高三数学基本算法语句与程序框图
高中数学之算法与程序框图

算法与程序框图(讲义)➢知识点睛一、算法1.概念:在数学中,算法通常是指按照一定规则解决某一类问题的明确和有限的步骤.2.特点:(1)确定性算法的每一步都是确定的,能有效执行且得到确定的结果.(2)有限性算法要有明确的开始和结束,必须在有限步内完成任务,不能无限制的持续进行.(3)顺序性算法从开始的“第一步”到“最后一步”之间做到环环相扣.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.二、程序框图1.概念:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形.2.构成程序框图的图形符号、名称及功能算法共有三种基本逻辑结构:顺序结构、条件结构和循环结构.1.顺序结构:由若干个依次执行的步骤组成.这是任何一个算法都离不开的基本结构.用程序框图表示为:2. 条件结构在一个算法中,经常会遇到一些条件的判断,算法的流程根据条件是否成立有不同的流向.条件结构就是处理这种过程的结构.常见的条件结构可以用程序框图表示为下面两种形式:3. 循环结构在一些算法中,经常会出现从某处开始,按照一定的条件反复执行某些步骤的情况,这就是循环结构.反复执行的步骤称为循环体.⎧⎨⎩直到型循环结构循环结构当型循环结构(1)直到型循环结构在执行了一次循环体后,对条件进行判断,如果条件不满足,就继续执行循环体,直到条件满足时终止循环.程序框图如图.直到型循环结构当型循环结构(2)当型循环结构在每次执行循环体前,对条件进行判断,当条件满足时,执行循环体,否则终止循环.程序框图如图.➢精讲精练1.下列所给问题中,可以设计一个算法的是____________.①二分法求方程x-2sin x=0的一个近似解;②解一个二元一次方程组;③求半径为3的圆的面积;④判断函数y=x2的单调性.2.给出以下四个问题:①输入一个数x,输出它的相反数;②求面积为6的正方形的周长;③求三个数a,b,c中的最大数;④求函数1()2x xf xx x-⎧=⎨+<⎩≥,,的函数值.其中不需要用条件语句来描述其算法的有()A.1个B.2个C.3个D.4个3.阅读下面的流程图,若输入的a,b,c分别是21,32,75,则输出的a,b,c分别是()A.75,21,32B.21,32,75C.32,21,75D.75,32,21第3题图第4题图4.如图所示的程序框图的输出结果为____________.5.执行如图所示的程序框图,如果输入的t∈[-1,3],则输出的s的取值范围是()A.[-3,4]B.[-5,2]C.[-4,3]D.[-2,5]第5题图 第6题图6. 阅读如图所示的程序框图,运行相应的程序,若输入x 的值为1,则输出S 的值为( )A .585B .512C .73D .647. 阅读如图所示的程序框图,运行相应的程序,则输出的i 的值为_________.8.__________.10. 如图所示,该程序框图(算法流程图)的输出结果是( )A .34B .55C .78D .8911. 如图,当输入x 为2 016时,输出的y =( ) A .28B .10C .4D .2第11题图第12题图12.阅读如图所示的程序框图,运行相应的程序,则输出的s的值为_________.13.执行如图所示的程序框图,若输入的x,t的值均为2,则输出的S的值为()A.7B.6C.5D.414.执行如图所示的程序框图,若输入的a,b,k的值分别为1,2,3,则输出的M的值为()A.203B.72C.165D.15815.执行如图所示的程序框图,若输出k的值为6,则判断框内可填入的条件为()A.8S<?S<?D.11S<?C.10S<?B.917.执行如图所示的程序框图,如果输出的s的值为3,那么判断框内应填入的条件是()【参考答案】1.①②③2.B3.A4.85.A6.C7.5 8.B9.9 510.B11.B12.913.A14.D15.C16.B17.B算法与程序框图(随堂测试)1.执行如图所示的程序框图,则输出的S的值为()A.1B.23C.1321D.610987第1题图第2题图2.执行如图所示的程序框图,若输出的X的值为31,则判断框中应填入的条件是()A.k≤2?B.k<3?C.k≤3?D.k≤4?3.执行如图所示的程序框图,若输出的S的值为126,则判断框中应填入的条件是()A.n≤5?B.n≤6?C.n≤7?D.n≤8?【参考答案】1.C2.C3.B算法与程序框图(习题)1.下面是某个问题的算法:第一步,比较a与b的大小,若a<b,则交换a,b的位置.第二步,比较a与c的大小,若a<c,则交换a,c的位置.第三步,比较b与c的大小,若b<c,则交换b,c的位置.第四步,输出a,b,c.该算法结束后解决的问题是()A.输入a,b,c三个数,按从小到大的顺序输出B.输入a,b,c三个数,按从大到小的顺序输出C.输入a,b,c三个数,按输入顺序输出D.输入a,b,c三个数,无规律地输出2.阅读程序框图,运行相应的程序,则输出的S的值为()A.-10B.6C.14D.18第2题图第3题图3.当m=7,n=3时,执行如图所示的程序框图,则输出的s的值为()A.7B.42C.210D.8404.执行如图所示的程序框图,则输出的结果为()A.(-2,2)B.(-4,0)C.(-4,-4)D.(0,-8)第4题图第5题图5.执行如图所示的程序框图,若输入的n的值为10,则输出的S的值为()A .511B .1011C .3655D .72556. 执行如图所示的程序框图,如果输入的t ∈[-2,2],则输出的S 的取值范围是( )A .[-6,-2]B .[-5,-1]C .[-4,5]D .[-3,6]7. 已知函数2log 222x x y x x ⎧=⎨-<⎩≥,,,若图中表示的是给定x 的值,求其对应的函数值y 的程序框图,则①处应填写_________,②处应填写___________.第7题图 第8题图8. 阅读程序框图,若输入的x 的值分别为0,1,2,执行该程序后,输出的y 的值分别为a ,b ,c ,则a +b +c =________.9. 执行如图所示的程序框图,若输入的a 的值为4,则输出的n 的值为( )A .2B .3C .4D .510.执行如图所示的程序框图,若输入的ε的值为0.25,则输出的n的值为___________.11.以下给出的是计算111124620++++…的值的一个程序框图,其中判断框内应填入的条件是()A.i>10?B.i<10?C.i>20?D.i<2012. 执行如图所示的程序框图,若输出的S 的值为52,则判断框内应填入的条件是( )A .i >10?B .i <10?C .i >9?D .i <9?第12题图 第13题图 13. 阅读如图所示的程序框图,若输出的i 的值为5,则空白矩形框中应填入的语句是( )A .S =2i -2B .S =2i -1C .S =2iD .S =2i +414. 阅读如图的程序框图,若输出的s 的值为-7,则判断框内可填写( )【参考答案】1. B2. B3. C4. B5. A6. D7. 2x < 2log y x = 8. 6 9. B 10. 3 11. A 12. A 13. C 14. D。
知识讲解_高考总复习:算法与程序框图

高考总复习:算法与程序框图【考纲要求】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件、循环。
2.基本算法语句理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。
【知识网络】【考点梳理】考点一、算法1.算法的概念(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。
(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。
2.算法的特征:①指向性:能解决某一个或某一类问题;②精确性:每一步操作的内容和顺序必须是明确的;算法的每一步都应当做到准确无误,从开始的“第一步”直到“最后一步”之间做到环环相扣,分工明确.“前一步”是“后一步”的前提,“后一步”是“前一步”的继续.③有限性:必须在有限步内结束并返回一个结果;算法要有明确的开始和结束,当到达终止步骤时所要解决的问题必须有明确的结果,也就是说必须在有限步内完成任务,不能无限制的持续进行.④构造性:一个问题可以构造多个算法,算法有优劣之分。
3.算法的表示方法:(1) 用自然语言表示算法: 优点是使用日常用语, 通俗易懂;缺点是文字冗长, 容易出现歧义;(2) 用程序框图表示算法:用图框表示各种操作,优点是直观形象, 易于理解。
要点诠释:泛泛地谈算法是没有意义的,算法一定以问题为载体。
考点二:程序框图1. 程序框图的概念:程序框图又称流程图,是最常用的一种表示法,它是描述计算机一步一步完成任务的图表,直观地描述程序执行的控制流程,最便于初学者掌握。
2.程序框图常用符号:连接点用于连接另一页或另一部分的框图注释框框中内容是对某部分流程图做的解释说明3.画程序框图的规则:(1)使用标准的框图的符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框图外,大多数框图符号只有一个进入点和一个退出点。
高三数学一轮复习 第九章 第2课时 基本算法语句、算法案例与框图课件

输入信息
语句
一般格式
功能
输出 _P_R_I_N__T_“__提__示__内__ 输出_常__量__、__变___量__ 语句 _容__”__;__表__达__式___ 的__值___和__系__统__信__息__
赋值 语句
__变__量__=__表__达__式___
将表达式所代表的 值_赋__给__变___量__
1.四位二进制数 1 111(2)表示的十进制数是
()
A.4
B.15
C.64
D.127
解 析 : 1 111(2)= 1×23+ 1×22+ 1×21+ 1×20=8+4+2+1=15.
答案: B
2.用“辗转相除法”求得 168 和 486 的最大
公约数是( )
A.3
B.4
C.6
D.16
解析: 486=2×168+150,168=1×150 +18,
某工种按工时计算工资,每月总工资=每月劳 动时间(小时)×每小时工资,从总工资中扣除 10%作公积金,剩余的为应发工资,当输入劳 动时间和每小时工资数时,试编写一程序输出 应发工资.
解析: 算法分析:第一步,输入月劳动时 间 t 和每小时工资 a; 第二步,求每月总工资 y=每月劳动时间 t× 每小时工资 a; 第三步,求应发工资 z=每月总工资 y×(1 -10%);
答案: 21 4
练规范、练技能、练速度
人教版八年级上
Unit 4 What’s the best movie theater?
课时4 Section B (2a-2e)
二、根据句意,用括号内所给词的适当形式填空。 6. We are looking for the best singers and the most exciting
高三数学 算法与程序框图

自然语言、数学语言、形式语言、框图。
程序框图 用一些通用图形符号构成一张图来 表示算法,这种图称作程序框图 (简称框图).
四种图框类型 输入、输出框
处理框
判断框
起止框
算法的三种基本逻辑结构和框图表示
顺序结构
条件分支结构
循环结构
A
Yp N
B
A
B
N
p
Y
A
P14练习A
1:
开始
2:
S=0,i=1
N
i 10
0 b 9,0 c 9 .
开始
输入实数 x a.bc
c5
Y
N
x a 0.1b
x a 0.:
x 3
N
x3
Y
y x2 3x 1
输出 y
x x 0.1
结束
P15习题1—1(B)
开始
1:
开始
2:
S=0,i=1
输入分数 b , d ac
N
i 50
x bc ad
加班工作时间工资t、p1、p2 计算t=60-40=20
计算p1=40×8=320
F 9 C 32 5
输出 F
计算p2=20×10=200
计算总工资 p3=p1+p2=520
计算净得工资 p=p3×0.9=468
结束
输出p 结束
P15习题1—1(A)
3: 设两位小数为a.bc ,其
中a, b, c 都为整数,且
Y
S=S+i
i=i+1
输出S 结束
开始 S=0,i=1
N
i 10
Y
S=S+1/i
i=i+1
第3讲程序框图与算法语句

解 算法如下: 第一步,输入x. 第二步,如果x>0,则y=-2; 如果x=0,则y=0;如果x<0,则y=2. 第三步,输出函数值y. 相应的程序框图如图所示
考向二
基本逻辑结构
【例2】(1)阅读下图所示的程序框图,运行相应的程序, 输出的结果是( ). B
A.3 B.11 C.38 D.123 [审题视点] (1)注意循环结构的三个方面:循环变量和 初始条件、循环体、终止条件;
1.算法
算法通常是指可以用计算机来解决的某一类问题的程序或 步骤,这些程序或步骤必须是明确和有效的,而且能够在 有限步之内完成. 2.程序框图
程序框图又称流程图,是一种用规定的图形、指向线及 文字说明来准确、直观地表示算法的图形.通常程序框 图由程序框和流程线组成,一个或几个程序框的组合表 示算法中的一个步骤,流程线带方向箭头,按照算法进 行的顺序将程序框连接起来.
专题十三 推理证明、算法、复数
第3讲 程序框图与算法语句
1.程序框图作为计算机科学的基础,是历年来高考的一个 必考点,多以选择、填空题的形式出现,一般中档偏易,多 与分段函数、数列、统计等综合考查. 2.重点考查程序框图的应用,有时也考查基本的算法语 句.注重程序框图的输出功能、程序框图的补充,以及算法 思想和基本的运算能力、逻辑思维能力的考查. 【复习指导】 1.本讲复习时,准确理解算法的基本概念、理解程序框图 的含义和作用是解题的关键,所以复习时要立足双基,抓好 基础,对算法语句的复习不需过难,仅需理解几种基本的算 法语句. 2.复习算法的重点应放在读懂程序框图上,尤其要重视循 环结构的程序框图,弄清当型与直到型循环结构的区别,以 及进入、退出循环的条件、循环的次数.
考向三
程序框图的识别及应用 D
高中数学复习:算法与程序框图

一般格式 ③ INPUT “提示内容”;变量 ④ PRINT “提示内容”;表达式 ⑤ 变量=表达式
教材研读 栏目索引
功能 输入信息 输出常量、变量的值和系统信息 将表达式的值赋给变量
(2)条件语句的格式及框图 a.IF-THEN格式
b.IF-THEN-ELSE格式
教材研读 栏目索引
(3)循环语句的格式及框图 a.UNTIL语句
教材研读 栏目索引
5.如图所示的程序框图的运行结果为
.
答案 2.5
6.执行如图所示的程序框图,则输出的A=
教材析 i=0,A=2;
A=2+ 1= 5,i=1;
22
2 12
A=2+ = ,i=2;
55
5 29
A=2+12=12 ,i=3;
A=2+
12 29
=
70 29
考点突破 栏目索引
规律方法 顺序结构和条件结构的运算方法 (1)顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按 从上到下的顺序进行的. (2)条件结构中条件的判断关键是明确条件结构的功能,然后根据 “是”的分支成立的条件进行判断.对于条件结构,无论判断框中的条 件是否成立,都只能执行两个分支中的一个,不能同时执行两个分支.
2.程序框图
(1)程序框图又称流程图,是一种用程序框、流程线及文字说明来表示 算法的图形. (2)基本的程序框有终端框(起止框),输入、输出框,处理框(执行框),判断框.
3.三种基本逻辑结构
名称 顺序结构
条件结构
循环结构
教材研读 栏目索引
内 顺序结构是由若干个按 算法的流程根据条件 在一些算法中,会出现从某处开始,按照一
教材研读 栏目索引
高中数学必修三-算法与程序框图

算法与程序框图知识集结知识元算法的概念知识讲解算法的概念算法是做一件事情的方法和步骤.在生活中做一件事情的方法和步骤有多种,我们设计的算法应本着简捷方便的原则.要正确地设计一个算法就需要了解算法的特征:有限性:一个算法当运行完有限个步骤后必须结束,而不能是无限地运行确定性:算法的每一步计算,都必须有确定的结果,不能模棱两可,即算法的每一步只有唯一的执行路径,对于相同的输入只能得到相同的输出结果可行性:算法中的每一步骤必须能用实现算法的工具精确表达,并能在有限步内完成有序性算法从初始步骤开始,分为若干明确的步骤,每一个步骤只能有一个确定的后续步骤,只有执行完前一步才能执行后一步普遍性:算法一般要适用于输入值集合中不同形式的输入值,而不是局限于某些特殊的值,即算法具有一般性,一个算法总是针对某类问题设计的,所以对于求解这类问题中的任意一个问题都应该是有效的不唯一性:解决一个或一类问题,可以有不同的方法和步骤,也就是说,解决这个或这类问题的算法不一定是唯一的例题精讲算法的概念与程序语句例1.下列叙述中,不能称为算法的是()A.植树需要运苗、挖坑、栽苗、浇水这些步骤B.按顺序进行下列运算:1+1=2,2+1=3,3+1=4,…,99+1=100 C.从济南到北京旅游,先坐火车,再坐飞机抵达D.3x>x+1例2.下列各式中S的值不可以用算法求解的是()A.S=1+2+3+4B.S=1+2+3+4+…C.S=1+++…+D.S=12+22+32+…+1002例3.程序框图中,表示处理框的是()A.B.C.D.程序框图知识讲解1.程序框图的三种基本逻辑结构的应用【知识点的认识】三种基本逻辑结构:1.顺序结构:往往从上到下的顺序进行,常用于直接应用公式的题型.如图,算法执行完A 后才执行B.2.条件结构:执行具有选择性.如图,当算法执行到条件P时,若P成立,则执行A,否则执行B.无论条件P是否成立,A和B只能选择其一执行,不能同时执行或同时不执行.A和B中可以有一个为空,即不执行任何操作.3.循环结构:有“当型”和“直到型”两种循环结构.①当型:先判断再执行.如图,当算法执行到条件P时,先判断P是否成立,若不成立,执行A,再判断P,若P依然不成立,继续执行A,再判断…,如此循环直到P成立退出循环.②直到型:先执行再判断.如图,算法先执行A,然后判断条件P是否成立,若P不成立,继续执行A,直到P成立推出循环.例题精讲程序框图例1.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6例2.如图的框图是一古代数学家的一个算法的程序框图,它输出的结果S表示()A.a0+a1+a2+a3的值B.a3+a2x0+a1x02+a0x03的值C.a0+a1x0+a2x02+a3x03的值D.以上都不对例3.某程序框图如图所示,若运行该程序后输出S=()A.B.C.D.当堂练习单选题练习1.算法的三种基本结构是()A.逻辑结构,模块结构,条件分支结构B.顺序结构,条件结构,循环结构C.矩形结构,菱形结构,平行四边形结构D.顺序结构,重复结构,分支结构练习2.用秦九韶算法求多项式f(x)=1+2x+x2-3x3+2x4在x=-1时的值,v2的结果是()A.-4 B.-1 C.5 D.6练习3.《九章算术》卷5《商功》记载一个问题“今有圆堡瑽,周四丈八尺,高一丈一尺.问积几何?答曰:二千一百一十二尺.术曰:周自相乘,以高乘之,十二而一”.这里所说的圆堡瑽就是圆柱体,它的体积为“周自相乘,以高乘之,十二而一、”就是说:圆堡瑽(圆柱体)的体积为:V=×(底面的圆周长的平方×高).则由此可推得圆周率π的取值为()A.3 B.3.14 C.3.2 D.3.3练习4.程序框图符号“”可用于()A.赋值a=6 B.输出a=5 C.输入a=5 D.判断a=6填空题练习1.将“杨辉三角”中的数从左到右、从上到下排成一数列:1,1,1,1,2,1,1,3,3,1,1,4,6,4,1,…,如图所示程序框图用来输出此数列的前若干项并求其和,若输入m=4则相应最后的输出S的值是____。
高中数学必修三第一章1.1算法与程序边框图

第一章1.1算法与程序边框图1.算法的概念(1)算法概念的理解①算法是指可以用计算机来解决的某一类问题的程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.②算法与一般意义上具体问题的解法既有联系,又有区别,它们之间是一般和特殊的关系,也是抽象与具体的关系.算法的获得要借助一般意义上具体问题的求解方法,而任何一个具体问题都可以利用这类问题的一般算法来解决.③算法一方面具有具体化、程序化、机械化的特点,同时又有高度的抽象性、概括性、精确性,所以算法在解决问题中更具有条理性、逻辑性的特点.(2)算法的四个特征:概括性、逻辑性、有穷性、不唯一性①概括性:写出的算法必须能解决某一类问题,并且能够重复使用.②逻辑性:算法从初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,而且每一步都是正确无误的,从而组成了一个有着很强逻辑性的步骤序列.③有穷性:算法有一个清晰的起始步,终止步是表示问题得到解答或指出问题没有解答,所有序列必须在有限个步骤之内完成,不能无停止地执行下去.④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法,当然这些算法有简繁之分、优劣之别.(3)常见的算法类型①数值性计算问题.如:解方程(或方程组)、解不等式(或不等式组)、利用公式求值、累加或累乘等问题,可通过相应的数学模型借助一般的数学计算方法,分解成清晰的步骤,使之条理化.②非数值性计算问题.如:判断、排序、变量变换等需先建立过程模型,再通过模型进行算法设计与描述.注意:(ⅰ)注意算法与解法的区别:算法是解决一类问题所需要的程序或步骤的统称;而解法是解决某一个具体问题的过程或步骤,是具体的解题过程.(ⅱ)设计算法时要尽量选取简捷、快速、高效的解决问题的算法.对一个具体的问题,我们要对解决问题的途径进行透彻的研究,找出最优算法,做到“先思考后处理”.2.程序框图(1)程序框图又称为流程图,是一种用程序框、流程线及文字说明来准确、直观地表示算法的图形.(2)用程序框图表示算法,具有直观、形象的特点,能更清楚地展现算法的逻辑结构.(3)程序框图主要由程序框和流程线组成.基本的程序框有终端框、输入框、输出框、处理框、判断框,其中终端框是任何流程图不可缺少的,而输入、输出可以用在算法中任何需要输入、输出的位置.(4)画程序框图的规则①使用标准的框图符号;②框图一般按从上到下、从左到右的方向画;③终端框(起止框)是任何程序框图必不可缺少的,表示程序的开始和结束;④除判断框外,大多数程序框图符号只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;⑤程序框图符号框内的文字要简洁精炼.注意:(ⅰ)每一种程序框图的图形符号都有特定的含义,在画程序框图时不能混用,并且所用图形符号一定要标准规范,起始框只有一条流出线(没有流入线),终止框只有一条流入线(没有流出线),输入、输出框只有一条流入线和一条流出线,判断框有一条流入线和两条流出线.(ⅱ)如果一个程序框图由于纸面等原因需要分开画,要在断开处画上连接点,并标出连接的号码.(ⅲ)判断框是“是”与“否”两分支的判断,有且仅有两个结果.(ⅳ)一般地,画程序框图时,先用自然语言编写算法,然后再画程序框图.3.算法的三种基本结构(1)顺序结构:顺序结构是最简单的算法结构,语句与语句之间,框与框之间是按从上到下的顺序进行的,它是由若干个依次执行的处理步骤组成的,它是任何一个算法都离不开的基本结构,其基本结构形式如图所示,其中A、B两框所指定的操作是依次执行的.顺序结构中所表达的逻辑关系是自然串行、上下连贯、线性排列的.(2)条件结构:先根据条件作出判断,再决定执行哪一种操作的结构就称为条件结构.条件结构用于进行逻辑判断,并根据判断的结果进行不同的处理.条件结构必含判断框.条件结构的结构形式如图2所示,此结构中包含一个判断框,算法执行到此判断框给定的条件P时,根据条件P是否成立选择不同的执行框(A框或B框).注意:无论P是否成立,下一步只能执行A框或B框之一,不能A框和B框同时执行,也不能A、B两框都不执行,但A框和B框中可以有一个是空的,如图3.(3)循环结构:根据条件是否成立,以决定是否重复执行某些操作,在算法中要求重复执行同一操作的结构称为循环结构,重复执行的处理步骤称为循环体.根据执行情况及循环结束条件的不同可以分为当型循环(WHILE型)和直到型循环(UNTIL型).当型循环的特点是“先判断,后执行”,即先判断条件,当条件满足时,反复执行循环体,当条件不满足时退出循环(也就是说直到条件不满足时退出循环).如图4.直到型循环的特点是先执行一次循环体,再判断条件,当条件不满足时执行循环体,当条件满足时退出循环(即直到条件满足时退出循环),即“先执行,后判断”.如图5.当型循环可能一次也不执行循环体,而直到型循环至少要执行一次循环体.当型循环与直到型循环可以相互转化,条件互补.循环结构中常用的变量有计数变量、累加变量及累乘变量.计数变量用来记录某个事件发生的次数(即执行循环体的次数),累加变量用来计算数据之和,累乘变量用来计算数据之积.对于这些变量,开始一般要先赋初值,一般地,计数变量初值可设为0或1,累加变量初值设为0,累乘变量初值设为1.注意:(ⅰ)正确理解顺序结构的特点及适用条件是作出顺序结构图的关键.(ⅱ)画条件结构的程序框图要用到判断框,判断框有两个出口,根据不同的条件输出不同的信息,这些不同的信息必须全部写出.(ⅲ)只有有规律的,能重复进行的算法过程才能用循环结构.题型一算法设计写出能找出a 、b 、c 三个数中最小值的一个算法.解 第一步:输入a 、b 、c .并且假定min =a ;第二步:若b <min 成立,则用b 的值替换min ;否则直接执行下一步;第三步:若c <min 成立,则用c 的值替换min ,否则直接执行下一步;第四步:输出min 的值,结束.点评 本题的思路是:将min 定义为最小值,并把a 的值赋给min ,然后依次与b 、c 比较大小,遇到小的就替换min 的值,最后输出min 的值,这种方法可以推广到从多个不同的数中找出最大或最小的一个.题型二 条件结构的程序框图已知函数y =⎩⎪⎨⎪⎧ -1 (x >0),0 (x =0),1 (x <0).写出求该函数值的算法及程序框图.解 算法如下:第一步:输入x ;第二步:如果x >0,那么使y =-1,如果x =0,那么使y =0,如果x <0,那么使y =1; 第三步:输出函数值y .程序框图如图所示.点评 该函数是分段函数,当x 取不同范围内的值时,函数的表达式不同,因此当给出一个自变量x 的值时,也必须先判断x 的范围,然后确定利用哪一段的表达式求函数值,因为函数分了三段,所以判断框需要两个,即进行两次判断.求分段函数的函数值的程序框图,如果是分两段的函数只需引入一个判断框,如果是分三段的函数,至少需要引入两个判断框,分四段的函数要引入三个判断框,以此类推,至于判断框内的内容是没有顺序的,比如:本题中的两个判断框内的内容可以交换,但对应的下一图框中的内容或操作也必须相应地进行变化,比如本题的程序框图也可以画成如图1所示或如图2所示.图1图2题型三循环结构的程序框图看下面的问题:1+2+3+…+()>10 000,这个问题的答案不唯一,我们只要确定出满足条件的最小正整数n0,括号内填写的数只要大于或等于n0即可.试写出满足条件的最小正整数n0的算法并画出相应的程序框图.解算法如下:第一步:p=0;第二步:i=0;第三步:i=i+1;第四步:p=p+i;第五步:如果p>10 000,则输出i,算法结束.否则,执行第六步;第六步:回到第三步,重新执行第三步、第四步和第五步.该算法的程序框图如图所示.点评本题属于累加问题,代表了一类相邻两数的差为常数的求和问题的解法,需引入计数变量和累加变量,应用循环结构解决问题.在设计算法时前后两个加数相差1,则i=i +1,若相差2,则i=i+2,要灵活改变算法中的相应部分.另外需注意判断框内的条件的正确写出,直到型和当型循环条件不同,本题解法用的是直到型循环,用当型循环结构时判断框内条件应为p≤10 000.如图所示.题型四程序框图在生活中的应用72,91,58,63,84,88,90,55,61,73,64,77,82,94,60.要求将80分以上的同学的平均分求出来.画出程序框图.解用条件分支结构来判断成绩是否高于80分,用循环结构控制输入的次数,同时引进两个累加变量,分别计算高于80分的成绩的总和和人数.程序框图如图所示.构和循环结构相结合的算法.【例1】如图所示是某一算法的程序框图,根据该框图指出这一算法的功能.错解 求S =12+14+16+…+110的值. 错解辨析 本题忽略了计数变量与循环次数,没有明确循环体在循环结构中的作用,以及循环终止条件决定是否继续执行循环体.正解 在该程序框图中,S 与n 为两个累加变量,k 为计数变量,所以该算法的功能是求12+14+16+…+120的值. 【例2】 试设计一个求1×2×3×4×…×n 的值的程序框图.错解 程序框图如图所示.错解辨析 本题程序框图看似当型循环结构,我们应当注意的是,当型循环结构是当条件满足时执行循环体,而本题显然是误解了当型循环结构条件.正解 程序框图如图所示.乘变量t和计数变量i,这里t与i每一次循环,它们的值都在改变.1.(海南、宁夏高考)如果执行下面的程序框图,那么输出的S为()A.2 450 B.2 500 C.2 550 D.2 652答案 C解析当k=1,S=0+2×1;当k=2,S=0+2×1+2×2;当k=3,S=0+2×1+2×2+2×3;…当k=50,S=0+2×1+2×2+2×3+…+2×50=2 550.2.(济宁模拟)在如图的程序框图中,输出结果是()A.5 B.6C.13 D.10答案 D解析a=5时,S=1+5=6;a=4时,S=6+4=10;a=3时,终止循环,输出S=10.3.(广东高考)阅读下图的程序框图.若输入m=4,n=6,则输出a=________,i=________.答案12 3解析输入m=4,n=6,则i=1时,a=m×i=4,n不能整除4;i=2时,a=m×i=8,n不能整除8;i=3时,a=m×i=12,6能整除12.∴a=12,i=3.一、选择题1.一个完整的程序框图至少包含()A.终端框和输入、输出框B.终端框和处理框C.终端框和判断框D.终端框、处理框和输入、输出框答案 A解析一个完整的程序框图至少需包括终端框和输入、输出框.2.下列关于条件结构的说法中正确的是()A.条件结构的程序框图有一个入口和两个出口B.无论条件结构中的条件是否满足,都只能执行两条路径之一C .条件结构中的两条路径可以同时执行D .对于一个算法来说,判断框中的条件是惟一的答案 B解析 由条件结构可知:根据所给条件是否成立,只能执行两条途径之一.3.下列问题的算法适宜用条件结构表示的是( )A .求点P (-1,3)到直线l :3x -2y +1=0的距离B .由直角三角形的两条直角边求斜边C .解不等式ax +b >0 (a ≠0)D .计算100个数的平均数答案 C解析 条件结构是处理逻辑判断并根据判断进行不同处理的结构.只有C 中含有判断a 的符号,其余选项都不含逻辑判断.4.下列程序框图表示的算法是( )A .输出c ,b ,aB .输出最大值C .输出最小值D .比较a ,b ,c 的大小答案 B解析 根据流程图可知,此图应表示求三个数中的最大数.5.用二分法求方程的近似根,精确度为δ,用直到型循环结构的终止条件是( )A .|x 1-x 2|>δB .|x 1-x 2|<δC .x 1<δ<x 2D .x 1=x 2=δ答案 B解析 直到型循环结构是先执行、再判断、再循环,是当条件满足时循环停止,因此用二分法求方程近似根时,用直到型循环结构的终止条件为|x 1-x 2|<δ.二、填空题6.下边的程序框图(如下图所示),能判断任意输入的整数x 是奇数或是偶数.其中判断框内的条件是________.答案 m =0?解析 根据程序框图中的处理框和输出的结果,寻找判断框内的条件.由于当判断框是正确时输出的是“x 是偶数”,而判断框前面的处理框是x 除以2的余数,因此判断框应填“m =0?”.7.下图是计算1+13+15+…+199的程序框图,判断框应填的内容是________,处理框应填的内容是________.答案 i ≤99? i =i +2解析 由题意知,该算法从i =1开始到99结束,循环变量依次加2.8.完成下面求1+2+3+…+10的值的算法:第一步,S =1.第二步,i =2.第三步,S =S +i .第四步,i =i +1.第五步,________________________________________________________________________. 第六步,输出S .答案 如果i =11,执行第六步;否则执行第三步解析 本题是用自然语言来描述的算法,实际上第五步是一个判断条件,根据题意,是循环是否终止的条件,因此应该为如果i =11,执行第六步;否则执行第三步.三、解答题9.画出求11×2+12×3+13×4+…+199×100的值的程序框图. 解 这是一个累加求和问题,共99项相加,可设计一个计数变量,一个累加变量,用循环结构实现这一算法.程序框图如下图所示:10.写出解方程ax +b =0 (a 、b 为常数)的算法,并画出程序框图.解 算法如下:第一步,判断a 是否等于零,若a ≠0,执行第二步,若a =0,执行第三步;第二步,计算-b a ,输出“方程的解为-b a”; 第三步,判断b 是否等于零,若b =0,输出“有无数个解”的信息,若b ≠0,输出“方程无解”的信息.程序框图如图所示:探 究 驿 站11.画出求12+12+…+12(共6个2)的值的程序框图. 分析 本题看上去非常烦琐,尤其是对于2的位置处理,容易让人产生错觉.本题只要把含有2的式子分离开来,用A 代替12,即令A =12,则不难分析出分母可化为12+A的形式,且此结构重复出现.解 方法一 当型循环结构程序框图如图所示.方法二 直到型循环结构程序框图如图所示.12.给出以下10个数:5,9,80,43,95,73,28,17,60,36,要求把大于40的数找出来并输出.试画出该问题的程序框图.解程序框图如下图:趣味一题13.相传,古印度的舍罕王打算重赏国际象棋的发明者——宰相西萨·班·达依尔.于是,这位宰相跪在国王面前说:“陛下,请您在这张棋盘的第一个小格内,赏给我一粒麦子;在第二个小格内给两粒,第三格内给四粒,照这样下去,每一小格都比前一小格加一倍.陛下啊,把这样摆满棋盘上所有64格的麦粒,都赏给您的仆人罢!”国王慷慨地答应了宰相的要求,他下令将一袋麦子拿到宝座前.计数麦粒的工作开始了.第一格内放一粒,第二格两粒,第三格四粒……还没到第二十格,袋子已经空了.一袋又一袋的麦子被扛到国王面前来,但是,麦粒数一格接一格地增长得那么迅速,很快就可以看出,即使拿来全印度的小麦,国王也无法兑现他对宰相许下的诺言!请你画出一个程序框图来求需要的麦粒数.分析由题意,我们可以看出第一格内放一粒,第二格两粒,第三格四粒,就是往后每一格是前一格的2倍,这样一共需要的麦粒数就是1+2+22+…+262+263.从而可以得出这是一个累加求和问题,可以利用循环结构来设计算法,计数变量i从1到64循环64次,每个求和的数可用一个累乘变量表示.解程序框图:。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章算法初步【知识特点】1.本章容是新标新增加的必修容,算法是数学及其应用的重要组成部分,也是计算机科学的重要基础,它与前面的知识有密切联系,并且与实际问题的联系也非常密切。
2.算法的三种基本结构蕴含了比较深刻的思想,成了历年高考的重点,在复习中要熟练掌握算法的逻辑结构和算法语句的格式,正确阅读、理解程序框图和算法语句。
【重点关注】1.算法和程序框图算法和程序框图的核心是程序框图是三种基本逻辑结构,它与其他知识,如函数、方程、不等式、数列等有密切的联系,应用非常广泛。
2.基本算法语句基本算法语句是将程序框图转化为程序语句以实现算法的重要手段,是算法的主体容,高考试题对算法语句的考查一般是填空题,主要形式有两种,一是对一个算法程序中缺少的关键语句进行补充;二是写出一个算法执行后的结果,难度不会太大。
【地位和作用】算法是数学及其应用的重要组成部分,是计算科学的重要基础.随着现代信息技术的飞速发展,算法在科学技术、社会发展中发挥着越来越大的作用,并日益融入社会生活的许多方面,算法思想也正在成为普通公民的常识,成为现代人应具备的一种基本数学素养.从新课改最近几年各省份的高考信息统计可以看出,命题会呈现出以下特点:1.考查题型以选择、填空题为主,分值约点3%左右,基本属于容易题;2.重点考查程序框图的应用和基本算法语句,如条件结构、循环结构,以及它们相对应的基本算法语句,注重程序框图和基本算法语句的应用及判别;3.预计本章在今后的高考中仍将在程序框图和算法语句处命题,更加注重考查学生的识图能力、分析问题和解决问题的能力。
9.1基本算法语句与程序框图【高考目标导航】一、算法与程序框图(一)考纲点击1.了解算法的含义,了解算法的思想;2.理解程序框图的三种基本逻辑结构:顺序、条件、循环。
(二)热点提示1.本节是高考的热点容,主要考查算法的含义和程序框图的理解和应用;2.本部分在高考题中以选择、填空为主,属于中档题。
二、基本算法语句(一)考纲点击理解几种基本算法语句——输入语句、输出语句、赋值语句、条件语句、循环语句的含义。
(二)热点提示1.基本算法语句是算法的主体容,高考中重在考查对算法语句的理解和应用,其形式有:一是对一个算法程序中缺少的关键语句进行补充,二是写出一个算法执行后的结果;2.高考试题对算法语句的考查三种题型均能出现,但是重在选择题、填空题。
【考纲知识梳理】一、算法与程序框图1.算法(1)古代定义:指的是用阿拉伯数字进行算术运算的过程。
(2)现代定义:算法通常是指按照一定规则解决某一类问题的明确和有限的步骤。
(3)应用:算法通常可以编成计算机程序,让计算机执行并解决问题。
2.程序框图(1)定义:程序框图又称流程图,是一种用程序框、流程线及文字说明来表示算法的图形。
(2)说明:在程序框图中,一个或几个程序框的组合表示算法中的一个步骤;带有方向箭头的流程线将程序框连接起来,表示算法步骤的执行顺序。
3.三种基本逻辑结构程序框图注:三种基本逻辑结构的共同点是:即只有一个入口和一个出口,每一个基本逻辑结构的每一部分都有机会被执行到,而且结构不存在死循环。
二、基本算法语句1.输入语句、输出语句、赋值语句的格式与功能语句一般格式功能输入语句INPUT“提示容”;变量输入信息输出语句PRINT“提示容”;表达式输出常量、变量的值和系统信息赋值语句变量=表达式将表达式的值赋给变量2.条件语句(1)算法中的条件结构与条件语句相对应;(2)条件语句的格式及框图①IF—THEN格式②IF—THEN—ELSE格式3.循环语句(1)算法中的循环结构与循环语句相对应。
(2)循环语句的格式及框图。
①UNTIL语句②WHILE语句注:计算机是按怎样的顺序执行循环语句的?(使用循环语句的关键是辨认出算法在执行过程中的循环特征,若先考虑判断,再进行循环,则使用当型(WHILE型)循环;若先进行循环,再判断,则使用直到型(UNTIL型)循环,直到型循环语句至少执行一次循环体,而当型循环语句则可能一次也执行循环体,二者本质上是相同的,可以相互转化。
)【要点名师透析】一、算法与程序框图※相关※1.算法的特征(1)概括性:写出的算法必须能解决某一类问题,并且能够重复使用;(2)逻辑性:算法从它的初始步骤开始,分为若干明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行后一步,而且每一步都是正确无误的,从而组成了一个有着很强逻辑性的序列;(3)有穷性:算法有一个清晰的起始步,终止步时表示问题得到解答或指出问题没有解答,所有序列必须在有限个步骤完成,不能无停止地执行下去;(4)不唯一性:求解某一问题的算法不一定只有唯一的一个,可以有不同的算法,当然这些算法有简繁之分、优劣之别;(5)普遍性:很多具体的问题,都可以通过设计合理的算法去解决。
例如手算法、心算或用算盘、计算器去计算都要经过有限的、事先设计好的步骤加以解决。
同样,工作计划、生产流程等都可以认为是算法。
注:算法要求“按部就班地做”,每做一步都有唯一的结果。
2.给出一个问题,设计算法时应注意:(1)认真分析问题,联系解决此问题的一般数学方法;(2)综合考虑此类问题中可能涉及的各种情况;(3)将解决问题的过程划分为若干个步骤;(4)用简练的语言将各个步骤表示出来。
※例题解析※〖例〗写出找出1至1 0007的倍数的一个算法.解答:算法1:S1 令A=0;S2 将A不断增加1,每加一次,就将A除以7,若余数为0,则找到了一个7的倍数,将其输出;S3 反复执行第二步,直到A=1 000结束.算法2:S1 令k=1;S2 输出k·7的值;S3 将k的值增加1,若k·7的值小于1 000,则返回S2,否则结束.算法3:S1 令x=7;S2 输出x的值;S3 将x的值增加7,若没有超过1 000,则返回S2,否则结束.(二)算法的顺序结构和条件结构 ※相关※1.顺序结构是最简单的算法结构,语句与语句之间、框与框之间是按从上到下顺序进行的。
程序框图中一定包含顺序结构。
2.解决分段函数的求值问题时,一般采用条件结构设计算法。
利用条件结构解决算法问题时,要引入判断框,要根据题目的要求引入一个或多个判断框。
而判断框的条件不同,对应的下一图框中的容和操作要相应地进行变化,故要逐个分析判断框的条件。
3.画程序框图的规则 (1)使用标准的框图符号;(2)框图一般按从上到下、从左到右的方向画;(3)除判断框外,大多数程序框图中的程序框只有一个进入点和一个退出点,判断框是具有超过一个退出点的唯一符号;(4)在图形符号描述的语言要非常简练清楚。
注:(1)终端框(起止框)是任何程序框图不可少的,表明程序开始和结束。
(2)输入框和输出框可用在算法中任何需要输入、输出的位置。
※例题解析※〖例〗已知函数223(0)2(0)x x y x x ->⎧=⎨+≤⎩,写出求该函数的函数值的算法并画出程序框图。
思路解析:分析算法→写出算法→选择合适的逻辑结构→画出程序框图。
解答:算法如下: 第一步:输入x ;第二步:如果(0)x >,那么使23y x =-, 否则22y x =+; 第三步:输出y 。
程序框图如下:(三)算法的循环结构 〖例〗设计算法求111112233499100++++⨯⨯⨯⨯的值,并画出程序框图。
思路解析:(1)这是一个累加求和问题,共99项相加;(2)设计一个计数变量,一个累加变量,用循环结构实现这一算法。
解答:算法如下: 第一步:令S=0,1;i =第二步:若99i ≤成立,则执行第三步; 否则,输出S ,结束算法; 第三步:1;(1)S S i i =++第四步:1i i =+,返回第二步。
程序框图:方法一:当型循环程序框图:方法二:直到型循环程序框图:注:利用循环结构表示算法,一定要先确定是利用当型循环结构,还是直到型循环结构;第二要选择准确的表示累计的变量;第三要注意在哪一步开始循环。
(四)算法的实际应用〖例〗意大利数学家菲波拉契,在1202年出版的一书里提出了这样的一个问题:一对兔子饲养到第二个月进入成年,第三个月生一对小兔,以后每个月生一对小兔,所生小兔能全部存活并且也是第二个月成年,第三个月生一对小兔,以后每月生一对小兔.问这样下去到年底应有多少对兔子? 试画出解决此问题的程序框图,并编写相应的程序.解答: 根据题意可知,第一个月有1对小兔,第二个月有1对成年兔子,第三个月有两对兔子,从第三个月开始,每个月的兔子对数是前面两个月兔子对数的和,设第N 个月有F 对兔子,第1N -个月有S 对兔子,第2N -个月有Q 对兔子,则有F S Q =+,一个月后,即第1N +个月时,式中变量S 的新值应变第N 个月兔子的对数(F 的旧值),变量Q 的新值应变为第1N -个月兔子的对数(S 的旧值),这样,用S Q +求出变量F 的新值就是1N +个月兔子的数,依此类推,可以得到一个数序列,数序列的第12项就是年底应有兔子对数,我们可以先确定前两个月的兔子对数均为1,以此为基准,构造一个循环程序,让表示“第×个月的I 从3逐次增加1,一直变化到12,最后一次循环得到的F 就是所求结果. 流程图和程序如下:注:(1)实际生活中很多问题都可以利用框图的方法处理,而解决实际问题的方法本身就是对算法的一个体现。
解决此类问题时,首先要认真分析,联系解决此类问题的数学方法,综合考虑此类问题中可能涉及的问题,明确选择合适的算法逻辑结构来画出程序框图。
(2)在算法中,遇到不同形式的选择问题,需要考虑利用条件结构,对式子呈现一定规律且计算项较多时,需要考虑利用循环结构,要注意第一次循环和最后一次循环的结果,以免多算或漏算。
二、基本算法语句(一)输入、输出、赋值语句的应用 ※相关※1.输入、输出、赋值语句是任何一个算法中必不可少的语句。
一个语句可以输出多个表达式。
在赋值语句中,变量的值始终等于最近一次赋给它的值,先前的值将被替换。
2.一个赋值语句只给一个变量赋值,但一个语句行可以写出多个赋值语句。
3.不能利用赋值语句进行代数式的演算(如化简、因式分解、解方程等)。
注:输入语句没有计算功能,而输出语句、赋值语句有计算功能。
4.在BASIC语言中,常见运算符号的书写方式5.BASIC语言中的运算规则先乘除,后加减;乘幂优先于乘除;函数优先于乘幂;同级运算从左向右按顺序进行;括号最优先。
※例题解析※〖例〗某企业为职工计算工资时按时间计,每月的总工资=每月劳动时间×每小时工资,从总工资中扣除15%作为医疗保险金,再以总工资的5‰作为奖金,要求输入劳动时间和每小时工资数,输出每位职工应发工资。
设计算法并画出程序框图,写出程序。