=F/q,,和E= ,和的联系和区别弄清楚。

E=F/q是电场强度的定义式,适用于任何电场。

仅适用于点电荷电场。

E=适用于匀强电场,其中要特别注意式中的d是两点在场强方向的距离。

②磁场对电荷的作用力是洛仑兹力,F=Bqv,其大小与速度大小有关,方向遵从左手定则。

要特别注意洛仑兹的方向既与磁感应强度垂直又与速度垂直。

(2)能量观点:对于带电粒子在电场、磁场或混合场的复杂运动的问题,通常用能量观点处理较好。

在这类问题中,一般应用动能。

在这里要注意电场力和重力做功与路径无关,洛仑兹力始终不做功。

要对电场力的功W与电势φ、电势差U、电势能ε等概念的关系领会透彻,它们的关系是:W12=qU12=q(φ1-φ2)=ε1-ε2..,要特别注意它们的正负号。

2.对于带电粒子的重力要不要考虑,要根据具体情况来确定。

一般对微观粒子(电子、质子、α粒子)通常可忽略重力。

但对带电微粒(油滴、尘埃)一般要考虑重力。

题中告诉了质量并不是一定要考虑重力。

带电粒子在匀强电场中的偏转问题是个重点,有许多实际应用。

高中物理竞赛带电粒子在电磁场中的运动知识点讲解

高中物理竞赛带电粒子在电磁场中的运动知识点讲解

高中物理竞赛带电粒子在电磁场中的运动知识点讲解要点讲解学习这部分知识,首先要清楚重力场、电场和磁场对带电粒子的作用的性质,以及重力场、电场和磁场对带电粒子作用力的区别:只要带电粒子处于重力场中,就一定会受到重力,而且带电粒子所受重力一定是恒力;只要带电粒子处于电场中,就一定分受到电场力,而且,如果电场是匀强电场,那么带电粒子所受电场力一定是恒力;在磁场中,只有带电粒子运动才可能受到洛仑兹力作用,只有带电粒子的运动方向不与磁场方向平行,带电粒子才一定受到洛仑兹力作用。

同时,要注意,洛仑兹力的方向与带电粒子的运动方向垂直,这就意味着,作曲线运动的带电粒子所受的洛仑兹力是变力。

重力、电场力对带电粒子作功;而洛仑兹力对带电粒不作功。

因此,在很多情况下,需要从能量变化的角度考虑问题。

【例题分析】例1.用轻质绝缘细线把带负电的小球悬挂在O点,在没有磁场时,小球在竖直平面内AB之间来回摆动,当小球经过悬点正下方时悬线对小球的拉力为。

现在小球摆动的空间加上方向垂直纸面向外的磁场,如图11-4-1所示,此时小球仍AB之间来回摆动,用表示小球从A向B摆经过悬点正下方时悬线的拉力,用表示小球从B向A 摆经过悬点正下时悬线的拉力。

则(A)(B)(C)(D)分析:带电小球在最低点的受力情况,由于小球做圆周运动,根据牛顿运动定律便可求解。

解:在没有磁场时,小球在悬点正下方时受两个力:拉力和重力mg。

根据牛顿第二定律,有式中V为小球过悬点正下方时的速率,L为摆长,所以小球摆动区加了如图11-4-1示的磁场后,小球摆动的过程中还受洛仑兹力的作用,因洛仑兹力方向和小球运动方向垂直,不改变小球到达悬点正下方的速率V,但小球在悬点正下方时除受悬线拉力和重力外还受洛仑兹力f.当小球由A向B摆动时,f的方向左手定则判断是沿悬线向下,根据牛顿第二定律,小球在悬点正下方时有得当球从B向A摆动经悬点正下方时,洛仑兹力的方向是沿悬线向上,根据牛顿第二定律可得结果是因此(B)选项是正确的。

用“等效法”处理带电粒子在电场和重力场中的运动

用“等效法”处理带电粒子在电场和重力场中的运动

用“等效法”处理带电粒子在电场和重力场中的运动1.等效重力法将重力与电场力进行合成,如图所示,则F 合为等效重力场中的“重力”,g ′=F 合m 为等效重力场中的“等效重力加速度”,F 合的方向等效为“重力”的方向,即在等效重力场中的“竖直向下”方向. 2.物理最高点与几何最高点在“等效力场”中做圆周运动的小球,经常遇到小球在竖直平面内做圆周运动的临界速度问题.小球能维持圆周运动的条件是能过最高点,而这里的最高点不一定是几何最高点,而应是物理最高点.几何最高点是图形中所画圆的最上端,是符合人眼视觉习惯的最高点.而物理最高点是物体在圆周运动过程中速度最小的点.【题型1】在水平向右的匀强电场中,有一质量为m 、带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球静止时,细线与竖直方向夹角为θ,如图所示,现给小球一个垂直于悬线的初速度,小球恰能在竖直平面内做圆周运动,试问:(1)小球在做圆周运动的过程中,在哪一位置速度最小?速度最小值多大? (2)小球在B 点的初速度多大?【题型2】如图所示的装置是在竖直平面内放置的光滑绝缘轨道,处于水平向右的匀强电场中,带负电荷的小球从高为h 的A 处由静止开始下滑,沿轨道ABC 运动并进入圆环内做圆周运动.已知小球所受电场力是其重力的34,圆环半径为R ,斜面倾角为θ=60°,s BC =2R .若使小球在圆环内能做完整的圆周运动,h 至少为多少?(sin 37°=0.6,cos 37°=0.8)【题型3】如图所示,一质量为m1=1 kg,带电荷量为q=+0.5 C的小球以速度v0=3 m/s,沿两正对带电平行金属板(板间电场可看成匀强电场)左侧某位置水平向右飞入,极板长0.6 m,两极板间距为0.5 m,不计空气阻力,小球飞离极板后恰好由A点沿切线落入竖直光滑圆弧轨道ABC,圆弧轨道ABC的形状为半径R<3 m的圆截去了左上角127°的圆弧,CB为其竖直直径,在过A点竖直线OO′的右边界空间存在竖直向下的匀强电场,电场强度为E =10 V/m.(取g=10 m/s2)求:(1)两极板间的电势差大小U;(2)欲使小球在圆弧轨道运动时不脱离圆弧轨道,求半径R的取值应满足的条件.【题型4】如图所示,竖直平面内的直角坐标系O–xy中,第二象限内有一半径为R的绝缘光滑管道,其圆心坐标为(0,R),其底端与x轴相切于坐标原点处,其顶端与y轴交于B点(0,2R);第一象限内有一与x轴正方向夹角为45°、足够长的绝缘光滑斜面,其底端坐标为(R,0);x轴上0≤x≤R范围内是水平绝缘光滑轨道,其左端与管道底端相切、右端与斜面底端平滑连接;在第二象限内有场强大小E1=3mg、方向水平向右的匀强电场区域Ⅰ;在第一象限内x≥R范围内有场强大小E2=mgq、方向水平向左的匀强电场区域Ⅱ。

高中物理人教版第十章-磁场 第七课时 带电粒子(质点)在复合场中的运动

高中物理人教版第十章-磁场 第七课时  带电粒子(质点)在复合场中的运动

a F合 qvB 2g
mm
y 1 at2,x vt,tan y
2
x
解得:t 3v,x 3v2
g
g
x
B o A θ F电
mg
B z
y
则A、B之间的距离为:L x 2 3v2 cos 60 g
电场力做功:W=EqL=6mv2
例4:如图所示,虚线上方有场强为E1=6×104 N/C的匀强 电场,方向竖直向上,虚线下方有场强为E2的匀强电场 (电场线用实线表示),另外在虚线上、下方均有匀强磁 场,磁感应强度相等,方向垂直纸面向里.ab是一根长为 L=0.3 m的绝缘细杆,沿E1电场线方向放置在虚线上方的 电磁场中,b端在虚线上.现将套在ab杆上的电荷量为q= -5×10−8 C的带电小环从a端由静止开始释放后,小环先 做加速运动后做匀速运动到达b端,小环与杆间的动摩擦 因数为μ=0.25,不计小环的重力,小环脱离ab杆后在虚线 下方仍沿原方向做匀速直线运动.
(1)求虚线下方的电场强度E2方向以及a 大E小1 ;
Bb
(2)若小环到达b点时立即撤去虚线下方的磁场,其他
条件不变,测得小环进入虚线下方区域后运动轨迹上一点
P到b点的水平距离为 L ,竖直距离为 L ,则小环从a
2
3
到b的运动过程中克服摩擦力做的功为多少?
解析:(1)小环脱离ab杆后
a E1
向下方向做匀速直线运动,受力
U qvB E电q d q
U
F电
F洛
v
v
即:E U Bvd
F洛
F电
3.电磁流量计
如图所示为原理图。一圆形导管直径为d,用非
磁性材料制成,其中有可以导电的液体向右流动。导

带电粒子在电场重力场中运动

带电粒子在电场重力场中运动

带电粒子在复合场中运动模型例析教学目标:带电粒子的运动问题是高考的一个考查热点,本节课主要是复习带电粒子在复合场中的运动,通过例题的讲解和习题的训练,要求学生能将力学中的研究方法,灵活地迁移到复合场中,分析解决力、电综合问题.教学重点:要用力和运动的观点来分析带电体的运动模型,同时也要体会用功和能的观点列式求解的简捷.复合场是指电场、磁场和重力场并存,或其中某两场并存,或其中某两场并存,或分区域存在。

带电粒子在复合场中运动,物理情景比较复杂,是每年高考命题的热点;这部分内容从本质上讲是一个力学问题,应根据力学问题的研究思路和运用力学的基本规律求解。

笔者对带电粒子在复合场中运动的基本类型和解法归纳如下,供同学们学习时参考。

一:求解带电粒子在复合场中运动的基本思路1:带电粒子在电场中的运动问题,实质是力学问题,其解题的一般步骤仍然为: 2:确定研究对象;3:进行受力分析(注意重力是否能忽略);4:根据粒子的运动情况,运用牛顿运动定律结合运动学公式、动能定理或能量关系列方程式求解. 二:带电粒子在复合场中运动的受力特点(1)重力的大小为,方向竖直向下.重力做功与路径无关,其数值除与带电粒子的质量有关外,还与始末位置的高度差有关。

(2)电场力的大小为,方向与电场强度E 及带电粒子所带电荷的性质有关,电场力做功与路径无关,其数值除与带电粒子的电荷量有关外,还与始末位置的电势差有关。

重力、电场力可能做功而引起带电粒子能量的转化。

三:带电粒子在复合场中运动的物理模型类型一:带电粒子在复合场中的直线运动1、当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止.2、当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动 例1例2:18、安徽省利辛二中2010届高三上学期第四次月考如图,一带负电的()()2202202sin c 12os cos cos tan sin tan 2,2sin co ,os s c qE mg mgE q d l U mgl q gl v Ed qE ma a g A D l v v ax x v αααααααααα-粒子在两板间运动时受到电场力和重力的作用,粒子在竖直方向平衡有=得=由图中几何关系=则两板间的电压==水平方向有=得=从到过程中微粒做匀减速直线运动有-=-其中==解得解析:xV 。

带电粒子在组合场中的运动

带电粒子在组合场中的运动

带电粒子在组合场中的运动
带电粒子的运动是物理学中的一种重要现象,其中电磁场产生的组合场是影响
带电粒子运动的重要因素之一。

带电粒子在组合场中的运动受到电磁场和重力场的共同作用。

由于它在电磁场中受到电力的作用,电流质点会产生电场和磁场。

磁场又会产
生电离力,对电流质点的运动产生影响。

进而磁场又可以产生电场,来反作用磁力,这就是带电粒子在组合场中的运动。

此外,受重力场的作用,带电粒子会受到由重力产生的阿博尔力的挤压,就如
苹果被外部重力拉扯一样,这也是带电粒子在组合场中运动的另外一种影响因素。

另外,当带电粒子运行速度很大时,也会受到电场和磁场、重力场及动能守恒
定律的引力作用,这意味着它受到四种类型的力的共同作用,来影响它的运动。

而这种运动受到环境的影响的程度要远低于电子在金属物质中的运动。

带电粒子在组合场中的运动是一个比较复杂的问题,要了解它的运动规律,必
须要考虑它受到电磁场,重力场及动能守恒定律的多重作用,并且要有较高的数学处理技能,才能理解它们之间的相互影响。

总之,带电粒子在组合场中的运动受到电磁场,重力场及动能守恒定律的共同
影响,而且运动过程受环境影响的程度较低,因此,需要有较丰富的数学处理能力才能更好地了解它们之间的相互作用。

带电体在电磁场中的受力分析和运动分析

带电体在电磁场中的受力分析和运动分析

带电粒子在电磁场中的受力分析和运动分析一、带电粒子在电场中的受力分析和运动分析1、静电场中的平衡问题静电场中的“平衡”问题,是指带电粒子的加速度为零的静止或匀速直线运动状态,都属于“静力学”的范畴,我们只是在分析带电粒子所受的重力、弹力、摩擦力等力时,还需多加一种电场力而已。

解题的一般程序为:明确研究对象;将研究对象隔离出来,分析其所受的全部外力,其中电场力,要根据电荷的正负及电场的方向来判断;根据平衡条件0=合F 或0,0x ==Y F F 列出方程;解方程求出结果。

2、电场中的加速问题带电粒子在匀强电场中的加速问题,一般属于粒子受到恒力(重力一般不计)作用的运动问题。

处理的方法有两种:根据牛顿第二定律和运动学公式结合求解;根据动能定理与电场力做功结合运动学公式求解。

在非匀强电场中的加速问题,一般属于物粒子受变力作用的运动问题。

处理的方法只能根据动能定理与电场力做功,结合运动学公式求解。

3、电场中的偏转问题受力及运动分析:带电粒子垂直于匀强电场的场强方向进入电场后,受到恒定的电场力作用,且与初速度方向垂直,因而做匀变速曲线运动——类平抛运动如1(设极板间的电压为U ,两极板间的距离为d ,极板长度为L )。

运动特点分析:在垂直电场方向做匀速直线运动 0v v x = ,t v x 0=在平行电场方向,做初速度为零的匀加速直线运动at v y =,221at y =, dmUq m Eq a == 通过电场区的时间:0v L t = 粒子通过电场区的侧移距离:2022mdv UqL y = 图1粒子通过电场区偏转角:20mdv UqL tg =θ 带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点。

所以侧移距离也可表示为:θtg L y 2= 。

4、粒子在交变电场中的往复运动当电场强度发生变化时,由于带电粒子在电场中的受力将发生变化,从而使粒子的运动状态发生相应的变化,粒子表现出来的运动形式可能是单向变速直线运动,也可能是变速往复运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

带电质点在电场、磁场和重力场中的运动教学目标1.比较带电质点在匀强电场、匀强磁场和重力场中受到的电场力、洛仑兹力和重力的产生条件、三要素和功能方面的特点.2.掌握带电质点在这些场中的力和运动关系的基本分析方法,会解决力学和电磁学的综合问题.3.注重学生的推理能力、分析综合能力和数学能力的培养.教学重点、难点分析1.比较带电质点在匀强电场、匀强磁场和重力场中受力的特点.2.认识带电质点在匀强电场、匀强磁场和重力场中受力和运动关系的物理情境,并善于运用力学的基本分析方法处理综合问题.3.运用坐标、几何图形和空间想象等教学方法处理物理问题.教学过程设计一、课题的引入我们在力学中学会了从牛顿运动定律出发认识质点受力和运动的关系,也会用动量和动能等量描述质点的运动状态,认识质点的运动状态跟力的作用的冲量、功的关系以及不同运动形式的能量的相互转化.本课要研究,带电质点在匀强电场、匀强磁场和重力场中的力和运动的关系,这些问题是力学和电磁学知识的综合问题.二、带电质点在匀强电场中的运动出示题卡(投影片)[例1] 在光滑的水平面上有一质量m=1.0×10-3kg、电量q=1.0×10-10C的带正电小球,静止在O点.以O点为原点,在该水平面内建立直角坐标系Oxy.现突然加一沿x轴正方向的、场强大小E=2.0×106V/m的匀强电场,使小球开始运动.经过1.0s,所加电场突然变为沿y轴正方向,场强大小仍为E=2.0×106V/m的匀强电场.再经过1.0s,所加电场又突然变为另一方向,使小球在此电场作用下经过1.0s速度变为零.求此电场的方向及速度变为零时小球的位置.*请学生自己讨论小球在电场中的运动情景.要求:建立直角坐标系,表示小球的运动位置;说明电场的情景;小球在电场中的受力情况以及由牛顿定律讨论小球的运动的情况.引导学生得出小球的运动情况:第1秒内做初速为零的匀加速直线运动,加速度和末速度都沿x轴正方向;第2秒内做类平抛运动,初速度沿x轴正方向,加速度沿y轴正方向,末速度沿斜向上方向;第3秒内沿第2秒末速度方向做匀减速直线运动,直到速度变为零.注意:对于学生得出第3秒内小球的运动情况,要有严格的推理过程:小球在恒力作用下,加速度的大小和方向是恒定的;要使其速度变为零,加速度只能是和第2秒末的速度方向相反.**请学生在Oxy坐标系中画出小球运动的草图,图中要标明小球运动的轨迹、加速度和第1、2、3秒末的位置及速度的方向,如图3-12-1所示.***要求学生自己完成解题过程:小球的运动情况如图3-12-1所示,第1秒内沿x轴正方向做匀加速直线运动.末速度v1=a1t=0.20m/s第2秒内做类平抛运动,初速度v1,方向沿x轴正方向:加速度a2=第3秒内做匀减速运动,直到速度变为零,所加匀强电场的方向跟v2相反,与x 轴成225°角,指向第3象限.小球速度变为零时的位置坐标:x3=x2+s3cos45°=0.40m;y3=y2+s3sin45°=0.20m小结:带电质点在电场中运动的问题是力学和电学知识的综合问题.要抓住电场的特性,带电质点在电场中受力的特点,并善于运用力学的基本方法去分析,确定带电质点的运动情况,如本题中运用牛顿定律讨论质点受力和运动的关系,质点做什么运动既和受力情况有关,还和开始运动的情况有关.三、带电质点在匀强磁场中的运动出示题卡(投影片)[例2] 如图3-12-2(1),在某装置中有一匀强磁场,磁感应强度为B,方向垂直于Oxy所在纸面向外.某时刻在x=l0,y=0处,一个质子沿y轴的负方向进入磁场;同一时刻,在x=-l0,y=0处,一个α粒子进入磁场,速度方向与磁场垂直.不考虑质子与α粒子的相互作用.设质子的质量为m,电量为e.(1)如果质子经过坐标原点O,它的速度为多大?(2)如果α粒子与质子在坐标原点相遇,α粒子的速度应为何值?方向如何?*请学生讨论质子在匀强磁场中的运动情况,以及确定它的速度的大小.注意:确定质子在匀强磁场中做匀速圆周运动的圆心及半径的方法.如图3-12-2(2)所示,圆心O1是过C点跟速度垂直的直线(即OC)和线段OC的中垂线的交点.由此可求得圆半径为10/2,进而求得质子的速度的大小v p=**请学生讨论确定α粒子做圆周运动的圆心和半径的方法.圆心在OD的中垂线上,但由于α粒子的速度的大小和方向未知,确定α粒子做圆周运动的圆心及半径是本题的难点.提示:题中给出α粒子和质子在O点相遇的条件的意义是什么?α粒子和质子分别沿DO圆弧和CO圆弧运动,所用的时间应相等,而粒子做圆周运动的时间可以是它通过的圆弧长跟速率之比;也可以与粒子通过的圆弧所对的圆心角及其做圆周运动的周期相联系,若确定了圆心角就可由圆中的等腰三角形的底边长和顶角的大小来确定圆心及半径的大小.***请学生自己得出α粒子做圆运动的圆心和半径.点的速度大小无关,只决定于带电质点的质量和电量.且T p=Tα/2.…由此可以确定圆心的位置O或O′,如图3-12-2(2)所示,圆半小结:讨论带电质点在匀强磁场中做圆周运动问题的基本出发点——洛仑兹力是质点做圆周运动的向心力,由此得到粒子做圆周运动的半径和周期,其中周期跟粒子的速率大小无关.还要特别注意确定圆运动的平面和圆心及半径,尤其要会运用几何图形进行讨论,利用带电质点在匀强磁场中做匀速圆周运动的轨迹圆和圆上的弧及弦、角等的关系确定圆心和半径.四、带电质点在匀强电场、匀强磁场和重力场中的运动空间可以同时存在着重力场、匀强电场和匀强磁场,讨论带电质点在这个空间中的运动就要认识带电质点在这些场中受场力的特点,比较它们的产生条件、力的三要素及做功情况的异同.引导学生通过比较,加深认识,填出下列表格.出示题卡(投影片)[例3] 设在地面上的真空室内,存在匀强电场和匀强磁场.已知电场强度和磁感应强度的方向是相同的,电场强度的大小E=4.0V/m,磁感应强度的大小B=0.15T,今有一个带负电的质点以v=20m/s的速度在此区域沿垂直于场强方向做匀速直线运动,求此带电质点的电量与质量之比q/m以及磁场的所有可能方向(角度可用反三角函数表示).*请学生讨论:带负电质点在匀强电场、匀强磁场(电场和磁场方向相同)和重力场中做匀速直线运动的可能的情况.提示:讨论问题的出发点是,质点做匀速直线运动,所受力的合力为零.(1)若带电质点运动方向跟电场和磁场方向平行,它只受电场力和重力,处于平衡,可得电场和磁场的方向应竖直向下,但它不符合题目中带电质点垂直于场的方向运动的要求.(2)若带电质点垂直于场强的方向运动,一定受重力、电场力和洛仑兹力,三力平衡.**请学生讨论:带负电质点受三力平衡,这三个力的方向和质点的运动方向可能是什么样的?提示:电场力和洛仑兹力方向相互垂直,它们的合力跟竖直向下的重力相平衡.确定电场和磁场方向不能沿竖直方向;电场和磁场方向不能是水平方向;电场和磁场方向也不能是斜向上方向.电场和磁场只可能是沿斜向下的方向,用θ角表示场跟竖直向下的方向的夹角.***请学生做出带电质点的受力图,图中要标出三个力的方向、电场和磁场的方向及说明质点的运动方向.做出的质点受力示意图如图3-12-3所示,重力的方向竖直向下,电场力的方向与电场方向相反,洛仑兹力的方向跟磁场(与电场力的方向平行)和速度v的方向垂直,重力、电场力和洛仑兹力在同一竖直平面内(表示在纸面上),质点的速度方向垂直于纸面向外.由三力平衡,可得质点的电荷与质量之比磁场的方向斜向下与竖直方向所成的角θ****进一步追问学生,题中要求的磁场所有可能的方向是指什么?考虑到重力、电场力和洛仑兹力所在的竖直平面可以是绕重力作用线旋转的所有竖直平面,磁场的所有方向是沿着与重力方向成夹角θ=arctan0.75,且斜向下的一切方向.小结:由于带电质点受洛仑兹力的方向跟质点运动方向和磁场方向所在平面垂直,因此,讨论带电质点在电场、磁场和重力场中的受力和运动关系,必须重视力、场和运动方向的空间关系,建立三维的空间概念,正确表达出它们间的关系,也是数学能力的重要表现之一.出示题卡(投影片)[例4] 如图3-12-4(1)所示,在地面附近,坐标系Oxy在竖直平面内,空间有沿水平方向垂直于纸面向里的匀强磁场,磁感应强度大小为B,在x<0的空间内还有沿x 轴负方向的匀强电场,一个质量为m的带电量为q的油滴途经图中M(-a,0)点(a>0),沿着与水平方向成α角斜向下做直线运动,进入x>0的区域,求:(1)油滴带什么电荷,要求说明依据.(2)油滴在M点运动的速率的大小.(3)油滴进入x>0区域,若能到达x轴上的N点(在图中未标出),油滴在N点的速度大小是多少?*请学生描述带电油滴的运动情况和受力情况.在x<0区域,油滴受重力、电场力和洛仑兹力,做直线运动;在x>0区域油滴受重力和洛仑兹力,做曲线运动.**提问:在x<0区域,从带电油滴受力的特点,能否确定油滴做直线运动的加速度?提示:洛仑兹力跟速度方向垂直,且其大小跟速度大小有关,而电场力和重力都是恒力,三力不在同一直线上.带电油滴做直线运动,讨论力和运动的关系要分别讨论沿运动直线方向和垂直于运动直线方向上的受力情况.由学生讨论得出,油滴做直线运动,在垂直于运动方向上的各力或其分力的合力一定等于零.由于重力和电场力是恒定的,那么垂直于运动方向的洛仑兹力一定也是不变的,因此油滴运动的速度大小不变,油滴做匀速直线运动.***提问:由油滴运动情况和受力情况,能否确定油滴带什么电荷?要求学生能够进行严格的推理判断,说明油滴带电的种类.说明一般的推理方法:要从已给的事实和条件出发,根据所学的基本概念和规律,理清推理的思路,经过严密的逻辑推理,也包括运用数学方法进行推导,得出结论或做出判断.本题推理的出发点是带负电油滴在匀强电场、匀强磁场和重力场中,垂直于磁场方向做直线运动.推理的思路:(1)由带电油滴受洛仑兹力的特点,推出油滴一定做匀速直线运动,三力要平衡.(2)由三力平衡,假设油滴带负电和带正电两种情况,分别讨论它们的受力情况,可得出,只有油滴带正电,三力才可能平衡.得出油滴带正电的结论.****请学生做出受力图,如图3-12-4(2)所示,计算油滴通过M点的速度的大小.由三力平衡,可得qvB=mg/cos α****请学生讨论,怎样计算油滴到达N点的速度大小?学生可能考虑的方法有:(1)由牛顿定律,确定油滴的运动的性质,再利用运动学的方法确定N点的速度.但由于重力是恒力,洛仑兹力是变力,油滴的运动不是圆周运动,也不是类抛体运动,在中学物理中,用这个方法求解是十分困难的.(2)由动能定理求解.由洛仑兹力总不做功的特点,油滴进入x>0区域,只有重力做功,由动能定理,可以求得油滴到达N点的速度v N的大小小结:(1)洛仑兹力总不做功的意义是:带电质点在磁场中运动时,不管它做什么运动,也不管它是否还受其它力,洛仑兹力总跟带电质点的运动方向垂直,因此总不做功.许多时候,常常从动能定理来讨论带电质点运动速度的大小.(2)要注意推理的基本方法,会运用这个基本方法进行推理和判断.出示题卡(投影片)[例5] 如图3-12-5所示,置于光滑水平面上的小车a、b的质量分别为m a=3kg,m b=0.5kg,可视为质点的带正电的物体c位于小车b的最空间内有方向竖直向上、场强E=15N/C的匀强电场和垂直于纸面方向向里、磁感应强度B=10T的匀强磁场.开始时小车b处于静止,小车a以v0=10m/s的速度向右运动和小车b发生碰撞,碰后物体c落在小车a上滑动.设小车a、b碰撞时间非常短,碰后小车b的速度为9m/s,物体c和小车之间有摩擦,小车a足够长.求物体c运动的最大速率和小车a的最小速率.g取10m/s2.*请学生讨论小车a、b和物体c的相互作用过程的物理情景.(1)小车a、b碰撞,物体c在非常短的碰撞时间内,其运动状态不发生变化.(2)小车a和物体c之间由于摩擦内力的作用,发生动量的传递.(3)物体c带正电,运动起来,受洛仑兹力,方向竖直向上,随速度增大,洛仑兹力增大,直到洛仑兹力跟电场力、重力平衡时,滑动摩擦力等于零,相互作用结束,此刻物体的速度为最大速度;小车a的速度为最小速度.**请学生自己写出解题的过程,要求正确表达解题的过程.小车a、b在很短的时间内发生碰撞,水平方向动量守恒,有m a v0=m a v1+m b v2解得小车a碰撞后的速度v1=8.5m/s,方向向右.小物体c落到车a上,由于摩擦力的作用,小物体c的动量(速度)逐渐增大,小车a的动量(速度)逐渐减小,但水平方向动量守恒.对于小物体c,竖直方向上受重力m c g、电场力qE(方向向上)、小车的支持力N和洛仑兹力f(方向向上),随小物体c的速度增加,洛仑兹力f增大,支持力N减少,直到N=0时,即m c g=qv m B+qE当支持力N=0时,小物体c和小车a之间的摩擦内力变为零,它们的相互作用结束,小物体c有最大速度,小车a有最小速度.小物体c的最大速度由水平方向动量守恒,有m a v1=m a v a+m c v m小车a的最小速度 v a=8.3m/s小结:要认真分析小车a、b和小物体c的相互作用过程,运用动量守恒定律讨论问题要明确研究对象——相互作用系统,分析它们的受力,讨论其满足守恒定律的过程.同时要注意分析相互作用过程的细节,讨论内力的作用,才能认识最大速率和最小速率的意义,确定列守恒定律方程的状态.要学会正确表达解题的过程.在认真审题的基础上,表达解题的过程的层次应清晰,要有必要的文字说明,画出草图,要有演算步骤和基本方程式,并给出明确的结果.五、总结带电质点在重力场、匀强电场和匀强磁场中的运动问题,是力学知识和电磁学知识的综合运用.首先应确立场的观念,认识带电质点在重力场、匀强电场和匀强磁场中受力的特点,学会运用力学的基本分析方法:由牛顿定律讨论力和运动的关系;运用动量和动能来描写质点的运动状态,讨论状态变化跟变化过程中力的冲量、功的关系以及几个质点间的相互作用过程.尤其要重视认识题目的物理情境,学会推理,学会运用数学处理物理问题.六、布置作业(略)第11 页共11 页。

相关文档
最新文档